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NUMERICAL COMPUTATIONS WITH H(div)-FINITE ELEMENTS

FOR THE BRINKMAN PROBLEM

JUHO KÖNNÖ∗ AND ROLF STENBERG†

Abstract. The H(div)-conforming approach for the Brinkman equation is studied numerically,
verifying the theoretical a priori and a posteriori analysis in [22, 23]. We also present a hybridiza-
tion technique for the problem, complete with convergence analysis and numerical veri�cation. In
addition, di�ent boundary conditions and their enforcing along with the applicability of the method
to some subsurface �ow problems is addressed.

1. Introduction. The Brinkman equation describes the �ow of a viscous �uid
in a highly porous medium. Mathematically the model is a parameter-dependent
combination of the Darcy and Stokes models. For a derivation of and details on
the Brinkman equations we refer to [25, 1, 2, 3, 30]. Typical applications of the
model lie in subsurface �ow problems, along with some special applications, such as
heat pipes and composite manufacturing [21, 15]. The e�ects of taking the viscosity
into account are most pronounced in the presence of large crack or vugs, typical of
e.g. real-life oil reservoirs. The advantages of the parameter dependent model in
reservoir simulation include the ability to perform computations in cracked domains
without the exact knowledge of the crack locations, and not having to know the exact
boundary condition between the free-�ow and porous domains. The Brinkman model
is also used as a coupling layer between a free surface �ow and a porous Darcy �ow [13].
Numerical results for the Brinkman �ow have been previously presented for the Hsieh-
Clough-Tocher element in [32], for the classical Stokes elements in [16, 11, 17], and for
coupling the Stokes and Darcy �ows with an SIPG method in [20]. For the H(div)-
conforming approximation, numerical results with a subgrid algorithm can be found
in [18].

The structure of the paper is as follows. In Chapter 2 we brie�y recall the mathe-
matical formulation of the model, and introduce the necessary function spaces. Chap-
ter 3 carries on to introducing the H(div)-conforming �nite element discretization for
the problem, along with the Nitsche formulation for assuring conformity and stability
in the discrete spaces. We also recall the main results of the a priori and a posteriori
analysis carried out in [22], along with the postprocessing procedure necessary for the
optimal convergence results.

Chapters 4 and 5 are related to two practical aspects of the implementation.
In Chapter 4 we introduce a hybridization technique for the parameter dependent
problem based on previous hybridization techniques for mixed and DG methods [12,
10, 8]. The practicability of the hybridization and the bene�ts therein are discussed
brie�y. Chapter 5 is devoted to techniques for enforcing the boundary conditions,
which are non-trivial to assign for this parameter-dependent problem.

We end the paper with extensive numerical tests in Chapter 6. We �rst demon-
strate the convergence rates predicted by the theory for both the relative error as
well as the a posteriori indicator. Furthermore, the performance of the method is
compared with that of a MINI �nite element discretization. Next, the importance
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of the postprocessing method is clari�ed and convergence of the hybridized method
is studied. The weak enforcing of the boundary conditions and adaptive re�nement
techniques are studied in the framework of the classical Poisseuille �ow. The chapter
ends with a practical example of the Brinkman �ow with actual material parameters
from the SPE10 dataset [9].

2. The Brinkman model. Let Ω ⊂ Rn, with n = 2, 3, be a domain with a
polygonal or polyhedral boundary. We denote by u the velocity �eld of the �uid and
by p the pore pressure. The equations are scaled as presented in [16], with the single
parameter t representing the e�ective viscosity of the �uid, which is assumed constant
for simplicity. With this notation, the equations are

−t2∆u + u +∇p = f , in Ω, (2.1)

div u = g, in Ω. (2.2)

For simplicity of the mathematical analysis, we consider homogenous Dirichlet bound-
ary conditions for the velocity �eld. For t > 0 the boundary conditions are

u = 0. (2.3)

For the limiting case t = 0 we assume the boundary condition

u·n = 0. (2.4)

The enforcing of di�erent boundary conditions is adressed in Chapter 5 in more detail.
For t > 0, the equations are formally a Stokes problem. The solution (u, p) is

sought in V ×Q = [H1
0 (Ω)]n × L2

0(Ω). For the case t = 0 we get the Darcy problem,
and accordingly the solution space can be chosen as V × Q = H(div,Ω) × L2

0(Ω) or
V ×Q = [L2(Ω)]n × [H1(Ω) ∩ L2

0(Ω)]. Here, we focus on the �rst choice of spaces.
In the following, we denote by (· , · )D the standard L2-inner product over a set

D ⊂ Rn. If D = Ω, the subscript is dropped for convenience. Similarly, 〈· , · 〉B is the
L2-inner product over an (n− 1)-dimensional subset B ⊂ Ω̄. We de�ne the following
bilinear forms

a(u,v) = t2(∇u,∇v) + (u,v), (2.5)

b(v, p) = −(div v, p), (2.6)

and

B(u, p; v, q) = a(u,v) + b(v, p) + b(u, q). (2.7)

The weak formulation of the Brinkman problem then reads: Find (u, p) ∈ V ×Q
such that

B(u, p; v, q) = (f ,v)− (g, q), ∀(v, q) ∈ V ×Q. (2.8)

3. Solution by mixed �nite elements. Let Kh be a shape-regular partition
of Ω into simplices. As usual, the diameter of an element K is denoted by hK , and
the global mesh size h is de�ned as h = maxK∈Kh

hK . We denote by Eh the set of all
faces of Kh. We write hE for the diameter of a face E.
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We introduce the jump and average of a piecewise smooth scalar function f as
follows. Let E = ∂K ∩ ∂K ′ be an interior face shared by two elements K and K ′.
Then the jump of f over E is de�ned by

[[f ]] = f |K − f |K′ , (3.1)

and the average as

{|f |} =
1
2

(f |K + f |K′). (3.2)

For vector valued functions, we de�ne the jumps and averages analogously. In addi-
tion, we de�ne the tangential component on each face as

uτ = u− (u·n)n, (3.3)

in which n is the normal vector of the face in question.

3.1. The mixed method and the norms. Mixed �nite element discretization
of the problem is based on �nite element spaces Vh × Qh ⊂ H(div,Ω) × L2

0(Ω) of
piecewise polynomial functions with respect to Kh. We will focus here on the Raviart-
Thomas (RT) and Brezzi-Douglas-Marini (BDM) families of elements [8]. In three
dimensions the counterparts are the Nédélec elements [27] and the BDDF elements [7].
That is, for an approximation of order k ≥ 1, the �ux space Vh is taken as one of the
following two spaces

V RT
h = {v ∈ H(div,Ω) | v|K ∈ [Pk−1(K)]n ⊕ xP̃k−1(K) ∀K ∈ Kh}, (3.4)

V BDM
h = {v ∈ H(div,Ω) | v|K ∈ [Pk(K)]n ∀K ∈ Kh}, (3.5)

where P̃k−1(K) denotes the homogeneous polynomials of degree k − 1. The pressure
is approximated in the same space for both choices of the velocity space, namely

Qh = {q ∈ L2
0(Ω) | q|K ∈ Pk−1(K) ∀K ∈ Kh}. (3.6)

Notice that V RT
h ⊂ V BDM

h . The combination of spaces satis�es the following equi-
librium property:

div Vh ⊂ Qh. (3.7)

To assure the conformity and stability of the approximation, we use the an SIPG
method [19, 28], also known as Nitsche's method, with a suitably chosen stabilization
parameter α > 0. We de�ne the following mesh-dependent bilinear form

Bh(u, p; v, q) = ah(u,v) + b(v, p) + b(u, q), (3.8)

in which

ah(u,v) = (u,v) + t2

[ ∑
K∈Kh

(∇u,∇v)K (3.9)

+
∑
E∈Eh

{ α
hE
〈[[uτ ]], [[vτ ]]〉E − 〈{|∂u

∂n
|}, [[vτ ]]〉E − 〈{|∂v

∂n
|}, [[uτ ]]〉E}

]
.
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Then the discrete problem is to �nd uh ∈ Vh and ph ∈ Qh such that

Bh(uh, ph; v, q) = (f ,v)− (g, q), ∀(v, q) ∈ Vh ×Qh. (3.10)

We introduce the following mesh-dependent norms for the problem. For the ve-
locity we use

‖u‖2t,h = ‖u‖20 + t2

[ ∑
K∈Kh

‖∇u‖20,K +
∑
E∈Eh

1
hE
‖[[uτ ]]‖20,E

]
, (3.11)

and for the pressure

|||p|||2t,h =
∑
K∈Kh

h2
K

h2
K + t2

‖∇p‖20,K +
∑
E∈Eh

hE
h2
E + t2

‖[[p]]‖20,E . (3.12)

Note that both of the norms are also parameter dependent. To show continuity, we
use the somewhat stronger norm

‖u‖2t,∗ = ‖u‖2t,h + t2
∑
E∈Eh

hE‖{|∂u

∂n
|}‖20,E . (3.13)

It is easily shown that the norms (3.11) and (3.13) are equivalent in Vh. We have the
result [31], with CI > 0 .

hE‖∂v

∂n
‖20,E ≤ CI‖∇v‖20,K , ∀v ∈ Vh. (3.14)

3.2. A priori analysis. For the proofs of the following results, see [22, 23]. First
we note that the method is consistent.

Theorem 3.1. The exact solution (u, p) ∈ V ×Q satis�es

Bh(u, p; v, q) = (f ,v)− (g, q), ∀(v, q) ∈ Vh ×Qh. (3.15)

In addition, the bilinear form ah(· , · ) is coercive in Vh in the mesh-dependent
norm (3.11).

Lemma 3.2. Let CI be the constant from the inequality (3.14). For α > CI/4
there exists a positive constant C such that

ah(v,v) ≥ C‖v‖2t,h, ∀v ∈ Vh. (3.16)

Next, we recall the discrete Brezzi-Babuska stability condition.
Lemma 3.3. There exists a positive constant C such that

sup
v∈Vh

b(v, q)
‖v‖t,h ≥ C|||q|||t,h, ∀q ∈ Qh. (3.17)

By the above stability results for ah(· , · ) and b(· , · ) the following stability result
holds, see e.g. [8].

Lemma 3.4. There is a positive constant C such that

sup
(v,q)∈Vh×Qh

Bh(r, s; v, q)
‖v‖t,h + |||q|||t,h ≥ C(‖r‖t,h + |||s|||t,h), ∀(r, s) ∈ Vh ×Qh. (3.18)
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For interpolation in H(div), a special interpolation operator Rh : H(div,Ω) →
Vh is required, see [8]. We denote by Ph : L2(Ω) → Qh the L2-projection. The
interpolants possess the following properties:

(div (v −Rhv), q) = 0, ∀q ∈ Qh, (3.19)

(div v, q − Phq) = 0, ∀v ∈ Vh, (3.20)

and

div Rh = Phdiv. (3.21)

By stability and consistency we have the following quasioptimal a priori result shown
in [22].

Theorem 3.5. There is a positive constant C such that

‖u− uh‖t,h + |||Php− ph|||t,h ≤ C‖u−Rhu‖t,h. (3.22)

This contains a superconvergence result for |||ph − Php|||t,h, which implies that the
pressure solution can be improved by local postprocessing. Assuming full regularity,
we conclude the chapter with the following a priori estimate.

‖u− uh‖t,h + |||Php− ph|||t,h ≤
{
C(hk + thk−1)‖u‖k, for RT,
C(hk+1 + thk)‖u‖k+1, for BDM.

(3.23)

3.3. Postprocessing method. We recall the postprocessing method proposed
in [22] based on the ideas of [26]. We seek the postprocessed pressure in an augmented
space Q∗h ⊃ Qh, de�ned as

Q∗h =

{
{q ∈ L2

0(Ω) | q|K ∈ Pk(K) ∀K ∈ Kh}, for RT,
{q ∈ L2

0(Ω) | q|K ∈ Pk+1(K) ∀K ∈ Kh}, for BDM.
(3.24)

The postprosessing method is: Find p∗h ∈ Q∗h such that

Php
∗
h = ph (3.25)

(∇p∗h,∇q)K = (t2∆uh − uh + f ,∇q)K , ∀q ∈ (I − Ph)Q∗h|K . (3.26)

We have the following a priori results, which show that given su�cient regularity, the
postprocessed pressure converges with an optimal rate.

Theorem 3.6. For the postprocessed solution (uh, p∗h) it holds

‖u− uh‖t,h + |||p− p∗h|||t,h ≤ C inf
q∗∈Q∗h

{
‖u−Rhu‖t,h + |||p− q∗|||t,h (3.27)

+ (
∑
K∈Kh

h2
K

h2
K + t2

‖∇q∗ + Rhu− t2∆Rhu− f‖20,K)1/2
}
.

Assuming full regularity, we have the following optimal a priori result for the post-
processed problem.

Theorem 3.7. For the solution (uh, p∗h) of the postprocessed problem it holds

‖u− uh‖t,h + |||p− p∗h|||t,h ≤
{
C(hk + thk−1)‖u‖k, for RT,
C(hk+1 + thk)‖u‖k+1, for BDM.

(3.28)
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3.4. A posteriori estimates. In this section we introduce a residual-based
a posteriori estimator for the postprocessed solution. It should be noted that the
postprocessing is vital for a properly functioning estimator. We divide the estimator
into two distinct parts, one de�ned over the elements and one over the edges of the
mesh. The elementwise and edgewise estimators are de�ned as

η2
K =

h2
K

h2
K + t2

‖ − t2∆uh + uh +∇p∗h − f‖20,K + (t2 + h2
K)‖g − Phg‖20,K , (3.29)

η2
E =

t2

hE
‖[[uh,τ ]]‖20,E +

hE
h2
E + t2

‖[[t2 ∂uh
∂n

]]‖20,E +
hE

h2
E + t2

‖[[p∗h]]‖20,E . (3.30)

The global estimator is

η =

( ∑
K∈Kh

η2
K +

∑
E∈Eh

η2
E

)1/2

. (3.31)

Note that setting t = 0 gives the standard estimator for the Darcy problem, see
e.g. [26, 24]. In the following, we address the reliability and e�ciency of the estimator
and show the terms of the estimator to be properly matched to one another.

The estimator introduced is both an upper and a lower bound for the actual error
as shown by the following results, provided that a saturation assumption holds. For
a proof, see [22].

Theorem 3.8. There exists a constant C > 0 such that

‖u− uh‖t,h + |||p− p∗h|||t,h ≤ Cη. (3.32)

Theorem 3.9. There exists a constant C > 0 such that

η2 ≤ C
{
‖u− uh‖2t,h + |||p− p∗h|||2t,h (3.33)

+
∑
K∈Kh

( h2
K

h2
K + t2

‖f − fh‖20,K + (t2 + h2
K)‖g − Phg‖20,K

)}
.

Thus for the displacement uh and the postprocessed pressure p∗h we have by
Theorems 3.8 and 3.9 a reliable and e�cient indicator for all values of the e�ective
viscosity parameter t.

4. Hybridization. A well-known method for dealing with the inde�nite system
resulting in from the Darcy equation is the hybridization technique introduced in [5,
8]. The idea is to enforce the tangential continuity via Lagrange multipliers chosen
suitably and relaxing the continuity requirement on the �nite element space. Thus,
we drop the normal continuity requirement in the spaces V BDM

h and V RT
h and denote

these discontinuous counterparts by Ṽh. In addition, we introduce the corresponding
multiplier spaces

ΛBDMh = {λ ∈ [L2(Eh)]n−1 | λ ∈ Pk(E), E ∈ Eh, λ|E = 0, E ⊂ ∂Ω}, (4.1)

ΛRTh = {λ ∈ [L2(Eh)]n−1 | λ ∈ Pk−1(E), E ∈ Eh, λ|E = 0, E ⊂ ∂Ω}, (4.2)

in which Eh denotes the collection of all faces of the mesh. It can be easily shown,
that the normal continuity of a discrete �ux uh ∈ Ṽh is equivalent to the requirement∑

K∈Kh

〈uh·n, µ〉∂K = 0, ∀µ ∈ Λh. (4.3)
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Accordingly, the original �nite element problem (3.10) can be hybridized in the fol-
lowing form: Find (uh, ph, λh) ∈ Ṽh ×Qh × Λh such that

Bh(uh, ph; v, q) +
∑
K∈Kh

〈v·n, λh〉∂K = (f ,v) + (g, q), (4.4)

∑
K∈Kh

〈uh·n, µ〉∂K = 0 (4.5)

for all (v, q, µ) ∈ Ṽh ×Qh × Λh. Due to (4.3), the solution (uh, ph) of the hybridized
system coincides with that of the original system. Thus, we need not modify the
postprocessing procedure even if we drop the continuity requirement from the velocity
space.

