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1 Introduction

A function f(z) is said to have a Lindelöf property in the unit disk D if when-
ever f(z) → α as z → z0 ∈ ∂D along some arc lying in D and terminating at
z0, then f(z) → α uniformly as z → z0 inside any angular domain of opening
π − ǫ in D with z0 as its vertex which is bisected by the radius drawn to z0.
In this case, f(z) has the angular limit α at z0.

The following classical result is known as Lindelöf’s theorem (see e.g. [12,
p.259]):

1.1 Theorem. Suppose that γ is a curve, with parametric interval [0, 1], such
that |γ(t)| < 1 if t < 1 and γ(1) = 1. If f is a bounded analytic function of
the unit disk D and

lim
t→1

f
(

γ(t)
)

= α,

then f has angular limit α at 1.

There are various generalizations of Lindelöf’s theorem in the literature.
It is interesting to ask whether a weaker condition would be sufficient for
the result. Another related result is due to P. Koebe. He proved that if
a bounded analytic function tends to zero along a sequence of arcs in the
unit disk which approaches a subarc in the boundary, and if the Euclidean
diameters of these arcs are bounded from below by a constant c > 0, then it
must be identically zero [4, p.19]. A recent survey on the results of this type
is given in [7]. For results concerning sequential limits, see also [2].

This topic has been studied by several authors, in particular by Rung, who
studied the connection between the boundary behavior of analytic functions
and the hyperbolic metric in [13]. In Rung’s results, the values attained by
the function are assumed to approach a limit at a certain rate on a sequence
of continua of given hyperbolic diameter. By studying the balance between
the rate of convergence and the growth of the hyperbolic diameter, one can
make conclusions on the limit behavior of the function. For example, Rung
proved the following result:

1.2 Theorem. [13, Corollary 1] Suppose that γ is a boundary path in the
unit disk D, and f is analytic in D such that for some w0 and for some
positive function A(r), r ∈ [0, 1),

log |f(z) − w0| ≤
−A(r)

(1 − |z|)
,

for z ∈ |γ|, |z| ≥ r and

lim inf
r→1

M(r, f)

A(r)
= 0,

then f(z) ≡ w0. Here M(r, f) = max{sup
|z|<r

log |f(z)|, 1}.

In this paper we show results of above types under assumptions involving
the multiplicities of zeroes of the function.
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2 Preliminaries

Let f(z) be analytic at z0 and suppose that f(z0) = 0, but f(z) is not
identically zero. Then f(z) is said to have a zero of order n at z0 if

f(z0) = f ′(z0) = · · · = f (n−1)(z0) = 0, and f (n)(z0) 6= 0.

If f(z) is analytic at z0, and has zero of order n at z0, we write µ(z0, f) =
n. We first recall the following well-known version of the classical Schwarz’
lemma.

2.1 Lemma. Let f : D → D be analytic with f(0) = 0 and µ(0, f) = p ≥ 1.
Then

|f(z)| ≤ |z|p for all z ∈ D.

The hyperbolic metrics in the upper half plane H and in the unit disk D

are defined by

cosh ρH(z, w) = 1 +
|z − w|2

2 Im (z) Im (w)
, z, w ∈ H, (2.2)

and

sinh2
(1

2
ρD(z, w)

)

=
|z − w|2

(1 − |z|2)(1 − |w|2)
, z, w ∈ D, (2.3)

respectively. If there is no danger of confusion, we denote both ρH(z, w) and
ρD(z, w) simply by ρ(z, w). A hyperbolic disk with the center z and the
radius M > 0 is denoted by D(z,M).

Both for (D, ρD) and (H, ρH) one can define the hyperbolic distance in
terms of the absolute ratio. Since the absolute ratio is invariant under Möbius
transformations, the hyperbolic metric also remains invariant under these
transformations. The proof will use the hyperbolic form of Pythagoras’ The-
orem.

2.4 Lemma. [3, Theorem 7.11.1] For a hyperbolic triangle with angles α, β, π/2
and corresponding hyperbolic opposite side lengths a, b, c, we have

cosh c = cosh a cosh b.

