Kysymys

Mitä voit sanoa seuraavistä väitteistä kun $d> 1$ ja $m>1$?

(I) Jos $\B f:\R^d\to \R^m$ on jatkuvasti derivoituva ja $\rho>0$ niin on olemassa vakio $C<\infty$ siten, että
\[ \left |\B f(\B x) - \B f(\B y)\right | \leq C\left \|\B x- \B y\right \|,\quad \text{kun} \quad \left\| \B x\right \|, \left\|\B y\right \|\leq \rho. \]

(II) Jos $\B g:\R^d\to\R^m$ on jatkuvasti derivoituva, $\rho >0$ ja $\left \|\B g'(\B x)\B u\right \| >0 $ kun $\left \|\B x\right \|\leq \rho$, $\B u\in \R^d$ ja $\left \|\B u\right \|=1$, niin silloin on olemassa vakio $c>0$ siten, että
\[ \left \|\B g(\B x) - \B g(\B y)\right \| \geq c\left \|\B x- \B y\right \|,\quad \text{kun} \quad \left\| \B x\right \|, \left\| y\right \|\leq \rho. \]

  1. Mikään niistä ei ole tosi!
  2. Ainoastaan (I) on tosi!
  3. Ainoastaan (II) on tosi!
  4. Molemmat ovat tosia!

Valitse jokin näistä vaihtoehdoista vastaussivulla: