
Helsinki University of Technology, Institute of Mathematics, Research Reports

Teknillisen korkeakoulun matematiikan laitoksen tutkimusraporttisarja

Espoo 2006 A514

AN EXTENSION OF THE LÉVY CHARACTERIZATION
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1 Introduction

In the classical stochastic analysis Lévy’s characterization result for standard
Brownian motion is a fundamental result. We extend Lévy’s characterization
result to fractional Brownian motion giving three properties necessary and
sufficient for the process X to be a fractional Brownian motion. Fractional
Brownian motion is a self-similar Gaussian process with stationary incre-
ments. However, these two properties are not explicitly present in the three
conditions we shall give.

Fractional Brownian motion is a popular model in applied probability, in
particular in teletraffic modelling and in finance. Fractional Brownian motion
is not a semimartingale and there has been lot of research how to define
stochastic integrals with respect to fractional Brownian motion. Big part of
the developed theory depends on the fact that fractional Brownian motion
is a Gaussian process. Since we want to prove that X is a special Gaussian
process, we cannot use this machinery for our proof. Lévy’s characterization
result is based on Itô calculus. We cannot do computations using the process
X. Instead, we use representation of the process X with respect to a certain
martingale. In this way we can do computations using classical stochastic
analysis.

Fractional Brownian motion

A continuous square integrable centered process X with X0 = 0 is a fractional
Brownian motion with self-similarity index H ∈ (0, 1) if it is a Gaussian
process with covariance function

IE (XsXt) =
1

2

(

t2H + s2H − |t − s|2H
)

. (1.1)

If X is a continuous Gaussian process with covariance (1.1), then obviously
X has stationary increments and X is self-similar with index H. Mandelbrot
named the Gaussian process X from (1.1) as fractional Brownian motion, and
proved an important representation result for fractional Brownian motion in
terms of standard Brownian motion in [2]. For a history on the research
concerning fractional Brownian motion before Mandelbrot we refer to [3].

Characterization of fractional Brownian motion

Throughout this paper we work with special partitions. For t > 0 we put
tk := t k

n
, k = 0, . . . , n. IFX is the filtration generated by the process X.

Fix H ∈ (0, 1). Fractional Brownian motion has the following three prop-
erties:

(a) The sample paths of the process X are Hölder continuous with any
β ∈ (0, H).
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(b) For t > 0 we have

n2H−1

n
∑

k=1

(Xtk − Xtk−1
)2 L1(P )

−→ t2H , (1.2)

as n → ∞.

(c) The process

Mt =

∫ t

0

s
1

2
−H(t − s)

1

2
−HdXs (1.3)

is a martingale with respect to the filtration IFX .

If the process X satisfies (a), we say that it is Hölder up to H. The
property (b) is weighted quadratic variation of the process X, and the process
M in (c) is the fundamental martingale of X. It follows from the property
(a), that the integral (1.3) can be understood as a Riemann-Stieltjes integral
(see [4] and subsection 2.2 for more details).

Fractional Brownian motion satisfies the property (a): From (1.1) we
have that

IE(Xt − Xs)
2 = (t − s)2H .

Since the process X is a Gaussian process we obtain from Kolmogorov’s
theorem [5, Theorem I.2.1, p.26] that the process X is Hölder continuous
with β < H. Fractional Brownian motion satisfies also the property (b).
The proof of this fact is based on the self-similarity and on the ergodicity
of the fractional Gaussian noise sequence Zk := Xk − Xk−1, k ≥ 1. The
fact that property (c) holds for fractional Brownian motion was known to
Molchan [3], and recently rediscovered by several authors (see [4] and [3]).
We summarize our main result.

Theorem 1.1. Assume that X is a continuous square integrable centered
process with X0 = 0. Then the following are equivalent:

• The process X is a fractional Brownian motion with self-similarity in-
dex H ∈ (0, 1).

• The process X has properties (a), (b) and (c) with some H ∈ (0, 1).

Discussion

If H = 1
2
, then the assumption (c) means that the process X is a martingale.

If X is a martingale, then the condition (b) means that X2
t −t is a martingale.

Hence we obtain the classical Lévy characterization theorem, when H = 1
2
.

Note that in this case the property (a) follows from the fact that X is a
standard Brownian motion.

Fractional Brownian motion X has the following property: for T > 0

n
∑

k=1

|XT k

n

− XT k−1

n

|
1

H

L1(P )
→ E|X1|

1

H T (1.4)
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as n → ∞. This gives another possibility to generalize the quadratic variation
property of standard Brownian motion. However, it seems difficult to replace
the condition (b) by the condition (1.4).

In the next section we explain the main steps in our proof. The rest of
the paper is devoted to technical details of the proof, which are different for
H > 1

2
and H < 1

2
.

2 The proof of Theorem 1.1

2.1 A consequence of (b)

We use the following notation:
L1(P )
→ means convergence in the space L1(P ),

P
→ (resp.

a.s.
→ ) means convergence in probability (resp. almost sure conver-

gence) and B(a, b) is the beta integral B(a, b) =
∫ 1

0
xa−1(1−x)b−1dx, defined

for a, b ≥ 0. The notation Xn ≤ Y + oP (1) means that we can find ran-
dom variables εn such that εn = oP (1) and Xn ≤ Y + εn. If in addition
X = P − lim Xn, then we also have X ≤ Y .

