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1.3 Integration

In this section, let (X, M, i) be a complete measure space. The p-integral

/fdu

of an M-measurable function f : X — [—o0, +0o0] is defined step-by-step:
1. First for a simple function.
2. Then for a non-negative function.
3. Finally, the general definition.

Definition 1.3.1. Let s : X — [0, 00| be an M-measurable simple function.
Its integral [ sdp € [0, c0] is

/s dp = / Z a X{s=a} dp = Z a-p{{s=a}), (1.28)
a€s(X) acs{X)
with the convention 0 - co := 0. Especially, [ xgdp = u(E) for E € M.

Definition 1.3.2. Let f* : X — [0, 0] be an M-measurable non-negative
function. Its integral [ f+du € [0,00] is

/f+d;z = sup {/s dp: s < fT, s simple measurable} ) (1.29)

Definition 1.3.3. Let f : X — [-o0,+00] be an M-measurable function.

Its integral [ fdp is
Jraws=[rtau- [ a (1.30)

provided that [ f*du < oo or [ f~du < oo: we want to avoid a situation
oc—oc here. If [ fTdp < oo and [ f~dp < oo then f is called p-integrable.
Let f: X — C be M-measurable such that |f] : X — R is p-integrable.
The p-integral of f is defined by

/f du ::/%f d,u%«i/i‘sf du, (1.31)

where Rf,3f : X — R are the real and imaginary parts of f, respectively.
If we want to emphasize the variable in the integration, we may write

/fw:/ﬂmmmx
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or even [ f(z) dz, if the measure is clear from the context. We shall also

use the abbreviation
/fdu ::/XEf du,
E

where £ € M; this is the integral of f over E C X.

1.3.1 Integrating simple functions

It is simple to integrate simple functions. We leave the details as an exercise
for the reader:

Exercise 1.3.4. Let 7,5 : X — {0, 00[ be M-measurable simple functions
and a € [0, cof. Show that

/ardu:a/rdu and /(T+3)du:/rdu+/sdu.

Moreover, if 7 < s, show that /r dp < /s dp.

1.3.2 Integrating non-negative functions

Let us now concentrate on integrating measurable non-negative functions.
As an easy consequence of Exercise 1.3.4, for M-measurable functions
fte": X —[0,00] and a € RT,

/af“‘" dpe = a/f'l" du, (1.32)
if f*<g* then /f"' dp < /g+ dp. (1.33)

These observations will be used frequently. However, it is not evident

whether )
/(f;“ﬂ/*) dur:/f“r du-%—/g*' dg.

This will be obtained as a consequence of the following fundamental result:

Theorem 1.3.5. (Monotone Convergence Theorem.) For each k > 1, let
i X — [0,00] be M-measurable such that fr, < fre1. Then

kiim S dp = /kﬁm e dp.
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Proof. Function f := klim fr + X :— [0,00] is measurable as a limit of

measurable functions. Clearly, fi < fry1 < f, so the increasing sequence
of integrals [ frdu < [ fdu converges to the limit

lim /fk dusff du.

Let 0 < ¢ < 1. Take a simple measurable function s such that s < f and

/sdu}_(l—e)/fdp.

Let Ex = {fr > (1 —e)s}. Since fr and s are measurable, B, € M.
Furthermore,

/fk dp > /(1~5)s XE, dp
Y (1-&)a-u(Een{s=a})

i

a€s(X)
P (1-¢) Z a-p({s=a})
a€s(X)
= {1—g) [sd
\ ) J H

> (-of [ ran,
where the limit is due to X = J;—; Ex, where Ey C Epyy € M. Thus

Jm [ pednz =27 [ fap.

1

Taking € — 0, the proof is complete.