4.1. Hybridization of the Nitsche term. However, now the matrix block
corresponding to the bilinear form Bh(uh, ph; v, q) is a block diagonal system only for
the special case t = 0, and for a non-zero e�ective viscosity we cannot eliminate the
variables locally. To alleviate this problem we introduce a second hybrid variable for
the Nitsche term of the velocity, see e.g. [10]. Recall, that the velocity-velocity term
of the bilinear form Bh(uh, ph; v, q) is

ah(u,v) = (u,v) + t2

[ ∑
K∈Kh

(∇u,∇v)K (4.6)

+
∑
E∈Eh

{ α
hE
〈[[uτ ]], [[vτ ]]〉E − 〈{|∂u

∂n
|}, [[vτ ]]〉E − 〈{|∂v

∂n
|}, [[uτ ]]〉E}

]
.

To this end, we follow [12], and formally introduce the mean value of uτ as a new
variable, m = 1

2 (u1,τ + u2,τ ). Thus we can write the tangential jump as

[[uτ ]] = 2(u1,τ −m) = −2(u2,τ −m). (4.7)

Now using the new hybrid variables the bilinear form ah(u,v) can be rewritten as

ah(u,m; v, r) = (u,v) + t2
∑
K∈Kh

{(∇u,∇v)K +
2α
hE
〈uτ −m,vτ − r〉∂K

− 〈∂u

∂n
,vτ − r〉∂K − 〈∂v

∂n
,uτ −m〉∂K}.

Here, the hybrid variable m belongs to a spaceMh ⊂ [L2(Eh)]n, the choice of which
will be discussed subsequently. In addition, we introduce a slightly modi�ed version
of the norm (3.11) to encompass both the velocity and the hybrid variable:

‖(u,m)‖2t,h = ‖u‖20 + t2

[ ∑
K∈Kh

‖∇u‖20,K +
∑
E∈Eh

1
hE
‖uτ −m‖20,E

]
. (4.8)

Since for the exact solution the jumps disappear, the bilinear form is consistent.
Using exactly the same arguments as those presented in [12] for (3.16), we have

Lemma 4.1. The hybridized bilinear form ah(· , · ; · , · ) is coercive in the discrete

spaces Vh ×Mh, that is there exists a positive constant C such that

ah(v,m; v,m) ≥ C‖(v,m)‖2t,h, ∀(v,m) ∈ Vh ×Mh. (4.9)
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Note, that the stability holds for any choice of the space Mh. For complicated
problems, this gives great �exibility. Thus, due to consistency and stability, we get
optimal convergence rate as long as the spaceMh is rich enough. Here we choose

Mh = {m ∈ [L2(Eh)]n | Q(E)m|E ∈ [Pk(E)]n−1, ∀E ∈ Eh}, (4.10)

in which Q(E) is the coordinate transformation matrix from the global n-dimensional
coordinate system to the local (n− 1)-dimensional coordinate system on the face E.
Let Ph : [L2(E)]n−1 → Mh be the L2 projection on the faces. We then get the
following interpolation estimate.

Lemma 4.2. Let u ∈ H1(Ω) be such that u|K ∈ Hs+1(K) for 1
2 < s ≤ k. Then

it holds

‖(u−Rhu,uτ − Phuτ )‖t,h ≤ C(hs+1 + ths)‖u‖s+1. (4.11)

Proof. We proceed by direct computation. Scaling and the Bramble-Hilbert
lemma [6] yield

‖(u−Rhu,uτ − Phuτ )‖2t,h ≤ ‖u−Rhu‖20 + t2

[ ∑
K∈Kh

‖∇(u−Rhu)‖20,K

+
∑
E∈Eh

{ 1
hE
‖(u−Rhu)τ‖20,E +

1
hE
‖(uτ − Phuτ )‖20,E}

]

≤ C
(
h2s+2‖u‖2s+1 + t2

∑
K∈Kh

{h2s
K ‖u‖2s+1,K + h2s

K ‖uτ‖2s+1/2,K}
)
.

The result is immediate after taking the square root.

Combining the interpolation results with the consistency and ellipticity properties
yields an optimal convergence rate for the velocity.

Theorem 4.3. Assuming su�cient regularity, for the �nite element solution

(uh,mh) of the hybridized system it holds

‖(u− uh,uτ −mh))‖t,h ≤ C(hs+1 + ths)‖u‖s+1. (4.12)

The residual a posteriori estimator of Section 3.4 can be modi�ed to handle the
hybrid variable by modifying the edgewise estimator of (3.30) as follows

η2
E =

t2

hE
‖uh,τ −mh‖20,E +

hE
h2
E + t2

‖[[t2 ∂uh
∂n

]]‖20,E +
hE

h2
E + t2

‖[[p∗h]]‖20,E . (4.13)

Following the lines of [22, 23] it is easy to prove that also the modi�ed estimator
is both sharp and reliable. This will be demonstrated in numerical experiments in
Section 6.

4.2. Implementation and local condensation. In practice, it is bene�cial
to choose the hybrid variable m slightly di�erently, namely as the weighted average
m = t

2 (u1,τ + u2,τ ). Now the hybridized bilinear form can be written as

8



ah(u,m; v, r) = (u,v) +
∑
K∈Kh

2α
hE
〈m, r〉∂K

+ t
∑
K∈Kh

{〈∂u

∂n
, r〉∂K + 〈∂v

∂n
,m〉∂K − 2α

hE
〈uτ , r〉∂K − 2α

hE
〈vτ ,m〉∂K}

+ t2
∑
K∈Kh

{(∇u,∇v)K +
2α
hE
〈uτ ,vτ 〉∂K − 〈∂u

∂n
,vτ 〉∂K − 〈∂u

∂n
,uτ 〉∂K}.

Note, that now we get a t-independent part for the hybrid variable and the system
remains solvable even in the limit t→ 0. It is clear that all of the results in Section 4.1
hold also for the scaled hybrid variable.

The main motivation for the hybridization procedure is to break all connections
in the original saddlepoint system to allow for local elimination of the velocity and
pressure variables at the element level. After hydridization the matrix system gets
the following form where A is the matrix corresponding to the bilinear form ah(· , · ),
B to b(· , · ), whilst C and D represent the connecting blocks for the hybrid variables
for normal continuity and the Nitsche terms, respectively. M is the mass matrix for
the Nitsche hybrid variable.


A BT CT DT

B 0 0 0
C 0 0 0
D 0 0 M

 . (4.14)

Since A and B are now block diagonal matrices, they can be inverted on the
element level and we get the following symmetric and positive de�nite system for the
hybrid variables. We denote the by H the following matrix that can be computed
elementwise.

H := A−1BT (BA−1BT )−1BA−1 −A−1. (4.15)

The matrix H is positive de�nite and symmetric. Eliminating the velocity and pres-
sure from the system matrix (4.14) yields the following system matrix for the hybrid
variables (λ,m) corresponding to the normal continuity and tangential jumps, respec-
tively. (

CHCT CHDT

DHCT DHDT +M

)
. (4.16)

Evidently the resulting system is symmetric and positive de�nite. Note, that whilst
the connecting block D will vanish as t→ 0, the M block does not depend on t, thus
the whole system remains invertible even in the limit.

The hybridized formulation is well-suited to solving large problems with the do-
main decomposition method. The hybrid variables readily form a discretization for
the skeleton of the domain decomposition method for any choice of non-overlapping
blocks. The local problems are of the Dirichlet type, and the domain decomposition
method can be implemented easily using local solvers on the subdomains. We also
have great �exibility in the choice of the hybridized variables, thus allowing one to use
a lower number of degrees of freedom on the skeleton when computational resources
are limited. Furthermore, only the skeleton of the domain decomposition mesh can
be hybridized using e.g. direct solvers for the saddle point system in the subdomains.
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5. Handling the boundary conditions. Since the Brinkman equation is a
combination of the Darcy and Stokes equations, a variety of boundary conditions can
be applied. Furthermore, some restrictions apply regarding which boundary condi-
tions can be applied simultaneously.

5.1. Enforcing the pressure. A typical physical situation in which one desires
to set the pressure on parts of the boundary is setting a pressure di�erence across
the opposite ends of the computational domain. As a practical example, one might
want to impose a pressure di�erence between an injection and a production well in a
reservoir simulation. Note, that whereas it is possible to set the pressure on the whole
of ∂Ω for the Darcy problem in the case t = 0, this alone is not a sound boundary
condition for the Stokes-type problem with t > 0. Since the current formulation
is based on the dual mixed Poisson problem, the pressure boundary condition now
appears as a natural boundary condition. Then the pressure p|Γp

= pD can be set on
Γp ⊂ ∂Ω by adding the following term to the loading:

〈v·n, pD〉Γp
. (5.1)

5.2. Enforcing the normal velocity. For the underlying Darcy problem, the
essential boundary condition is the normal component of the velocity. Physically,
this corresponds to prescribing the in- or out�ow on the boundary. In the standard
formulation, the boundary conditions must be set exactly into the �nite element
space with condensation. When using the hybrid formulation, however, setting the
normal component corresponds to �xing the value of the Lagrange multiplier for the
multipliers residing on the boundary. Thus we can simply add the Dirichlet data
u·n = uD·n into the loading term for the Lagrange multiplier as follows:

〈uD·n, µ〉Γu·n (5.2)

5.3. Enforcing the tangential velocity. For the case of a viscous �ow, also
the tangential component of the velocity can be prescribed on the boundary. The
physical meaning is that of de�ning the allowed amount of slip for the �uid on the
boundary. Since the nature of the problem is parameter dependent, it makes sense
to enforce the tangential boundary condition weakly using the same Nitsche-type
approach as for the internal tangential continuity. Denote by Eh,uτ the collection of
edges residing on the part of the boundary Γuτ ⊂ ∂Ω. To set the tangential velocity
we add the following term to the bilinear form ah(· , · ).

t2
∑

E∈Eh,uτ

{ α
hE
〈uτ ,vτ 〉E − 〈∂u

∂n
,vτ 〉E − 〈∂v

∂n
,uτ 〉E}. (5.3)

The loading is augmented by the term

t2
∑

E∈Eh,uτ

{ α
hE
〈uD,τ ,vτ 〉E − 〈∂v

∂n
,uD,τ 〉E}. (5.4)

Note, that we need not separately hybridize the boundary degrees of freedom, since
enforcing the boundary condition via Nitsche's method only involves degrees of free-
dom from each individual element and the A matrix retains its block structure.
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6. Numerical tests. In this section, we shall numerically demonstrate the per-
formance of the method. First, we test the convergence of the solution along with
the performance of the a posteriori estimator in two cases with di�erent regularity
properties. The proposed method is also compared with the Stokes-type approach
using the MINI element. We proceed to demonstrate the e�ect and the importance
of the postprocessing procedure. Next, the convergence of the hybridized method is
studied. Our fourth test is the classical Poisseuille �ow, demonstrating the perfor-
mance of Nitsche's method in assigning the boundary conditions and the applicability
of the error indicator to adaptive mesh re�nement. We end the section with a re-
alistic example employing permeability data from the SPE10 dataset. In all of the
test cases the ratio h/t is the ratio 1/(t

√
N), in which N is the number of degrees of

freedom. For a uniform mesh we have h/t ≈ 1/(t
√
N). Note, that this holds only in

the two-dimensional case considered in the computations. The data approximation
term in the a posteriori estimator is neglected in the computations.

6.1. Convergence tests. For the purpose of testing the convergence rate, we
pick a pressure p such that ∇p is a harmonic function. Thus, u = ∇p is a solution of
the problem for every t ≥ 0. In polar coordinates (r,Θ) the pressure is chosen as

p(r,Θ) = rβ sin(βΘ) + C. (6.1)

The constant C is chosen such that the pressure will have a zero mean value. Moreover,
we have p ∈ H1+β(Ω), and subsequently u ∈ [Hβ(Ω)]n, see [14]. In the following,
we have tested the convergence with a wide range of di�erent parameter values, and
the results are plotted with respect to the ratio of the viscosity parameter t to the
mesh size h. Our aim is to demonstrate numerically, that the change in the nature
of the problem indeed occurs at t = h, and that the convergence rates are optimal in
both of the limiting cases. First we choose β = 3.1 to test the convergence rates in
a smooth situation. With the �rst-order BDM element we are expecting h2 converge
in the Darcy end of the parameter range and h in the Stokes limit.

As is visible from the results in Figures 1 and 2, the behaviour of the problem
changes numerically when t = h. Thus, even though in practical applications almost
always t > 0, numerically the problem behaves like the Darcy problem when t < h.
As can be seen from Figure 2, the converge rates follow quite closely those given by
the theory. Furthermore, both the actual error and the a posteriori indicator behave
in a similar manner. Notice, that the convergence rate exhibits a slight dip at the
point in which the nature of the problem changes. However, since all of the a priori
results are asymptotic, one notices that the optimal convergence rate is regained as
soon as the mesh is re�ned.

To show the applicability of the a posteriori indicator to mesh re�nement, we
consider the more irregular case β = 1.52. Our re�nement strategy consists of re�n-
ing those elements in which the error exceeds 50 percent of the average value. The
treshold is halved until at least �ve percent of the elements have been re�ned. The
edge estimators are shared evenly between the neighbouring elements. Figure 6 shows,
that the converge is considerably faster with adaptive re�nement, as opposed to uni-
form re�nement in Figure 4. Furthermore, adaptive re�nement seems to alleviate the
problem of convergence rate drop at the numerical turning point t = h. Clearly these
results indicate that the a posteriori indicator proposed gives reasonable local bounds
and can thus be used in adaptive mesh re�nement.

6.2. Comparison with the MINI element. A common choice for solving the
Stokes problem is the classical MINI element [4]. This element has been applied to
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the Brinkman problem and thoroughly analyzed both theoretically and numerically
in [19, 16]. We use the same test case as above with the regularity parameter set to
β = 3.1. Notice, that the mesh-dependent norms (3.11) and (3.12) reduce to the ones
presented in [19] when a continuous velocity-pressure pair is inserted. Thus we can
use the same mesh-dependent norm for computing the error for both of the elements
and the results are comparable with one another.

As can be seen from the results in Figure 8, the convergence rate for the MINI
element is as expected of the order h throughout the parameter regime. For the BDM1
element, on the other hand, we get h2 convergence in the Darcy regime, and after a
slight dip at the turnaround point convergence relative to h. Turning our attention to
Figure 7 reveals that the behaviour of the absolute value of the relative error di�ers
vastly for the two elements. Clearly, the BDM element outperforms the MINI element
in the Darcy regime by several decades of magnitude, whereas in the Stokes regime
the performance of the MINI element is superior. This implicates that it is impossible
to clearly tell which element is superior for the Brinkman �ow. However, usually real-
life reservoirs consist mostly of porous stone with scattered vugs and cracks. Thus
the volume of the Stokes-type regime is often small compared to the Darcy regime,
implying that the good performance of the BDM element in its natural operation
conditions might o�er signi�cant performance increase for the overall simulation. In
problems with a greater fraction of void space, such as �lters with large free-�ow
areas separated by permeable thin layers, the Stokes-based elements might be a more
natural choice.

6.3. Postprocessing. In this section, we show the necessity of the postprocess-
ing by comparing the behaviour of both the exact error and the a posteriori estimator
for the original and the postprocessed pressure. We shall use the same test case as in
the previous sections. First we choose β = 3.1 for testing the e�ect on convergence
and on the second run we choose β = 1.52 and use the same mesh re�nement strategy
to show the necessity of the post-processing for the usefulness of the error estimator.

From the results of Figure 9, it is immediately evident, that in the case of a small
parameter t corresponding to a Darcy-type porous �ow the postprocessing procedure
is of vital importance for the method to work. However, as the viscosity increases the
weighting of the pressure error changes, and the norm is more tolerable of variations
in the pressure. Once again, this change in behaviour appears exactly at t = h. As
regards convergence rate, the non-postprocessed method is able to attain close-to-
optimal rate in the Stokes regime, cf. Figure 10. The same pattern is evident also
with the more irregular test case with β = 1.52 as shown in Figure 11. When in the
Darcy regime, the indicator simply does not work in adaptive re�nement since the
pressure solution lacks the necessary extra accuracy. However, when crossing into the
Stokes regime, convergence starts to occur, and the adaptive procedure achieves a
rather high rate of convergence.

Evidently, postprocessing is vital for the method in the Darcy regime. Even
though the method seems to work without postprocessing in the Stokes regime, one
cannot guarantee convergence and thus the method should always be used only in
conjunction with the postprocessing scheme for the pressure. The cost of solving the
postprocessed pressure is negligible compared to the total workload since the proce-
dure is performed elementwise. Moreover, with postprocessing, using the BDM family
of elements is more economical than using the RT family with respect to the number
of degrees of freedom, since we can use initially one order lower approximation for the
pressure, and still get the same order of polynomial approximation and convergence
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after the postprocessing procedure.

6.4. Hybridized method. Here we study the convergence of the fully hy-
bridized method for di�erent parameter values using the modi�ed norm (4.8) and
the a posteriori estimator (4.13). We employ once again the same exact solution as
in the other convergence tests with the regularity parameter β. As Figures 13 to 16
clearly show, the hybridized method behaves in an identical manner compared to the
standard formulation, both in the case of a regular and an irregular exact solution.
Thus it can be concluded that the error induced by hybridizing the jump terms in-
exactly is negligible. In Tables 6.1 and 6.2 we compare the condition numbers of the
resulting linear systems for solving (u, p) and (λ,m), respectively. The results are
computed on identical meshes.

Table 6.1

Condition number for di�erent values of t for the original system.

DOF t = 0.01 t = 1 t = 10
Initial mesh 348 0.66× 103 1.17× 108 1.55× 1011

First re�nement 1352 3.85× 103 4.16× 109 9.92× 1012

Second re�nement 5328 5.24× 104 1.63× 1011 5.14× 1014

Table 6.2

Condition number for di�erent values of t for the hybridized system.

DOF t = 0.01 t = 1 t = 10
Initial mesh 532 1.66× 105 1.54× 105 1.00× 107

First re�nement 2048 2.42× 106 2.07× 106 4.98× 107

Second re�nement 8032 3.67× 107 3.06× 107 2.67× 108

From Table 6.1 we clearly see, that the condition number of the original sad-
dlepoint system is rather sensitive to the parameter value. This is alleviated by the
hybridization, but on the other hand we see that the condition number is higher than
that of the original system for small values of the e�ective viscosity. For both methods
the condition number appears to be relatively mesh-insensitive. In Figures 17 and 18
we plot the sparsity pattern of the �nal system matrix for both of the methods.

6.5. Poisseuille �ow. The Poisseuille �ow is a classical test case for which the
exact solution is known. The setup represents a viscous �ow in a long, narrow channel.
The �ow is driven by a linear pressure drop with no-slip boundary conditions for t > 0.
For the Darcy case t = 0, only the normal component of the velocity vanishes on the
boundary. We will test the convergence with Nitsche's method for the tangential
boundary condition with adaptive mesh re�nement. In the unit square we take the
pressure to be p = −x + 1

2 . Then zero boundary conditions for the velocity give the
exact solution u = (u, 0), with the x-directional velocity given by

u =

{
(1 + e1/t − e(1−y)/t − ey/t)/(1 + e1/t), t > 0
1, t = 0.

(6.2)

As Figures 19 through 23 demonstrate, the adaptive process is able to catch
the boundary layer e�ectively, leading to nearly identical converge rates for di�erent
parameter values as indicated by Figure 24. Note, that as the mesh is re�ned on the
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edges, the problem changes numerically to a Stokes-type problem near the boundary
since the mesh size h drops locally below the parameter t.

6.6. Example with realistic material parameters. In this �nal section we
consider the Society of Petroleum Engineers test case SPE10 [9] with realistic porosity
and permeability data for an oil reservoir. Instead of the simpli�ed rescaled mathe-
matical model problem (2.1), we now use the full Brinkman model with K denoting
the symmetric permeability tensor and µ and µ̃ are the dynamic and e�ective viscosi-
ties of the �uid, respectively. With this notation the problem reads [30, 29]

−µ̃∆u + µK−1u +∇p = f , in Ω, (6.3)

div u = g, in Ω. (6.4)

Following [29], we make the common choice µ̃ = µ. We consider a single layer
�ow as a two-dimensional �ow problem. For the out�ow quantities to have meaningful
units, we assume a thickness of 2 ft for the layer. The dimensions of the problem are
2200 × 1200 ft, viscosity is 100 cP. The �ow is driven by a pressure of 0.01 atm
on the left-hand side of the domain. The parameters are chosen such that the �ow
remains laminar in the piercing streak. The top and bottom boundaries have a no-�ow
boundary condition. To demonstrate the e�ect of the Brinkman term to the �ow, we
modify the permeability data by adding a rectangular streak of very high permeability
with the dimensions 1100× 20 ft in the middle of the domain, cf. Figures 25 and 26.
The advantage of the Brinkman model is the ability to model cracks or vugs by
simply assigning a very high (or in�nite) permeability to these parts of the domain.
In Figure 27 the velocity �eld for the non-modi�ed problem is plotted. Comparing
to Figure 28 we see that the �ow is considerably diverted due to the internal high
permeability area, e.g. a sand-�lled crack, in the domain.