We fix now t and let Rt := {s ∈ [0, t] : s
t
∈ Q}. Note that the set Rt is

a dense set on the interval [0, t]. Fix now also s ∈ Rt and let ñ = ñ(s) be a
subsequence such that ñ s

t
∈ IN.

Lemma 2.1. Fix t > 0 and s ∈ Rt and ñ such that ñ s
t
∈ IN and ñ → ∞.

Then

ñ2H−1

ñ
∑

k=ñ s

t
+1

(

Xt k

ñ

− Xt k−1

ñ

)2 P
−→ t2H−1(t − s). (2.1)

Proof. We have that

ñ2H−1

ñ s

t
∑

k=1

(∆Xt k

ñ

)2 = ñ2H−1

ñ s

t
∑

k=1

(∆X sk

ñ
s
t

)2

=
(

ñ
s

t

)2H−1

· (
t

s
)2H−1

ñ s

t
∑

k=1

(∆X sk

ñ
s
t

)2

L1(P )
→ s2H · (

t

s
)2H−1 = st2H−1.

Since ñ2H−1
∑ñ

k=1(∆Xt k

ñ

)2 L1(P )
→ t2H , we obtain the proof.

In what follows we shall write n pro ñ and tk pro t k
n
.

2.2 Representation results

Throughout the paper we shall use the following notation. Put

Yt =

∫ t

0

s
1

2
−HdXs; (2.2)
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then we have Xt =
∫ t

0
sH− 1

2 dYs and we can write the fundamental martingale
M as

Mt =

∫ t

0

(t − s)
1

2
−HdYs. (2.3)

The equation (2.3) is a generalized Abel integral equation and the process
Y can be expressed in terms of the process M :

Yt =
1

(

H − 1
2

)

B1

∫ t

0

(t − s)H− 1

2 dMs (2.4)

with B1 = B(H − 1
2
, 3

2
− H).

We work also with the martingale W =
∫ t

0
sH− 1

2 dMs. We have [W ]t =
∫ t

0
s2H−1d[M ]s and [M ]t =

∫ t

0
s1−2Hd[W ]s.

Note that all the integrals, even the Wiener integrals, can be understood
as pathwise Riemann-Stieltjes integrals.

For H > 1
2

we use the following representation result.

Lemma 2.2. Assume that H > 1
2

and (a) and (c). Then the process X has
the representation

Xt =
1

B1

∫ t

0

(∫ t

u

sH− 1

2 (s − u)H− 3

2 ds

)

dMu, (2.5)

Proof. Integration by parts in (2.4) gives:

Yt =
1

B1

∫ t

0

(t − s)H− 3

2 Msds.

Next, by using integration by parts and Fubini theorem we obtain

Xt =

∫ t

0

sH− 1

2 dYs = tH− 1

2 Yt − (H −
1

2
)

∫ t

0

sH− 3

2 Ysds

=
tH− 1

2

B1

∫ t

0

(t − s)H− 3

2 Msds −
H − 1

2

B1

∫ t

0

sH− 3

2

∫ s

0

(s − u)H− 3

2 Mududs

=
tH− 1

2

(H − 1
2
)B1

∫ t

0

(t − s)H− 1

2 dMs −
1

B1

∫ t

0

sH− 3

2

∫ s

0

(s − u)H− 1

2 dMuds

=
tH− 1

2

(H − 1
2
)B1

∫ t

0

(t − s)H− 1

2 dMs −
1

B1

∫ t

0

[∫ t

u

sH− 3

2 (s − u)H− 1

2 ds

]

dMu

=
1

B1

∫ t

0

[

tH− 1

2

H − 1
2

(t − u)H− 1

2 −

∫ t

u

sH− 3

2 (s − u)H− 1

2 ds

]

dMu

=
1

B1

∫ t

0

[∫ t

u

sH− 1

2 (s − u)H− 3

2 ds

]

dMu.

This proves claim (2.5).

For H < 1
2

we use the following representation result, which can be proved
as [4, Theorem 5.2].
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Lemma 2.3. Assume that H < 1
2

and (a) and (c). Then the process X has
the representation

Xt =

∫ t

0

z(t, s)dWs, (2.6)

with the kernel

z(t, s) =
(s

t

)1/2−H

(t − s)H−1/2 + (1/2 − H)s1/2−H

∫ t

s

uH−3/2(u − s)H−1/2du

2.3 The proof of the main result

We give the structure of the proof, and prove the main result. We know from
Lemma 2.1

n2H−1

n
∑

k=n s

t
+1

(

Xt k

n

− Xt k−1

n

)2 P
→ cHt2H−1(t − s).