We have the following formula for z ∈ D:

ρD(0, z) = log
1 + |z|

1 − |z|
. (2.5)

This relation immediately yields that

|z| = tanh
(1

2
ρD(0, z)

)

< 1, (2.6)

where we have used the fact that

tanh z =
e2z − 1

e2z + 1
.

Let f : D → D be analytic. Then the following inequality holds for the
hyperbolic distance (see for example [8, p. 268])

ρD

(

f(x), f(y)
)

≤ ρD(x, y) for x, y ∈ D, (2.7)

where the equality holds if and only if f is a Möbius transformation.
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3 Bounded analytic functions

We will show a connection between the multiplicity of the zeros and the
boundary behavior of bounded analytic functions. A similar method of proof
was used in the context of bounded quasiregular mappings of R

n, n ≥ 2 in
[11].

3.1 Theorem. Let f : D → D be an analytic function with bk ∈ D such that
f(bk) = 0 for all k = 1, 2, . . ., where bk → β ∈ ∂D, ρD(bk, bk+1) ≤ Mk < ∞
and µk = µ(bk, f). If

(

1 − e−Mk

1 + e−Mk

)µk

→ 0 as k → ∞, (3.2)

then f(z) has an angular limit 0 at β.

Proof. Let ρD(bk, bk+1) ≤ Mk. We may choose a Möbius transformation hk

such that hk(D) = D and hk(0) = bk. Then the function gk = f ◦ hk is
analytic, gk : D → D and gk(0) = 0. Inequality (2.7), applied to h−1

k with
x = bk, y = bk+1 gives

ρD

(

0, h−1
k (bk+1)

)

≤Mk.

Let Rk = tanh(1
2
Mk) and µk = µ(bk, f). We see that gk has a zero of order

µk at the origin. It follows by Lemma 2.1 and (2.6) that, for |z| ≤ Rk,

|gk(z)| ≤ |z|µk ≤ Rµk

k

or equivalently ρD(0, z) ≤Mk. Thus

|f(z)| ≤ Rµk

k for z ∈ [bk, bk+1], (3.3)

where [bk, bk+1] is the line segment connecting the points bk and bk+1. Let γ
be the broken line joining the points bk and bk+1 for k = 1, 2, . . .. Because

(

1 − e−Mk

1 + e−Mk

)µk

→ 0 as k → ∞,

we have

µk log
1 + e−Mk

1 − e−Mk

→ ∞ as k → ∞. (3.4)

From (2.5) we obtain

e−Mk =
1 −Rk

1 +Rk

,

and hence
1 + e−Mk

1 − e−Mk

=
1

Rk

.

This observation together with (3.4) yields

µk logRk → −∞ or Rµk

k → 0,

as k → ∞. It follows by (3.3) that f has a limit along γ, and, by Theorem
1.1, f has an angular limit 0 at β.
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3.5 Corollary. Let f : D → D be an analytic function with bk ∈ D such that
f(bk) = 0 for all k = 1, 2, . . ., where bk → β ∈ ∂D, ρD(bk, bk+1) ≤ M < ∞
and µ(bk, f) → ∞. Then f(z) has an angular limit 0 at β.

3.6 Example. Let bk = 1 − 2−k and µk = k for k = 1, 2, . . .. Then

∞
∑

k=1

µk(1 − bk) =
∞

∑

k=1

k2−k = 2 <∞,

and hence by [5, Theorem 2.4], one may construct an analytic function B(z)
whose zeros are precisely {bk} with respective multiplicities µk. It follows
from Corollary 3.5 that B(z) has angular limit 0 at 1.

3.7 Remark. It is possible to construct a Blaschke product B0 : D → D

with infinitely many zeroes bk on the positive real axis such that bk → 1 and
µ(bk, B0) → ∞ as k → ∞, but B0 does not have an angular limit at 1. A
construction due to P. Lappan is given in [11, 5.21].