Corollary 1.3.6. Let f, g: X — [0,00] be M-measurable. Then

[+ du= [ rau+ [

Proof. Take measurable simple functions fi,gx : X — [0, 00[ such that
Je € fegr and gx < gryy for each k € ZF, and fr — f and gr — ¢
pointwise. Then fi, + gz : X — [0, 00| is simple measurable such that

S+ 98 < frovt + k41 —— [+ g,
k->f}0
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so that by the Monotone Convergence Theorem 1.3.5,

/(f +g) dp = klirgo/(fk + gx) du

Exerciae 1.3.4 Jim (/ T dﬁ‘+/9k du)
= / fdp+ / g dp,

establishing the result. N

Corollary 1.3.7. Let g; : X — [0,00] be M-measurable for each j € Z7.

Then - -
/Zgj du:Z/gj du.
=1 j=1

Proof. For each k € ZT, let us define functions fi, f : X — [0, 0] by

=1

k o
fer=)_g; and fi=lim fi=> g;.
F=1

These functions are measurable and fr < fre1 < f, s0

k k
. . Monoctone Convergence .
lim E g; du = lim E g; du
k—roxs 4 k—oo ;
- J=1 J=1

k
Corollary 1.3.6 .
= lim § g; dp,
ko0 4
7=1

completing the proof. 7

Theorem 1.3.8. (Fatou’s Lemma.) Let gi : X — [0,00] be M-measurable
for each k € Z*. Then

/likm infgr du < likr}';inf/ g dp.

Proof. Notice that

liminf g = sup inf ¢;.
R 1
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Define f;, :== 1§£ gj for each k > 1. Now fi : X — [0, 00| is measurable and
J

fi < frs1, so that sup f = lim fi, and
k>1 k—oo

/likm inf g5, dp = /SUP fr du

k>1
k—o0
Monotone gonvergence lim / fk; d,u
ko0
= lim inf / fr du
kr 00
< liminf/g;c di.
k—o0
The proof is complete. ]

Exercise 1.8.9. Sometimes / Iigninf gr du < Iikm inf [ g du happens in
— 00 — O
Fatou’s Lemma 1.3.8. Find an example.

Exercise 1.3.10. Actually, the Monotone Convergence Theorem 1.3.5 and
Fatou’s Lemma 1.3.8 are logically equivalent: prove this.

1.3.3 Integration in general

Let f: X — [~00, +o0] be an M-measurable function. Recall that if

I*":/f*'du<oc or I“:/f"du<oo

then the p-integral f.is Jf fdp=dt— = Meor . I T

vioreovery it-both-I™and I=are
finite, f is called p-integrable. We shall be interested mainly in u-integrable
functions.

Theorem 1.3.11. Let a € R and f: X — [~oc, +00| be p-integrable. Then

/af du:a/f du. (1.34)

Moreover, if g : X — [~oc, 00| is p-integrable such that f < g, then

/f d,uﬁ/g dp. (1.35)



22 Chapter 1. Measure theory and integration

Especially, l/f du‘ < f‘f} du.
Exercise 1.3.12. Prove Theorem 1.3.11.

Exercise 1.3.13. Let E € M and |f| < g, where f is M-measurable and g
is p-integrable. Show that f and fxg are p-integrable.

We continue with noticing the short-sightedness of integrals:

Lemma 1.3.14. Let f,g: X — [—00,+00] be u-integrable. Then

1. Let E € M such that u(E) = 0. Then / fdu=0.
E

2. Let f = g p-almost everywhere. Then /f dp = /g dgs.

3. Let /[f dp = 0. Then f =0 u-almost everywhere.

Proof. First,

/E Fraw = [xean

= sup {f sdp: s < ftyg simple measurable}
u(b;):O 0,

proving the first result. Next, let us suppose f = g p-almost everywhere.

Then

/f+ dp = /(f+X{f=g} +F X r20y) dp

Corollaéy 1.3.6 / f+ d,u«i-/ f_;, d#
J{f=g} {r#g}

n({f#g})=0 / 7+ du,
{f=g}
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showing that [ f*du = [ g*dy, establishing the second result. Finally,

s

p({F 00 = ({7 > 17k
k=1

< ST uifl > 1k
k=1

= > 17kt d
};/X{m 1/k}y Ap
kif d

> s

= k[1f]d
2ok fuan

so that if [ |f|du =0, then u({f # 0}) = 0. O

IA

Proposition 1.3.15. Let f : X — [—occ, +0o| be p-integrable. Then f(z) € R
for p-almost every x € X.

Proof. First, {fT = oo} = (o, {fT > k} € M, because f* is M-measurable.
Thereby

1
p({ff=00}) = E/k'X{ﬁ«:ec} du
1 + .
< g fraec o
so that p ({f* = oo}) = 0. Similarly, u ({f~ = oc}) = 0. O

Remark 1.3.16. By Lemma 1.3.14 and Proposition 1.3.15, when it comes
to integration, we may identify a p-integrable function f : X — [—00, o0
with the function f: X — R defined by

flz) =

. f(z), when f(z) € R,
O> when [f(‘r)‘ = 00.

We shall do this identification without a further notice.
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Theorem 1.3.17. Let f,g: X — [—o0, +o0] be u-integrable. Then f + g is
p-integrable and

/(f+g)du=/fdu+/gdu~ (1.36)

Proof. For integrable f,g: X — R, the function f +g¢: X — R is measur-
able. Notice that

=)+ —97)
fra= {(f+g)'*’—-(f+g)‘-
Since (f +g)t < fT4+g¢*, and (f+9)” < f~ + ¢, the integrability of

[+ g follows. Moreover, (f + )t + f~+¢g~ = (f+g9)” +f" +g". By
Corollary 1.3.6,

/(f+g>*du+/f‘du+/g“du= /(f+g)“dn+/f+du+/g+du.,

implying
/(f—+g)du = /(f+g)+du*/(f+g)’d#
= /f*du—*/f‘dw—/g*du-/g‘du
= /fd,u+/gdu.

The proof for the summation is thus complete. O

Theorem 1.3.18. (Lebesgue’s Dominated Convergence Theorem.) For each

k> 1, let fr, © X — [—o0,+oc] be measurable and fr ——— f. Assume

that | fr] < g for every k > 1, where g is p-integrable. Then

Proof. Functions f, f,|fr — fl are u-integrable, because they are measur-
able, g is p-integrable, | fil, | f| < g and |fx— f] < 2g. Foreach k > 1, define
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function gy := 2g —| fx — f|. Then functions gk = 0 satisfy the assumptions
of Fatou’s Lemma 1.3.8, yielding

/2g du = likxgigf g du
Fatou
liminf/gk du
k—oo

= 1i£ior_3f(/2g du—/!fwft du)

- /2g du—limSuP/!fk = fl du.
k100

IA

Here we may cancel [2g dueR, getting

1imsup/lfk = fldu <0,

K 065

so that [|fx — f| du Pa— 0. Finally,

) ol T
;/fkdu"/fdn{}:v&fkﬂf)du;S/ifk~f[ du——0,
which completes the proof. O
Proposition 1.3.19. Let f: R — R be Riemann-integrable on each closed

interval [a,b] C R. Then I X[ap) 15 Lebesque-integrable and the Riemann-
and Lebesgue-integrals coincide:

b
/ flz) dx :/ [ dAg.
@ [a,b]

Exercise 1.3.20. Prove Proposition 1.3.19. Recall the definition of the
Riemann-integral: Let g : [a,b] — R be bounded. A finite sequence P, =
(zo, - ,zy) is called partition of ja, b] if

A= <Z; <Tg < < Ty < Ty = b,

for which the lower and upper Riemann sums L(g, P.),U(g, P,) are defined
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by

U(van) = Z( sup 9(33)) (xk’$k~1)»

b1 Ty L2<sy

i

NE

pop) = 3 (, it o) - o).

Zp1Lr<Ty

E
1l

1

Now L{g) < Ulyg), where

U(g) :=1inf {U(g, P) : P is a partition of [a,b]},
L{g) :=sup{L{g, P): P is a partition of [a,b]}.

It L{g) = U(yg), we say that ¢ is Riemann-integrable with Riemann-integral

b
| 9te) e = (o)