We show, separately for H < 1
2

and H > 1
2
, that the following asymptotic

expansion holds

n2H−1

n
∑

k=n s

t
+1

(

Xtk − Xtk−1

)2

= n2H−1

n
∑

k=n s

t
+1

∫ t

s

(

ht
k(u)

)2
d[M ]u + oP (1)

(2.7)

with a sequence of deterministic functions ht
k, depending on H. Here oP (1)

means convergence to zero in probability.

Note that an H- fractional Brownian motion BH also satisfies (a), (b)
and (c), and hence it also satisfies the asymptotic expansion

n2H−1

n
∑

k=n s

t
+1

(

BH
tk
− BH

tk−1

)2

= n2H−1cH(2 − 2H)
n
∑

k=n s

t
+1

∫ t

s

(

ht
k(u)

)2
s1−2Hds + oP (1)

(2.8)

with the same set of functions ht
k.

Moreover, we show, that [W ] ∼ Leb and the density ρt(u) = d[W ]u
du

satisfies
0 < c ≤ ρt(u) ≤ C < ∞ with some constants c, C. With this information,
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we can finish the proof. Then

P − lim
n

n2H−1

n
∑

k=n s

t
+1

∫ t

s

(

ht
k(s)

)2
ρt(u)u1−2Hdu

= P − lim
n

n2H−1

n
∑

k=n s

t
+1

∫ t

s

(

ht
k(u)

)2
d[M ]u

= t2H−1(t − s)

= P − lim
n

n2H−1

n
∑

k=n s

t
+1

(BH
tk
− BH

tk−1
)2

= P − lim n2H−1cH(2 − 2H)
n
∑

k=n s

t
+1

∫ t

s

(

ht
k(s)

)2
u1−2Hdu.

Since the set Rt is a dense set on the interval [0, t] we can conclude from
the above that ρt(u) = cH(2 − 2H). This means that the martingale M is a
Gaussian martingale with the bracket [M ]u = cHu2−2H and by the pathwise
representation results in the subsection 2.2 the process X is an H-fBm.

If M is a continuous square integrable martingale, then the bracket of M
is denoted by [M ]. Recall that in this case we have

[M ]t = P − lim
|πn|→0

n
∑

k=1

(Mtk − Mtk−1
)2.

2.4 Auxiliary lemmas

In the proof of (2.7) we use several times the following lemmas. Let M
be a continuous martingale. Put I2(M)t :=

∫ t

0
MsdMs. Two continuous

martingales M,N are (strongly) orthogonal if [M,N ] = 0; we write this as
M ⊥ N . We use also notation (N ·M) for the integral (N ·M)t =

∫ t

0
NsdMs.

Lemma 2.4. Assume that Mn,k is a double array of continuous square in-
tegrable martingales with the properties

(i) With n fixed and k 6= l Mn,k and Mn,l are orthogonal martingales.

(ii)
∑kn

k=1[M
n,k]t ≤ C, where C is a constant.

(iii) maxk[M
n,k]t

P
→ 0 as n → ∞.

Then
kn
∑

k=1

I2(M
n,k)t

L2(P )
→ 0 (2.9)

as kn → ∞.
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Proof. Since the martingales Mn,k are pairwise orthogonal, when n is fixed,
the same is true for the iterated integrals I2(M

n,k). Hence

E

(

kn
∑

k=1

I2(M
n,k)t

)2

=
kn
∑

k=1

E
(

I2(M
n,k)t

)2
;

we can now use [1, Theorem 1, p. 354], which states that

E
(

I2(M
n,k)t

)2
≤ B2

2,2E[Mn,k]2t .

But
kn
∑

k=1

[Mn,k]2t ≤ max
k

[Mn,k]t

kn
∑

k=1

[Mn,k]t
P
→ 0

as n → ∞. The claim (2.9) now follows, since
∑kn

k=1[M
n,k]2t ≤ C2.

Lemma 2.5. Assume that Mn,k and Nn,k are double array of continuous
square integrable martingales with the properties

(i) With fixed n and k 6= l Nn,l and Nn,k are orthogonal martingales, if
l < k, then Mn,l ⊥ Nn,k, and for i, j, k, l we have (Nn,i · Mn,j) ⊥
(Nn,k · Mn,l).

(ii)
∑kn

k=1[M
n,k
t ] ≤ C and

∑kn

k=1[N
n,k
t ] ≤ C.

(iii) The martingales Mn,k are bounded by a constant K and maxk[N
n,k]t

P
→

0.

(iv) [Mn,kNn,k]t =
(

(

Mn,k
)2

· [Nn,k]
)

t

Then
kn
∑

k=1

Mn,k
t Nn,k

t

L2(P )
→ 0 (2.10)

as kn → ∞.

Proof. By the assumption (i) we obtain

E

(

kn
∑

k=1

Mn,k
t Nn,k

t

)2

=
kn
∑

k=1

E
(

Mn,k
t Nn,k

t

)2

(2.11)

By assumption (iv) we have

E
(

Mn,k
t Nn,k

t

)2

= E[Mn,k
t Nn,k

t ] = E
(

(Mn,k
t )2[Nn,k]t

)

.

By assumption (ii) the sequence
∑

k(M
n,k
t )2 is tight, since it is dominated by

∑

k[M
n,k]t, and since maxk[N

n,k]t
P
→ 0, we have that

∑

k(M
n,k
t )2[Nn,k]t

P
→ 0.

