Mat-1.3608 Markov chains. Recall the following notation from Brémaud: π is a probability distribution on $S = (s_1, \ldots, s_k)$ such that $\pi_i > 0$ for all $i = 1, \ldots, k$. Then for $x, y \in \mathbb{R}^k$ put $\langle x, y \rangle_{\pi} = \sum_{i=1}^k x_i y_i \pi_i$.

V Exercise 21.2. 2008 Tikanmäki/Valkeila.

1. Let P be a transition matrix. We say that it is doubly stochastic if

$$\sum_{i} p_{ij} = 1$$
 for fixed i and $\sum_{i} p_{ij} = 1$ for a fixed j .

Give an example of doubly stochastic matrix P which is not non-negative definite.

2. Let P be the matrix

$$\left[\begin{array}{cc} 1-\alpha & \alpha \\ \beta & 1-\beta \end{array}\right]$$

for $\alpha, \beta \in (0,1)$. Compute P^n in terms of the spectral repserentation.

- 3. [Continuation] Compute the stationary distribution π and the difference $P^n \mathbf{1}\pi^T$.
- 4. Show that (P, π) is reversible if and only if $\langle Px, y \rangle_{\pi} = \langle x, Py \rangle_{\pi}$.
- 5. Let α, β be two probability measures on S. Put

$$d_V(\alpha, \beta) = \frac{1}{2} |\alpha - \beta| = \frac{1}{2} \sum_{i=1}^k |\alpha_i - \beta_i|.$$

Show that

$$d_V(\alpha, \beta) = \frac{1}{2} \sup_{y \in \mathbb{R}^k} \left(\sum_{i=1}^k \alpha_i y_i - \sum_{i=1}^k \beta_i y_i : \sup_i |y_i| = 1 \right).$$

6. Define the χ^2 - contrast by

$$\chi^2(\alpha;\beta) = \sum_i \frac{(\alpha_i - \beta_i)^2}{\beta_i}.$$

Show that

$$\chi^2(\alpha; \pi) = ||\alpha - \pi||_{\frac{1}{\pi}}^2.$$