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Teemu Lukkari: Nonlinear potential theory of elliptic equations with nonstandard

growth; Helsinki University of Technology, Institute of Mathematics, Research Re-
ports A541 (2008).

Abstract: We consider the nonlinear potential theory of elliptic partial dif-
ferential equations with nonstandard structural conditions. In such a theory,
Harnack inequalities and the class of superharmonic functions related to the
equation under consideration have a crucial role. We develop a technique
for proving Harnack type inequalities to handle possibly unbounded solutions.
After this, we show that the basic properties of the related superharmonic
functions are similar to the case of standard structural conditions, and give
applications of Harnack inequalities and superharmonicity. These include re-
movability, growth of fundamental solutions, and superharmonic functions as
solutions of equations involving measures.
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Hölder continuity, Caccioppoli estimate, Moser iteration, Harnack’s inequality, reg-
ularity, comparison principle, superharmonic function, removability, growth of so-
lutions, existence of generalized solutions, measure data



Teemu Lukkari: Epälineaarinen potentiaaliteoria elliptisille yhtälöille, joissa esi-

intyy epästandardeja rakenne-ehtoja; Teknillisen korkeakoulun matematiikan laitok-
sen tutkimusraporttisarja A541 (2008).

Tiivistelmä: Käsittelemme epästandardeja rakenne-ehtoja sisältävien ellip-
tisten osittaisdifferentiaaliyhtälöiden potentiaaliteoriaa. Tälläisessa teoriassa
Harnack-tyyppisillä epäyhtälöillä ja käsiteltävään yhtälöön liittyvillä super-
harmonisilla funktioilla on ratkaiseva rooli. Kehitämme tekniikan Harnack-
estimaattien todistamiseen mahdollisesti rajoittamattomille ratkaisuille. Tämän
jälkeen näytämme, että superharmonisten funktioiden perusominaisuudet ovat
samankaltaiset kuin standardien rakenne-ehtojen tapauksessa, ja käsittelemme
Harnack-estimaattien ja superharmonisuuden sovelluksia. Näihin kuuluvat
poistuvuus, fundamentaaliratkaisujen kasvu ja superharmoniset funktiot mit-
tadataa sisältävien yhtälöiden ratkaisuina.

Avainsanat: Epästandardi rakenne-ehto, varioiva eksponentti, p(x)-Laplacen yhtälö,
logaritminen Hölder-jatkuvuus, Caccioppoli-estimaatti, Moserin iteraatio, Harnackin
epäyhtälö, säännöllisyys, vertailuperiaate, superharmoninen funktio, poistuvuus,
ratkaisujen kasvuvauhti, yleistettyjen ratkaisujen olemassaolo, mittadata
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1 Introduction

The topic of this thesis is the p(x)-laplacian

− div(|∇u|p(x)−2∇u) = 0, (1.1)

and the related nonlinear potential theory. Equations similar to (1.1) arise
as Euler-Lagrange equations of variational integrals like

∫
|∇u|p(x) dx. (1.2)

Equation (1.1) exhibits growth of ’p(x)-type’, which is a particular class of
so-called nonstandard growth conditions.

Classical potential theory concerns the properties of solutions of the Laplace
equation

− div(∇u) = 0. (1.3)

The term potential theory stems from physics, namely from the fact that the
scalar potential u of a static electric field satisfies (1.3). See [13] for a recent
account of the potential theory related to (1.3). The canonical example of a
solution of (1.3) in three-dimensional euclidean space is the function

u(x) = |x|−1, (1.4)

the potential of a point charge at the origin. Observe that this function does
not belong to the natural Sobolev space W 1,2 associated to (1.3); instead, it
belongs to a strictly larger class called superharmonic functions.

In the mid-eighties, p-superharmonic functions were introduced [59]; this
class consists of lower semicontinuous functions that obey the comparison
principle with respect to continuous solutions of the equation

− div(|∇u|p−2∇u) = 0. (1.5)

See also [47, 48]. An example of such a function in the n-dimensional Eu-
clidean space is given by

u(x) = |x|−(n−p)/(p−1). (1.6)

When p = 2 and n = 3, this reduces to the potential of a point charge given
by (1.4). As an alternative, equivalent formulation of (1.5), one may consider
the minimisers of the p-Dirichlet energy integral

∫
|∇u|p dx.