By dominated convergence theorem we obtain the claim in (2.10).
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3 The proof of Theorem 1.1: case of H > 1
2

3.1 The basic estimation

For the proof we can assume that the martingales M and W , as well as their
brackets [M ] and [W ] are bounded with a deterministic constant L. If this
is not the case, we can always stop the processes.

We want to use expression

n2H−1

n
∑

k=n s

t
+1

(

Xtk − Xtk−1

)2

to obtain estimates for the increment of the bracket [M ], with the help of
(2.5).

Use (2.5) to obtain

Xtk − Xtk−1
=

1

B1

(

∫ tk−1

0

f t
k (s) dMs +

∫ tk

tk−1

gt
k (s) dMs

)

, (3.1)

where we used the notation

f t
k(s) :=

∫ tk

tk−1

uH− 1

2 (u − s)H− 3

2 du (3.2)

and

gt
k(s) :=

∫ tk

s

uH− 1

2 (u − s)H− 3

2 du.

Rewrite the increment of X as

Xtk − Xtk−1

:=
1

B1

(

In,1
k + In,2

k + In,3
k

)

:=
1

B1

(

∫ tk−2

0

f t
k(s)dMs +

∫ tk−1

tk−2

f t
k(s)dMs +

∫ tk

tk−1

gt
k(s)dMs

)

.

(3.3)

The random variables In,j
k are the final values of the following martin-

gales: put m1
v :=

∫ tk−2∧v

0
f t

k(u)dMu, m2
v :=

∫ tk−1∧v

tk−2∧v
fk(u)dMu and m3

v :=
∫ tk∧v

tk−1∧v
gt

k(u)dMu, then In,i
k = mi

t, i = 1, 2, 3. Hence we can use stochastic

calculus and Itô formula to analyze these random variables.
Next, note the following upper estimate for the functions f t

k:

f t
k(s) =

∫ tk

tk−1

uH− 1

2 (u − s)H− 3

2 du

≤ (tk)
H− 1

2 (tk−1 − s)H− 3

2 · (tk − tk−1) (3.4)

=

(

t
k − 1

n
− s

)H− 3

2

·
t

n
· (t

k

n
)H− 1

2

note that this estimate is finite for s ∈ (0, tk−1).
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Lemma 3.1. Fix t > 0 and s ∈ Rt and ñ such that ñ s
t
∈ IN and ñ → ∞.

Then there exist two constants C1, C2 > 0 such that we have

C1t
2H−1

∫ t−2t/n

s

u2H−1d[M ]u ≤ ñ2H−1

ñ
∑

k=ñ s

t
+2

∫ t k−2

n

0

(f t
k(u))2d[M ]u

≤ C2t
4H−2 ([M ]t − [M ]s) + Rt

n, (3.5)

where Rt
n = oP (1).

Proof. We continue to write n instead of ñ and will not take care of the
constants explicitly.

Upper estimate

At first we estimate

in,1 := n2H−1

n
∑

k=n s

t
+2

∫ tk−2

0

(f t
k(u))2d[M ]u

from above.
From (3.4) we obtain the following estimate for in,1:

in,1 ≤ n2H−3t2H+1

n
∑

k=n s

t
+2

∫ tk−2

0

(tk−1 − u)2H−3d[M ]u. (3.6)

We can assume that 0 < s < t and 2 ≤ n s
t
≤ n − 3, and rewrite

īn,1 :=
n
∑

k=n s

t
+2

k−2
∑

i=1

∫ ti

ti−1

(tk−1 − u)2H−3d[M ]u

= (

n s

t
∑

i=1

n
∑

k=n s

t
+2

+
n−2
∑

i=n s

t
+1

n
∑

k=i+2

)

∫ ti

ti−1

(tk−1 − u)2H−3d[M ]u (3.7)

=

n s

t
∑

i=1

∫ ti

ti−1

(
n
∑

k=n s

t
+2

(tk−1 − u)2H−3)d[M ]u

+
n−2
∑

i=n s

t
+1

∫ ti

ti−1

(
n
∑

k=i+2

(tk−1 − u)2H−3)d[M ]u.

We estimate the first term in the last equation in (3.7):

1

n
(

n
∑

k=n s

t
+2

(tk−1 − u)2H−3)

=
t

tn

[

(s +
t

n
− u)2H−3 + (s +

2t

n
− u)2H−3 +

+ · · · + (s +
t(n − 1)

n
− u)2H−3

]

≤
1

t

∫ s+t−u

s−u

x2H−3dx ≤
1

t(2 − 2H)
(s − u)2H−2;
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next we estimate the second sum in the last equation of (3.7) similarly and
obtain

1

n

n
∑

k=i+2

(tk−1 − u)2H−3 ≤
1

n
(ti+1 − u)2H−3 +

1

(2 − 2H)t
(ti+1 − u)2H−2.

We substitute these estimates into (3.7):

īn,1 ≤
1

2 − 2H
n

ns

t
∑

i=1

∫ t i

n

t i−1

n

(s − u)2H−2 1

t
d[M ]u

+ n

n
∑

i= ns

t
+1

∫ t i

n

t i−1

n

[

1

n
(t

i + 1

n
− u)2H−3

+
1

(2 − 2H)t
(t

i + 1

n
− u)2H−2

]

d[M ]u

≤
1

2 − 2H

n

t

∫ s

0

(s − u)2H−2d[M ]u + t2H−3n−2H+3([M ]t − [M ]s)

+
n

t
(
t

n
)2H−2 1

2 − 2H
([M ]t − [M ]s)

≤
1

2 − 2H

n

t

∫ s

0

(s − u)2H−2d[M ]u + cHt2H−3n3−2H([M ]t − [M ]s)

with cH = 1
2−2H

+ 1.

We continue from (3.6) and have

in,1 ≤
n2H−2

2 − 2H
t2H

∫ s

0

(s − u)2H−2d[M ]u + cHt4H−2([M ]t − [M ]s). (3.8)

From assumptions (a) and (c) we have that the martingale M is Hölder
continuous up to 1

2
. This in turn implies that the bracket [M ] is Hölder

continuous up to 1, and hence the random variable
∫ s

0
(s − u)2H−2d[M ]u is

finite with probability one. This gives the upper bound for (3.5) with Rt
n =

n2H−2t2H
∫ s

0
(s − u)2H−2d[M ]u.

Lower bound in (3.5)

We finish the proof of Lemma 3.1 by giving the lower bound. Recall that
f t

k(u) =
∫ tk

tk−1
vH− 1

2 (v − u)H− 3

2 dv and this gives the estimate

(

f t
k (u)

)2
≥ (tk−1)

2H−1(tk − u)2H−3 ·
t2

n2
. (3.9)

12



We use (3.9) to estimate the sum in,1 from below:

in,1 ≥ n2H−3t2
n
∑

k=n s

t
+2

∫ tk−2

0

(tk−1)
2H−1 (tk − u)2H−3 d[M ]u

= n2H−3t2
n s

t
∑

i=1

∫ ti

ti−1

(
n
∑

k=n s

t
+2

(tk−1)
2H−1(tk − u)2H−3)d[M ]u

+ n2H−3t2
n−2
∑

i=n s

t
+1

∫ ti

ti−1

(
n
∑

k=i+2

(tk−1)
2H−1(tk − u)2H−3)d[M ]u

≥ n2H−3t2
n−2
∑

i=n s

t
+1

∫ ti

ti−1

(
n
∑

k=i+2

(tk−1)
2H−1(tk − u)2H−3)d[M ]u

Next we estimate the last sum from below:

1

n

n
∑

k=i+2

(

t
k − 1

n

)2H−1(

t
k

n
− u

)2H−3

≥
1

t

∫ t−u

t i+2

n
−u

x2H−3(x + u −
1

n
)2H−1dx

≥
1

t

(

t
i + 1

n

)2H−1 ∫ t−u

t i+2

n
−u

x2H−3dx

≥ t2H−2

(

i + 1

n

)2H−1
(

t i+2
n

− u
)2H−2

− (t − u)2H−2

2 − 2H
.

With this estimate we continue and obtain

in,1 ≥
t2Hn2H−2

2 − 2H
·

·
n−2
∑

i=n s

t
+1

(

i + 1

n

)2H−1 ∫ t i

n

t i−1

n

[

(

t
i + 2

n
− u

)2H−2

− (t − u)2H−2

]

d[M ]u.

Consider the function h(u) :=
(

t i+2
n

− u
)2H−2

− (t− u)2H−2 and estimate
it from below using the fact that u ∈ (t i−1

n
, t i

n
):

h(u) ≥

(

t
i + 2

n
− t

i − 1

n

)2H−2

−

(

t − t
i

n

)2H−2

≥

(

3t

n

)2H−2

−

(

4t

n

)2H−2

=
32H−2 − 42H−2

n2H−2
t2H−2.

So,

in,1 ≥ (32H−2 − 42H−2)
t2Hn2H−2

2 − 2H

n−2
∑

i=n s

t
+1

∫ t i

n

t i−1

n

(

i + 1

n

)2H−1

t2H−2d[M ]u

≥ C1t
2H−1

n−2
∑

i=n s

t
+1

∫ t i

n

t i−1

n

(u +
2t

n
)2H−1d[M ]u,

13



and this gives the lower bound in (3.5). The proof of Lemma 3.1 is now
finished.

Second upper bound

We estimate now the term
∫ tk−1

tk−2

f t
k(s)d[M ]s.

Lemma 3.2. There exists a constant C3 > 0 such that

n2H−1

n
∑

k=n s

t
+2

∫ tk−1

tk−2

(f t
k(u))2d[M ]u ≤ C3t

4H−2([M ]t − [M ]s). (3.10)

Proof. We have the following upper estimate for the function f t
k:

f t
k(u) ≤ t

H− 1

2

k

∫ tk

tk−1

(v − u)H− 3

2 dv

=
1

H − 1
2

t
H− 1

2

k

(

(tk − u)H− 1

2 − (tk−1 − u)H− 1

2

)

≤
1

H − 1
2

tH− 1

2

(

t

n

)H− 1

2

.

This gives the claim (3.10).

The third estimation

Now we shall deal with terms of the form
∫ tk

tk−1

(gt
k(s))

2d[M ]s.

Lemma 3.3. There exists a constant C4 such that

n2H−1

n
∑

k=n s

t
+1

∫ tk

tk−1

(gt
k(u))2d[M ]u ≤ C4t

4H−2 ([M ]t − [M ]s) . (3.11)

Proof. We have that

gt
k(z) =

∫ t k

n

z

vH− 1

2 (v − z)H− 3

2 dv ≤ (t
k

n
)H− 1

2

(t k
n
− z)H− 1

2

H − 1
2

≤ C(t
k

n
)H− 1

2 (
t

n
)H− 1

2 ≤ Ct2H−1(
1

n
)H− 1

2 .

This gives the claim (3.11).
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3.2 The proof for the asymptotic expansion

Recall that from (3.3) we have

Xtk − Xtk−1

=
1

B1

(

∫ tk−2

0

f t
k(s)dMs +

∫ tk−1

tk−2

f t
k(s)dMs +

∫ tk

tk−1

gt
k(s)dMs

)

=: In,1
k + In,2

k + In,3
k .

Hence

(

Xtk − Xtk−1

)2
=
(

In,1
k + In,2

k + In,3
k

)2
.

Consider first the terms of the form (In,j
k )2, j = 1, 2, 3. From the Itô

formula we have that (we will drop the constant B1 in what follows)

(In,1
k )2 =

∫ tk−2

0

(f t
k(v))2d[M ]v + 2

∫ tk−2

0

f t
k(u)

(∫ u

0

f t
k(v)dMv

)

dMu.

We shall show that

n2H−1

n
∑

k=n s

t
+2

∫ tk−2

0

f t
k(u)

(∫ u

0

f t
k(v)dMv

)

dMu
P
→ 0, (3.12)

as n → ∞. Note first that

n2H−1

n
∑

k=n s

t
+2

f t
k(u)f t

k(v) ≤ Cn2H−1

n
∑

k=n s

t
+2

f t
k(u)

1

n
(s − v)H− 3

2

≤ Cn2H−2(s − v)H− 3

2

∫ t

s

xH− 1

2 (x − u)H− 3

2 dx → 0 (3.13)

for all v < u < s. Fix u < s and write wn(v) := n2H−1
∑n

k=n s

t
+2 f t

k(u)f t
k(v).

Then (3.13) gives that supv≤u wn(v) → 0. We can now use [6, Theorem
II.11, p.58], which says that if a predictable sequence of processes converges
uniformly in probability to zero, then

sup
u<s

|

∫ u

0

wn(v)dMv|
P
→ 0.

for all s ≤ t. Now we can apply the same theorem again and we get (3.12).
Consider next the sums

n2H−1

n
∑

k=n s

t
+2

∫ tk−1

tk−2

f t
k(u)

∫ u

tk−2

f t
k(v)dMvdMu

and

n2H−1

n
∑

k=n s

t
+1

∫ tk

tk−1

gt
k(u)

∫ u

tk−1

gt
k(v)dMvdMu.
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It is quite straightforward to check that the assumptions of the Lemma 2.4
are satisfied with martingales

Nn,k
v := nH− 1

2

∫ tk−1∧v

tk−2∧v

f t
k(u)dMu

and

Ñn,k
v := nH− 1

2

∫ tk∧v

tk−1∧v

gt
k(u)dMu.

Hence both sums are of the order oP (1).
Similarly, one can show that the cross product sums with i 6= j satisfy

n2H−1
∑

k In,i
t In,j

t = oP (1). Indeed, define the martingales Mn,k by

Mn,k
v := nH− 1

2

∫ tk−2∧v

0

f t
k(u)dMu.

Note also that integration by parts gives

sup
s≤t

|Mn,k
s | ≤ 2Lt2H−2n

1

2
−HnH− 1

2 ≤ 2Lt2H−2.

One can now use Lemma 2.5 to check that n2H−1
∑

k(I
n,1
k In,2

k ) =
∑

k Mn,k
t Nn,k

t

and n2H−1
∑

k(I
n,1
k In,3

k ) =
∑

k Mn,k
t Ñn,k

k are of the order oP (1) Finally, for the

sum n2H−1
∑

k(I
n,2
k In,3

k ) =
∑

k Nn,k
t Ñn,k

t one can check again by integration
by parts that sups≤t |N

n,k
s | ≤ 4Lt2H−1 and this sum is also of the order oP (1)

by Lemma 2.5.
All this shows that we have the asymptotic expansion 2.7, and from the

estimates (3.5), (3.10) and (3.11) we obtain the following inequality

C1t
2H−1

∫ t

s

u2H−1d[M ]u ≤ cHt2H−1(t − s) ≤ C2t
4H−2([M ]t − [M ]s).

This in turn implies that [W ] ∼ Leb on [0, t], and the proof of Theorem 1.1
is finished with H > 1

2
.

4 The case of H < 1
2

4.1 Starting point

The proof is similar to the case of H > 1
2
. It is more convenient to work with

the martingale W =
∫ t

0
sH− 1

2 dMs. We shall indicate the main estimates in
the proof. After this one can repeat the arguments of the proof of the case
H > 1

2
to finish the proof. Put

pt
k(z) =

∫ tk

tk−1

(
z

u
)

1

2
−H(u − z)H− 3

2 du

16



for z < u; and we have the estimate

pt
k(z) ≤ (tk−1 − z)H− 3

2
t

n
. (4.1)

Note also that we have

pt
k(z) = z

1

2
−Hf t

k(z) (4.2)

with f t
k from (3.2).

Using Lemma 2.3 we can now write the increment of X as

Xtk − Xtk−1

=

(

1

2
− H

)∫ tk−2

0

pt
k(s)dWs +

(

1

2
− H

)∫ tk−1

tk−2

pt
k(s)dWs

+

∫ tk

tk−1

(

s

tk

)1/2−H

(tk − s)H−1/2 dWs

+

(

1

2
− H

)∫ tk

tk−1

s1/2−H

∫ tk

s

uH−3/2(u − s)H−1/2dudWs

=: Jn,1
k + Jn,2

k + Jn,3
k + Jn,4

k .

We prove the asymptotic expansion using these four terms.

4.2 Upper estimate for the sum
n2H−1

∑n
k=ns

t
+2

∫ tk−2

0 (pt
k(z))

2
d[W ]z

Put

jn,1 = n2H−1

n
∑

k= ns

t
+2

∫ tk−2

0

(

pt
k(z)

)2
d[W ]z.

We decompose this sum as in the case of the proof H > 1
2
:

jn,1 := n2H−1





n s

t
∑

i=1

n
∑

k=n s

t
+2

+
n−2
∑

i=n s

t
+1

n
∑

k=i+2





∫ ti

ti−1

(

pt
k(u)

)2
d[W ]u

=: j̃n,1 + j̄n,2.

We continue first with using the estimate (4.1) for j̃n,1, and then replacing

17



the sum over the index k by integral:

j̃n,1 ≤ n2H−1

n s

t
∑

i=1

∫ ti

ti−1

n
∑

k=n s

t
+2

(tk−1 − u)2H−3 t2

n2
d[W ]u

≤ n2H−1

n s

t
∑

i=1

∫ ti

ti−1

[

t

(2 − 2H)n
·

(

(

s +
t

n
− u

)2H−2

+

+

(

s +
t

n
− u

)2H−3
t2

n2

)]

d[W ]u

≤
tn2H−2

2 − 2H

∫ s

0

(

s +
t

n
− u

)2H−2

d[W ]u

+ t2n2H−3

∫ s

0

(

s +
t

n
− u

)2H−3

d[W ]u

According to the [4, Lemma 2.1] the martingale W is Hölder up to 1
2
, and

so [W ] is Hölder up to 1. Integration by parts gives the estimate
∣

∣

∣

∣

∣

∫ s

0

(

s +
t

n
− u

)2H−2

d[W ]u

∣

∣

∣

∣

∣

≤ C(ω)

(

t

n

)2H−2+α

,

for any α < 1. Hence the expression tn2H−2
∫ s

0

(

s + t
n
− u
)2H−2

d[W ]u → 0
as n → ∞ P -a.s. The same arguments apply to the integral

n2H−3

∫ s

0

(

s +
t

n
− u

)2H−3

d[W ]u

and we obtain j̃n,1 = oP (1) and we can put Qt
n := j̃n,1.

Using first the estimate (4.1) and then replacement of the sum by the
integral we have

j̄n,2 ≤
t2

n2
n2H−1

n−2
∑

i= ns

t
+1

∫ ti

ti−1

n
∑

k=i+2

(tk−1 − u)2H−3 d[W ]u

≤ n2H−1

n−2
∑

i= ns

t
+1

∫ ti

ti−1

[

t2

n

(

1

n
(ti+1 − u)2H−3 +

+
1

2 − 2H

1

t
(ti+1 − u)2H−2

)]

d[W ]u

≤ t2n2H−3

(

t

n

)2H−3 n−2
∑

i= ns

t
+1

∫ ti

ti−1

d[W ]u +

+
t

2 − 2H

(

t

n

)2H−2

n2H−2

n−2
∑

i= ns

t
+1

∫ ti

ti−1

d[W ]u

≤ t2H−1C ([W ]t − [W ]s) ,
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where we also used the estimate (ti+1 − u)α ≤ ( t
n
)α for α < 0 and u ≤ ti.

We have shown the following upper bound

jn,1 ≤ Ct2H−1([W ]t − [W ]s) + Qt
n. (4.3)

4.3 Lower estimate for the sum
n2H−1

∑n
k=ns

t
+2

∫ tk−2

0 (pt
k(z))

2
d[W ]z

Note first that by (4.2) and the definition of W we have

n2H−1

n
∑

k= ns

t
+2

∫ tk−2

0

(

pt
k(z)

)2
d[W ]z = n2H−1

n
∑

k= ns

t
+2

∫ tk−2

0

(

f t
k(z)

)2
d[M ]z.

