Date 14.5.99
Student 45834H, Mikko Hämäläinen
Problem Set 4
Problem 1
File: h4t1.m
% Poisson kernel on the unit disc
x=0;
y=1;
r = [0:0.05:1];
theta = [0:2*pi/100:2*pi];
X = r'*cos(theta);
Y = r'*sin(theta);
n = 1 - X.^2 - Y.^2;
D = 2*pi*((X-x).^2 + (Y-y).^2);
z = n./D;
colormap(hsv);
surf(X,Y,z);
shading flat;
The Matlab code based on the lecture material...
Problem 2
File: h4t2.m
% Harmonic functions on the unit disk
r=[0:0.05:1];
theta=[0:2*pi/100:2*pi];
X=r'*cos(theta);
Y=r'*sin(theta);
R=r'*ones(size(theta));
TH=ones(size(r'))*theta;
% Here is the degree n
n=4;
g=R.^n.*cos(n.*TH);
surf(X,Y,g);
colormap(copper);
... as the problem 1.