The class of p-superharmonic functions coincides with the viscosity superso-
lutions of (1.5) by [52].

There are structural differences between the equations (1.3), (1.5) and
(1.1). The Laplace equation is linear, i.e. if u and v are solutions, then λu+µv,
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where λ and µ are constants, is also a solution. The p-laplacian is no longer
linear, but it is nevertheless scalable; u+v is usually not a solution, but λu+µ
is still a solution. The p(x)-laplacian (1.1) in turn exhibits a stronger form of
nonlinearity, since, in general, λu+µ is no longer a solution if λ 6= ±1. These
structural differences are reflected in potential theory in a fundamental way.
In the case of (1.3), one usually employs representation formulas, such as the
mean value property, for solutions. When considering (1.5), such formulas
need to be replaced by estimates, for instance Caccioppoli type estimates,
and various weak Harnack inequalities. Such estimates for (1.5) date back
to the sixties, [74, 76]. Finally, as one passes from (1.5) to (1.1), versions of
these estimates continue to hold. However, the estimates become intrinsic,
i.e. they depend on the solution itself. This intrinsicness turns out to be a
major source of difficulties.

Equations with energies like (1.1) appear in the modelling of electrorheo-
logical fluids. One of the features of such fluids is the fact that the mechanical
properties of the fluid are influenced by an external electric field. One ap-
proach to model this phenomenon is to introduce an extra stress tensor with
a variable exponent, [69, 71]. Another application for minimising the integral
(1.2) is image processing [19, 58]; see also [45]. In this field, it is desirable to
choose the exponent p(x) so that it takes the value 1 near the edges in an
image, and the value 2 in ”smoothly”varying regions. The first of these prop-
erties helps in preserving the sharpness of the edges, and the second removes
noise from the smoothly varying parts of an image.

The contribution of this dissertation is twofold. First, we modify Moser’s
iteration technique so that we can prove Harnack estimates needed in poten-
tial theory without the boundedness assumptions required in earlier litera-
ture. Removing the boundedness restriction is essential, since the examples
(1.4) and (1.6) show that we need estimates that apply to unbounded func-
tions. Second, we present applications of such estimates. These include the
basic properties of p(x)-superharmonic functions, removable singularities and
growth of singular solutions, and equations with measure-valued right hand
side. In particular, we prove the existence and estimate the growth of the
p(x)-counterpart of (1.6).

2 Partial differential equations involving vari-

able growth exponents

The minimisation of (1.2) was first considered by Zhikov, starting in the
mid-eighties [78]. To get a feel of the problems involved, we shall give some
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examples introduced by him. To this end, let us denote

F (x, ξ) = |ξ|p(x), V (Ω) = {u ∈ W 1,1
0 (Ω) :

∫

Ω

|∇u|p(x) dx <∞}, and

Ṽ (Ω) = {u ∈ V (Ω) : there is uε ∈ C∞
0 (Ω) such that uε → u in W 1,1(Ω)

and lim
ε→0

∫

Ω

|∇uε|
p(x) dx =

∫

Ω

|∇u|p(x) dx}.

In Zhikov’s terminology [80], F is called regular if

V (Ω) = Ṽ (Ω).

In particular, when F is not regular, it is possible that

E = min
u∈W 1,1

0
(Ω)

∫

Ω

|∇u|p(x) dx < inf
u∈C∞

0
(Ω)

∫

Ω

|∇u|p(x) dx = Ẽ;

this is the Lavrentiev phenomenon.

Example 2.1. Let Ω = {x ∈ R
2 : |x| < 1} and

p(x) =

{
α for x1x2 > 0,

β for x1x2 ≤ 0,

where 1 < α < 2 < β. Then F is not regular, [78, 80].

Example 2.2. Let Ω = {x ∈ R
2 : |x| < 1} and

p(x) =

{
α for x1 > 0,

β for x1 ≤ 0.

Then F is regular, [78, 80].

For the exponent of Example 2.1, it can be shown that the minimiser of
(1.2) is not continuous, and does not possess the higher integrability property,
[80]. The discontinuity is not essential, as shown by Hästö [50]; there is a
uniformly continuous exponent such that the minimiser is not continuous.

The above examples show that some kind of assumption on the exponent
p(·) is necessary to develop a regularity theory for (1.1). Zhikov has intro-
duced the logarithmic Hölder continuity condition (2.3) for this purpose. It
is usually stated in the form of a logarithmic modulus of continuity, i.e.

|p(x) − p(y)| ≤ C
1

− log |x− y|
, (2.3)

where the inequality is required to hold for points x and y such that |x−y| ≤
1/2. Indeed, the condition (2.3) is sufficient for regularity of F , as shown in
[79].
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2.1 The variable exponent Lebesgue and Sobolev spaces

One way to see that (2.3) implies the regularity of F is to consider the density
of smooth functions in a suitable ”energy space” related to the functional
(1.2). The first step in defining such a space is to define a variable exponent
Lebesgue space. Roughly speaking, this space Lp(·) consists of all measurable
functions u such that |u|p(x) ∈ L1. The Luxemburg norm, defined as

‖u‖p(·) = inf{λ > 0 :

∫

Ω

|u/λ|p(x) dx ≤ 1},

turns Lp(·) into a Banach space. This and other basic properties of Lp(·) were
established by in the early nineties by Kováčik and Rákosńık [54]; see also
[37]. For exponents p(·) such that

1 < inf p(x) ≤ sup p(x) <∞, (2.4)

these properties are very similar to the classical Lp space. In particular, the
dual of Lp(·) is obtained by conjugating the exponent pointwise. Hence Lp(·)

is reflexive, and bounded sets are weakly compact. This fact is useful in
applications to partial differential equations. The main difference is that Lp(·)

is almost never translation invariant, i.e. if f ∈ Lp(·), it does not follow that
x 7→ f(x + h) ∈ Lp(·) when h 6= 0. As a consequence, approximation using
the usual convolution procedure becomes involved.

Now it is possible to define the variable exponent Sobolev space in the
obvious way. The space W 1,p(·) consists of functions u ∈ Lp(·) whose distribu-
tional gradient ∇u exists and belongs to Lp(·). This space is a Banach space
with the norm

‖u‖1,p(·) = ‖u‖p(·) + ‖∇u‖p(·)

If smooth functions are dense in W 1,p(·), then the corresponding integrand
F is regular, in particular the Lavrentiev phenomenon does not occur. To
see this, note that if fi → f in Lp(·), then |fi|

p(x) → |f |p(x) in L1
loc. Density

allows us to pick a sequence of smooth functions (ui) such that ui → u in
W 1,p(·), and an application of the previous observation to |∇ui|

p(x) yields the
regularity of F .

The key results related to density of smooth functions are due to Samko
[72] and Diening [25]. Samko showed that if p(·) is log-Hölder continuous,
then averaging by convolution is bounded on Lp(·). This in turn implies the
density of smooth functions. Diening has discovered the underlying general
principle by showing that if the Hardy-Littlewood maximal function, defined
as

Mf(x) = sup
B∋x

−

∫

B

|f(y)| dy,

is bounded on Lp(·), smooth functions are dense in W 1,p(·). See also [30, 51].
Further, log-Hölder continuity of the exponent is sufficient for M to be
bounded on Lp(·) [25] and examples show [68] that (2.3) is sharp in a cer-
tain sense. More precisely, if we insist that the assumptions on p(·) are given
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terms of an estimate for the modulus of continuity, then the condition (2.3)
is sharp. Note that boundedness on Lp(·) implies that a norm estimate,

‖Mf‖p(·) ≤ C‖f‖p(·),

holds, not that ∫

Ω

(Mf)p(x) dx ≤ C

∫

Ω

|f |p(x) dx. (2.5)

Indeed, it can be shown that (2.5) holds if and only if p(·) is constant, [56].
The maximal operator M on Lp(·) has been widely studied and applied;

see, e.g., [24, 26, 27, 57, 28, 29, 23, 22]. The theory of the spaces Lp(·) and
W 1,p(·) can also be used for showing the existence of minimisers of (1.2), or
equivalently solutions of (1.1). For instance, one can apply the direct method
of the calculus variations under mild conditions on p(·) and the boundary
data, as shown in [44]. See also [35, 46].

2.2 Regularity of solutions

Weak solutions of (1.1) can be defined in the usual way; a function u ∈
W 1,p(·)(Ω) is a solution if

∫

Ω

|∇u|p(x)−2∇u · ∇ϕ dx = 0

for all test functions ϕ ∈ C∞
0 (Ω). However, the Caccioppoli estimates needed

to prove regularity require usage of test functions that depend on the solution
itself. Fortunately, the dual of Lp(·) is obtained by conjugating the exponent
pointwise; Thus, one can allow test functions ϕ ∈ W

1,p(·)
0 (Ω) by an approxi-

mation argument, provided that smooth functions are dense in W 1,p(·).
Logarithmic Hölder continuity (2.3) is also sufficient for the Hölder con-

tinuity of solutions of (1.1). This follows from De Giorgi type estimates,
as shown by Fan and Zhao [36], or from Harnack’s inequality by Alkhutov
[7]. Acerbi and Mingione [2] have developed a freezing technique specifi-
cally for functionals similar to (1.2). Their technique allows one to prove
the Hölder continuity of minimisers given (2.3), and also the Hölder continu-
ity of the gradient of a minimiser if p(·) itself is Hölder continuous. See also
[20, 21, 31, 32, 8].

The role of the assumption (2.3) in regularity results can be briefly illus-
trated as follows. In [36, 7], Hölder continuity follows from estimates for the
supremum of the solution in balls. The constants appearing in such estimates
must be independent of the radius R of the ball, at least for small values of
R. In order to achieve this, the quantity

R−(p+−p−),

where p+ = maxx∈BR
p(x) and p− = minx∈BR

p(x), needs to be controlled.
Hence the oscillation p+ − p− of the exponent needs vanish fast enough, so
that

R−(p+−p−) ≤ C. (2.6)
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It turns out that (2.6) is equivalent with (2.3). The condition (2.6) also
appears in the estimates of this thesis. Diening [25, Lemma 3.2] has given a
proof of the equivalence.

The regularity results discussed above are sharp in the same sense as
the boundedness of the maximal function, i.e. in terms of the modulus of
continuity of p(·). Indeed, in Hästö’s example of a discontinuous minimiser
[50], the modulus of continuity of the exponent is only slightly worse than that
allowed by (2.3). Further, it can be shown that the gradient of a minimiser
is Hölder continuous only if the exponent is also Hölder continuous. This
follows from an explicit formula for the minimiser of (1.2) on the real line,
[42, Corollary 5.2.].

For further regularity results, see [1, 38, 10, 5, 3, 4, 34, 18, 9]. Evolution
equations related to (1.1) are considered, e.g., in [11, 77, 12, 49, 6].

3 Potential theory with nonstandard growth

3.1 Harnack estimates for unbounded solutions and

supersolutions

Moser iteration and Harnack’s inequality for nonnegative solutions of (1.1)
have been previously considered by Alkhutov [7]; see also [55, 9]. The local
boundedness of solutions is first established by a preliminary iteration, and
then the actual Moser iteration is carried out. This results in

sup
x∈BR

u(x) ≤ C(u)( inf
x∈BR

u(x) +R), (3.1)

where the constant depends on the supremum of u, i.e.

C(u) ≈ 1 + ( sup
x∈B4R

u(x))p
+−p− , (3.2)

where p− = infx∈B4R
p(x) and p+ = supx∈B4R

p(x).
Difficulties in the iteration procedure arise due to the fact that there

are no natural ”p(x)-Sobolev inequalities” available. Hence passing between
a constant exponent in a Sobolev inequality to a variable exponent in an
estimate obtained from the equation and back needs to be taken care of. The
first step is handled by Young’s inequality and considering v = u+R instead
of u. This results in the extra term R on the right hand side of (3.1). The
second step is handled by using the boundedness of u in the estimates, and
results in (3.2).

We improve this result in [I]. The improvement is based on the observation
that if p(·) is log-Hölder continuous, then integral averages of the form

−

∫

Br

fp
+

Br
−p−

Br dx

can be controlled by Lt norms of f for small values of t. This trick is inserted
into the latter step, i.e. passing back from a variable exponent to a constant
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one. These modifications lead to the inequality (3.1), but now with

C(u) ≈ 1 + (‖u‖Lt(B4R))
p+−p− . (3.3)

The values of t are restricted only by the requirement that t > (p+ − p−)/q′,
where q is any number such that 1 < q < n/(n − 1) and q′ is the Hölder
conjugate of q. Thus, since p(·) is assumed to be continuous, t can be chosen to
be arbitrarily small by considering sufficiently small balls. This is particularly
useful in nonlinear potential theory, where the estimate

(
−

∫

B2R

uq0 dx

)1/q0

≤ C(u)( inf
x∈BR

u(x) +R), (3.4)

the weak Harnack inequality for nonnegative supersolutions is a crucial tool.
To illustrate the origin of the dependence (3.3), consider the variational

integral ∫

Ω

F (x,∇u) dx,

where the density F satisfies the standard structural condition

α|ξ|p ≤ F (x, ξ) ≤ β|ξ|p.

It is well known that estimates for minimisers depend only on the elliptic-
ity ratio β/α, not on the minimiser itself. The structural condition for the
functional (1.2) is

α|ξ|p(x) ≤ F (x, ξ) ≤ β|ξ|p(x),

and a ”worst case” of this is

α|ξ|p
−

≤ F (x, ξ) ≤ β(|ξ|p
+

+ 1), (3.5)

where p− = min p(x) and p+ = max p(x). Thus, by formally computing the
ellipticity ratio corresponding to (3.5), one would expect estimates to depend
on (β/α) × |∇u|p

+−p− . Further, note that Moser’s method uses Caccioppoli
estimates, i.e. estimates for the gradient of a solution in terms of the solution
itself. This allows us to replace a dependence on |∇u| by a dependence on u.
Hence the qualitative form of (3.3) should not be surprising.

As an application of the improved estimate (3.4), we study the infinity set
of p(x)-superharmonic functions. More precisely, we prove that if u ∈ Ltloc(Ω)
is a lower semicontinuous function such that min(u, λ) is a supersolution of
(1.1) for each λ ∈ R, then

Cp(·)({x ∈ Ω : u(x) = ∞}) = 0.

Here Cp(·) is the Sobolev p(x)-capacity, i.e.

Cp(·)(E) = inf

∫

Rn

(
|u(x)|p(x) + |∇u(x)|p(x)

)
dx,
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where infimum is taken over the set of admissible functions

Sp(·)(E) = {u ∈W 1,p(·)(Rn) : u ≥ 1 in an open set containing E}.

We refer to [43, 41] for details on the various p(x)-capacities.
We also provide an example which shows that the constant in (3.1) cannot

be independent of u. The example uses the explicit formula for minimizers
of (1.2) on the real line, [42].

Antontsev and Zhikov [11] obtain a parabolic version of the supremum es-
timate by using Moser iteration. Their argument is similar to the preliminary
iteration in [7].

The condition (3.5) can be considered a special form of the (p, q)-growth
condition

α|ξ|p ≤ F (x, ξ) ≤ β(|ξ|q + 1), (3.6)

where p < q. There is an extensive literature on variational functionals and
partial differential equations with (p, q)-growth, starting from the late eight-
ies; see for example [64, 63, 1, 40, 33, 39, 67], and the references in the survey
[66].

3.2 The definition and properties of p(x)-superharmonic

functions

In the constant exponent case, p-superharmonic functions are defined as the
lower semicontinuous functions which obey the comparison principle with
respect to solutions. More spesifically, a function u : Ω → (−∞,∞] is p-
superharmonic in Ω, if

1. u is lower semicontinuous,

2. u is not identically ∞ in any component of Ω, and

3. the comparison principle holds: Let D ⋐ Ω be an open set. If h is a
solution in D, continuous in D and u ≥ h on ∂D, then u ≥ h in D.

The weak Harnack inequality for unbounded supersolutions in [I] makes de-
veloping the theory of similarly defined p(x)-superharmonic functions feasi-
ble. We undertake this task in [II], along the lines of Lindqvist [59], Heinonen
and Kilpeläinen [47] and the monograph [48].

The basic tools needed to develop the theory of superharmonic functions
are existence and regularity results for the obstacle problem, and convergence
theorems for supersolutions and solutions. These tools are used to approxi-
mate p(x)-superharmonic functions with supersolutions of (1.1).

In the obstacle problem, an obstacle function ψ : Ω → [−∞,∞), and
boundary data w ∈ W 1,p(·)(Ω) are given, and then one tries to find the
minimal supersolution above the obstacle, and with the desired boundary
values. More specifically, we let

Kψ,w(Ω) =
{
u ∈ W 1,p(·)(Ω) : u− w ∈W

1,p(·)
0 (Ω), u ≥ ψ a.e. in Ω

}
,
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and say that a function u ∈ Kψ,w(Ω) is a solution of the obstacle problem in
Kψ,w(Ω) if ∫

Ω

|∇u|p(x)−2∇u · ∇(v − u) dx ≥ 0

for every test function v ∈ Kψ,w(Ω). The existence of a solution follows by a
convexity argument.

Regularity for the obstacle problem consists of the fact that the solution
of the obstacle problem is continuous whenever the obstacle is continuous,
and of the fact that whenever the minimal supersolution does not touch the
obstacle, it is a solution. The first fact requires a Harnack estimate, and in
[II] we establish this estimate in a fashion similar to [I].

We also prove the classical convergence theorems for increasing and de-
creasing sequences of supersolutions, and for uniformly convergent sequences
of solutions. All these results are quite straightforward adaptations of argu-
ments found, for example, in [48]. This is not case with Harnack’s principle,
which states that the limit of an increasing sequence of solutions is either
a solution or identically infinite. This cannot be true in the variable expo-
nent setting as such; the constant in Harnack’s inequality (3.1) depends on
the solution itself. Our version of Harnack’s principle requires the additional
assumption that the limit function is in Ltloc for some t > 0.

Estimates for superharmonic functions require a stronger relation to the
equation (1.1) than the one provided by the comparison principle, even
for constant exponents. Such a link is provided by the fact that u is p-
superharmonic if and only if the truncations min(u, k) are supersolutions.
The obstacle problem is the tool one needs to establish this characterisa-
tion, [59], and in [II] we show that this property is carried over to the p(x)-
superharmonic functions; the relationship between p(x)-superharmonic func-
tions and supersolutions of (1.1) is same as in the case of (1.5). Further,
this relationship is exploited to show that for smooth, radial exponents, the
function

v(x) =

∫ 1

|x|

(p(r)rn−1)−1/(p(r)−1) dr (3.7)

is p(x)-superharmonic.
The final topic we cover in [II] is the summability (i.e. integrability) of

p(x)-superharmonic functions. The main result is that given an open set
U ⊂ Ω and a compact set K ⊂ U , a p(x)-superharmonic function u and its
gradient Du belong to Lq(p(x)−1)(K) for some q > 1, if u ∈ Lt(U \ K) for
some t > 0. Here, Du is the generalised gradient of u, defined pointwise as

Du = lim
k→∞

∇min(u, k). (3.8)

Note that Du is not necessarily the weak gradient u, since it is possible that
u /∈W 1,1

loc .
In our summability result, we use a method based on estimates for the

truncations min(u, k). This method was applied to estimate p-superharmonic
functions by Kilpeläinen and Malý [53]; see also [15, 16]. First, u is mollified
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in U \K by using the Poisson modification. The truncations of the mollified

version of u belong to W
1,p(·)
0 (U), and this fact is then used to prove the

required estimates. Carrying out the Poisson modification requires Harnack’s
principle and boundary regularity results. The assumption u ∈ Lt(U \ K)
is required by (3.3) to make Harnack’s principle work, and the necessary
boundary regularity results are due to Alkhutov and Krasheninnikova [9].

3.3 Removable and nonremovable singularities of so-

lutions

The Moser iteration and Harnack’s inequality can be used to prove removabil-
ity theorems, and to estimate the growth of solutions near a nonremovable
isolated singularity. This was established by Serrin [74, 75] for a general class
of elliptic equations similar to the p-laplacian (1.5). In [III] we extend the
theory to cover the equation (1.1).

A removability theorem asserts that a function u which is a solution in
Ω \ E can be extended so that it becomes a solution in Ω given additional
assumptions on the compact set E and on u. In Serrin’s removability theo-
rem, the s-capacity of E is assumed to be zero for some s ≥ p. In order to
conclude the desired extension property from this, the solution u needs to be
integrable to a power that depends on s and p. In [III] we generalise this so
that the assumption on E is given in terms of a variable exponent capacity
and u is assumed to be integrable to the variable power which corresponds
pointwise to the constant exponent case. For this purpose, it is essential that
the iteration from [I] applies to unbounded solutions, since boundedness is
not assumed in the removability theorem.

Serrin also considered solutions with a nonremovable isolated singularity
at the origin in [74]. Such a solution must have exactly the same growth rate
as the fundamental solution (1.6) of the p-laplacian, i.e.

C1|x|
−(n−p)/(p−1) ≤ u(x) ≤ C2|x|

−(n−p)/(p−1), (3.9)

where C1 and C2 are constants. The proof is based on estimating the growth
in terms of p-capacity of suitable balls by using Harnack’s inequality. The
bounds in (3.9) then follow by computing the capacity of a ball in terms of
its radius.

In our setting, the crucial point is Harnack’s inequality, due to (3.3). Thus
we need Lp estimates for singular solutions. It turns out that if we assume
that

lim
x→0

u(x) = ∞,

it follows that u is p(x)-superharmonic. Then we use the summability result
from [II] to prove that our solution u is locally integrable to a small power.
After this, an estimate for u in terms of p(·)-capacity follows.

The final tool we need is a way to estimate the p(·)-capacity of balls.
In the constant exponent case, such estimates use the fundamental solution
of the p-laplacian; see for example [62, Theorem 2.8]. However, there is no
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general formula for the fundamental solution of (1.1). Nevertheless, using
an idea due to Alkhutov and Krasheninnikova [9], we are able to compute
a useful lower bound for the p(·)-capacity. This bound implies an estimate
similar to (3.9).

3.4 Equations with measure-valued right hand side

We have seen above that some properties of p(x)-superharmonic functions
require the additional assumption that u ∈ Ltloc for some t > 0. It would be
desirable to have a way of showing that such functions exist. We accomplish
this in [IV] by showing that if µ is a positive, finite Borel measure on Ω, then
there is an integrable p(x)-superharmonic function u such that

− divA(x,Du) = µ (3.10)

in the sense of distributions. Here A is an operator with properties similar to
the p(x)-laplacian in (1.1), and Du is the generalised gradient of u defined
by (3.8). For related results, see [60, 73, 70].

The proof of the result mimics the one for the constant exponent case by
Kilpeläinen and Malý [53] and Mikkonen [65]. There are two stages in the
proof. First, one establishes a compactness result; out of any sequence of p(x)-
superharmonic functions one can extract a limit which is p(x)-hyperharmonic,
i.e. satisfies (1) and (3), but not necessarily (2), in the definition of p(x)-
superharmonic functions . Second, the original measure µ is approximated in
the sense of weak convergence by more regular measures µj, so that one can
find supersolutions uj satisfying

− divA(x,∇uj) = µj.

Then the compactness theorem is applied to find the solution of (3.10). How-
ever, some care is required to show first that the the solution found is actually
integrable. This approach is related to the works of Boccardo and Gallouët
[15, 16]; see also [17, 61, 14].

As an application, we show that by taking µ = δ in (3.10), one obtains
a solution with a nonremovable isolated singularity, the counterpart of (3.7).
Due to (3.3), showing the existence of such solutions is not possible by the
methods of Serrin [74].
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[41] P. Harjulehto, P. Hästö, and M. Koskenoja. Properties of capacities in
variable exponent Sobolev spaces. J. Anal. Appl. 5(2):71–92, 2007.
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[68] L. Pick and M. Ružička. An example of a space Lp(x) on which the Hardy-
Littlewood maximal operator is not bounded. Expo. Math., 19:369–371,
2001.
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