3.8 Theorem. Let f : D → D be an analytic function with bk ∈ D such that
f(bk) = 0 for all k = 1, 2, . . ., where bk → 1 and µk = µ(bk, f). If

lim inf
k→∞

|bk|
µk = 0,

then f ≡ 0 on D.

Proof. Let hk be a Möbius transformation such that hk(D) = D, hk(0) = bk,
and gk = f ◦ hk, as before. By Lemma 2.1, we have

|gk(z)| ≤ |bk|
µk for |z| ≤ |bk|,

and hence

|f(z)| ≤ Rµk for z ∈ D(bk,Mk),

where

Mk = ρD(0, |bk|) =
1

2
log

1 + |bk|

1 − |bk|
.

Because bk → 1 as k → ∞, the line segment (0, 1/2) ⊂ D(bk,Mk) for suffi-
ciently large values of k. It follows that if

lim inf
k→∞

|bk|
µk = 0,

then f(z) = 0 for all z ∈ (0, 1/2) and hence, by the uniqueness theorem, f is
identically zero on D.
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4 Harmonic case

In this section we give a harmonic analog of Theorem 3.1. Let Ω ⊂ C be a
simply connected domain. A complex-valued function f : Ω → C, (x, y) 7→
(u, v), is planar harmonic if the two coordinate functions u and v are (real)
harmonic in Ω. It is well-known that f : Ω → C is a planar harmonic function
if and only if the function f has the representation f = h+ g, where h and g
are analytic in Ω. The representation is unique up to an additive constant.
We call the functions h and g the analytic and the co-analytic parts of f ,
respectively. For basic properties of planar harmonic functions we refer to
the monograph [6].

4.1 Example. The bounded harmonic mapping f : D → C defined by

f(z) = Arg (1 − z) + iRe (1 − z)

has infinitely many asymptotic values at 1. Hence it is clear that Lindelöf’s
theorem does not generalize to the harmonic functions.

But having the same limit when approaching a boundary point radially
from two separate directions is sufficient for an angular limit.

4.2 Theorem. [1, Theorem 2.10] Suppose that u : H → R is bounded and
harmonic on H. If 0 < θ1 < θ2 < π and

lim
r→0

u(reiθ1) = L = lim
r→0

u(reiθ2),

then u has an angular limit L at 0.

In order to recall our next result, we need to introduce the definition of
the multiplicity for sense-preserving harmonic function f in D which has the
decomposition of the form f = h + g. A complex-valued harmonic function
f is sense-preserving in D if it satisfies a Beltrami equation fz̄ = ωfz, where
ω is an analytic function in D with |ω(z)| < 1. Suppose that h and g have
respectively multiplicity n and m at 0 with n ≤ m. Then f = hψ, where
ψ = 1 + χ and χ = g/h. Without loss of generality, we can suppose that
ψ(z) 6= 0 in D and h(z) 6= 0 in D \ {0}. Then we say that f has zero of order
n at z0 and write µ(z0, f) = n.

For a positively oriented circle γ with center at the origin, in D, we have

∆γ arg f = ∆γ arg h+ ∆γ argψ

where ∆γ arg f defines the change in arg f as z traverse around γ. Since
∆γ argψ = 0 and ∆γ arg h = 2πn, it follows that ∆γ arg h = 2πn. Conse-
quently, f has at least n zeros in D (with counting multiplicity). Since Jf > 0,
f cannot have more than n zeros at the origin in D counting multiplicity as
a positive number. Hence, f has at most n zeros in D (with counting multi-
plicity). If m > n, then φ = g′/h′ = czr, where r = m− n > 0, and so, Jf is
positive in N \ {0}, where N is a neighborhood of 0, and consequently, f is
locally univalent. See also [6, 9].
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The following lemma is due to Mateljević and Vuorinen [10] from an
unpublished manuscript. In view of this, we outline the proof of this result.

4.3 Lemma. Let f be a sense-preserving harmonic function of D such that
f(0) = 0 and f(D) ⊂ D. Then

|f(z)| ≤
4

π
arctan |z|µ(0,f) ≤

4

π
|z|µ(0,f) for z ∈ D. (4.4)

Proof. Let φ(z) = 4
π

tan−1(z) and S = {z : |Re z| < 1}. Suppose that F is
an analytic function of D into S with F (0) = 0 and µ(0, F ) = p ≥ 1. Then
ω = φ−1 ◦F satisfies the conditions of Lemma 2.1 and therefore |ω(z)| ≤ |z|p.
Because F = φ ◦ ω and |Reφ(ω(z))| ≤ 4

π
(|ω(z)|), we have

|ReF (z)| ≤ tan−1(|z|p). (4.5)

Fix θ and z ∈ D, and define H = eiθf . Then we that H = h + g, where
h and g are analytic in D. Let F = h + g. It follows that ReH = ReF .
Since µ(0, h) ≥ p and µ(0, g) ≥ p, it follows that µ(0, F ) ≥ p. Now the claim
follows from (4.5) and the fact that this inequality holds for all θ.

4.6 Lemma. Suppose that b1, b2, . . . is a sequence of points on the positive
imaginary axis with limk→∞ bk = 0 and 0 < m < ρH(bk, bk+1) < Mk. Then
there exists ϕ = ϕ(m) such that the angular region

Cϕ = {z ∈ H : | arg z − π/2| < ϕ and |z| < |b1|}

is contained in the set D =
⋃∞

k=1D(bk,Mk).

Proof. Fix k ≥ 1. Suppose that z = reiθ, r > 0, ρ(z, bk) ≤ m/2 and
|θ − π/2| < ϕ0, where

ϕ0 = cos−1

(

cosh(m/2)

cosh(m)

)

.

It is sufficient to show that z ∈ Dk = D(bk,Mk).
Consider the hyperbolic triangle with vertices in bk, ir and z. Denote the

sides connecting bk, ir by a; ir, z by b; and z, bk by c. Then, by the hyperbolic
Pythagoras’ Theorem 2.4, we have

cosh(c) = cosh(a) cosh(b).

It follows that

cosh(b) ≤
cosh(m)

cosh(m/2)
.

By [3, (7.20.3)], we have

θ ≤ cos−1

(

cosh(m/2)

cosh(m)

)

,

which is true because θ < ϕ0. Choosing ϕ = ϕ0 the claim follows.
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4.7 Theorem. Fix m > 0. Let f : H → D be a harmonic function, µk =
µ(bk, f), and let {bk} be a sequence of points on the positive imaginary axis
such that 0 < m ≤ ρH(bk, bk+1) = Mk and f(bk) = 0 for all k = 1, 2, . . . with
limk→∞ bk = 0. If

(

1 − e−Mk

1 + e−Mk

)µk

→ 0 as k → ∞,

then f has an angular limit 0 at 1.

Proof. By Theorem 4.2, it suffices to show that f has a limit at 0 in the
angular region Cϕ for some ϕ ∈ (0, π/2).

Let gk = f ◦ hk, where hk is a Möbius transformation with hk(D) = H

and hk(0) = bk. Then, by Lemma 4.3,

|gk(z)| ≤
4

π
tan−1(Rµk

k )

for |z| ≤ Rk, where Rk = tanh(1
2
Mk). It follows that

|f(z)| ≤ tan−1(Rµk

k ) for z ∈ D(bk,Mk).

Then f has a limit, and hence, a limit 0 at 0 along Cϕ, if

lim
k→∞

Rµk

k = 0.

As in the analytic case, we conclude that if

(

1 − e−Mk

1 + e−Mk

)µk

→ 0 as k → ∞,

then f has the angular limit 0 at 0.

4.8 Remark. Sequential limits for various classes of functions have been
extensively studied in the literature. Related results for meromorphic func-
tions are given in [2], for analytic and subharmonic functions in [7], and for
quasiregular mappings in [11, 15]. A more general class of Harnack functions
has been studied in [14].
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