We compute the total �ux through the two-dimensional �eld for di�erent values
of permeability for the streak. In addition, we extend the streak to run through
the whole domain and study the total �ow values through the domain for di�erent
streak permeabilities for both the Brinkman and Darcy models. The computations
are performed on a triangular mesh with 33400 triangles and a total of 134020 degrees
of freedom, which is re�ned once around the high-permeability streak.

Table 6.3

Total �ow through the domain for varying permeability values of the streak.

Streak permeability (D) Brinkman (bbl/day) Darcy (bbl/day)
Original 2.154× 10−6 2.154× 10−6

Internal K = 1.0× 106 2.386× 10−6 2.386× 10−6

streak K = 1.0× 1012 2.386× 10−6 2.386× 10−6

K = 1.0× 1016 2.386× 10−6 2.386× 10−6

K = 1.0× 10100 2.386× 10−6 2.436× 10−8

Piercing K = 1.0× 106 1.953× 101 1.953× 101

streak K = 1.0× 1012 6.133× 105 1.918× 107

K = 1.0× 1016 6.396× 105 1.729× 1011

From the results it is clear that in the case of an internal streak both models give
equivalent results. However, it should be kept in mind that for arbitrarily high values
of permeability the Darcy system becomes ill-conditioned, whereas in the Brinkman
model one can assign even in�nite permeabilities and keep the system solvable, as
demonstrated by choosing a permeability of 10100 D.
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With the piercing streak the �ow rates vary signi�cantly when the �ow in the
streak crosses into the Stokes regime. Clearly, the Darcy equation overestimates the
�ow by several decades since it does not take the viscosity into account, whereas the
Brinkman �ow stagnates to a value limited by the viscosity of the �uid.

7. Conclusions. We were able to numerically demonstrate the theoretical re-
sults for the Darcy-based method of [22] for solving the Brinkman equation. Further-
more a hybridization technique was introduced for the whole system, which might
prove useful for handling very large systems with domain decomposition or multiscale
mixed �nite element methods. The hybridized method was also shown both theo-
retically and numerically to possess the same convergence properties as the original
problem for all values of the parameter t. We also demonstrated the performance of
the a posteriori estimator by applying it successfully to adaptive mesh re�nement,
and compared the Brinkman model to the Darcy model in the framework of an oil
reservoir simulation.
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Figure 1. Relative error in the mesh
dependent norm. Uniform re�nement for a
smooth solution β = 3.1.

Figure 2. Converge rate for di�erent
values of t. Uniform re�nement for a smooth
solution β = 3.1.

Figure 3. Relative error in the mesh
dependent norm. Uniform re�nement for an
irregular solution β = 1.52.

Figure 4. Converge rate for di�erent
values of t. Uniform re�nement for an irreg-
ular solution β = 1.52.

Figure 5. Relative error in the mesh
dependent. Adaptive re�nement for an irreg-
ular solution β = 1.52.

Figure 6. Converge rate for di�erent
values of t. Adaptive re�nement for an irreg-
ular solution β = 1.52.
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Figure 7. Relative error in the mesh
dependent norm. Uniform re�nement for a
smooth solution β = 3.1.

Figure 8. Converge rate for di�erent
values of t. Uniform re�nement for a smooth
solution β = 3.1.

Figure 9. Relative error in the mesh
dependent norm without postprocessing. Uni-
form re�nement for a smooth solution β =
3.1.

Figure 10. Converge rate for di�erent
values of t without postprocessing. Uniform
re�nement for a smooth solution β = 3.1.

Figure 11. Relative error in the
mesh dependent norm without postprocess-
ing. Adaptive re�nement for an irregular so-
lution β = 1.52.

Figure 12. Converge rate for di�erent
values of t without postprocessing. Adaptive
re�nement for an irregular solution β = 1.52.
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Figure 13. Relative error in the mesh
dependent norm for the hybridized method
with uniform re�nement and β = 3.1.

Figure 14. Converge rate for di�erent
values of t for the hybridized method with β =
3.1.

Figure 15. Relative error in the mesh
dependent norm for the hybridized method
with uniform re�nement and β = 1.52.

Figure 16. Converge rate for di�erent
values of t for the hybridized method with β =
1.52.

Figure 17. Sparsity pattern of the sys-
tem matrix for the standard method.

Figure 18. Sparsity pattern of the sys-
tem matrix for the hybridized version.
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Figure 19. Final mesh after adaptive
re�nement, t = 0.5

Figure 20. Final mesh after adaptive
re�nement, t = 0.2

Figure 21. Final mesh after adaptive
re�nement, t = 0.1

Figure 22. Final mesh after adaptive
re�nement, t = 0.05

Figure 23. Final mesh after adaptive
re�nement, t = 0.005

Figure 24. Convergence rates of the
adaptive solution for di�erent values of t.
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Figure 25. Average of the logarithm of
the permeability tensor diagonal components
in mD. Layer 68 of the SPE10 model, median
of the permeability is 0.428 mD.

Figure 26. Average of the logarithm of
the permeability tensor diagonal components
in mD. Layer 68 of the SPE10 model with an
added permeability streak of 1012 D.

Figure 27. Flow for the original model.

Figure 28. Flow for the modi�ed model with streak permeability of 1012 D.
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