Hence

jn,1 ≥ t2n2H−3

n
∑

k= ns

t
+2

(tk)
2H−1

∫ tk−2

0

(tk − z)2H−3 d[M ]z

= t2n2H−3





n s

t
−1
∑

i=1

n
∑

k= ns

t
+2

+
n−2
∑

i= ns

t
+1

n
∑

k=i+2





(

tk

n

)2H−1

·

·

∫ t i

n

t i−1

n

(

t
k

n
− z

)2H−3

d[M ]z

≥ t2H−1t2n2H−2

n−2
∑

i= ns

t
+1

∫ t i

n

t i−1

n

1

n

n
∑

k=i+2

(

t
k

n
− z

)2H−3

d[M ]z

≥ t2H+1n2H−2

n−2
∑

i= ns

t
+1

∫ t i

n

t i−1

n

∫ 1

i+2

n

(tx − z)2H−3 dxd[M ]z

= Ct2H+1n2H−2

n−2
∑

i= ns

t
+1

∫ t i

n

t i−1

n

1

t

(

(

t
i + 2

n
− z

)2H−2

− (t − z)2H−2

)

d[M ]z.

Put

Ot
n := n2H−2t2H

n−2
∑

i= ns

t
+1

∫ t i

n

t i−1

n

(t − z)2H−2d[M ]z

= n2H−2t2H

∫ t−2/n

s

(t − z)2H−2d[M ]z.

One can show using integration by parts that Ot
n → 0 P -a.s. as n → ∞.

Next, we estimate the sum

ĵn,1 := n2H−2t2H+1

n−2
∑

i= ns

t
+1

∫ t i

n

t i−1

n

1

t

(

t
i + 2

n
− z

)2H−2

d[M ]z
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from below using the inequality
(

t i+2
n

− z
)2H−2

≥
(

3t
n

)2H−2
, valid for z ∈

(ti−1, ti):

ĵn,1 ≥ t2H−3+1+2H32H−2n2H−2n2−2H([M ]t−t 2

n

− [M ]s).

Combine this with the upper estimate from (4.3) and we have

Ct4H−2([M ]t−t 2

n

− [M ]s) − Ot
n ≤ jn,1 ≤ Ct2H−1([W ]t − [W ]s) + Qt

n. (4.4)

4.4 Auxiliary estimates

We know that [W ] is Hölder up to 1. In order to obtain further upper
estimates we must prove that [W ] is Hölder continuous with index = 1.

Recall that we have

n2H−1

n
∑

k=n s

t
+1

(Xtk − Xtk−1
)2 → cHt2H−1(t − s).

On the other hand we know that

n2H−1

n
∑

k=n s

t
+1

(Xtk − Xtk−1
)2

= n2H−1
∑

k

(

Jn,1
k

)2
+ n2H−1

∑

k

(

Jn,2
k + Jn,3

k + Jn,4
k

)2

+n2H−1
∑

k

Jn,1
k

(

Jn,2
k + Jn,3

k + Jn,4
k

)

(4.5)

≥ jn,1 + n2H−1
∑

k

∫ tk−2

0

pt
k(u)

(∫ u

0

pt
k(s)dWs

)

dWu − Ot
n

+ n2H−1
∑

k

Jn,1
k

(

Jn,2
k + Jn,3

k + Jn,4
k

)

.

We will show that as n → ∞ we have

n2H−1
∑

k

∫ tk−2

0

pt
k(u)

(∫ u

0

pt
k(s)dWs

)

dWu
P
→ 0 (4.6)

and
n2H−1

∑

k

Jn,1
k

(

Jn,2
k + Jn,3

k + Jn,4
k

) P
→ 0. (4.7)

Let n → ∞ and use (4.6), (4.7) in (4.5) to obtain
∫ t

s

u1−2Hd[W ]u ≤ CHt1−2H(t − s). (4.8)

Integration by parts gives that
∫ t

s

u1−2Hd[W ]u

= t1−2H ([W ]t − [W ]s) + (1 − 2H)

∫ t

s

u−2H ([W ]s − [W ]u) du.
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Use the Hölder continuity of [W ] to obtain the following estimate [W ]u −
[W ]s ≤ K(u − s)2H we can continue the estimation (4.8) and obtain

t1−2H ([W ]t − [W ]s) ≤ CHt1−2H(t − s) + K

∫ t

s

u−2H(u − s)2Hdu

≤ (CHt1−2H + K)(t − s).

Hence [W ] is Hölder continuous with index = 1.
First we prove (4.6). Note that we can show that for arbitrary r ∈ IN

n2H−1

nr
∑

k=3

∫ tk−2

0

pt
k(z)

(∫ z

0

pt
k(u)dWu

)

dWz
P
→ 0

as n → ∞, since
∑n

k=n s

t
+2 =

∑n
k=3 −

∑n s

t
+1

k=3 .

We have
nr
∑

k=3

∫ tk−2

0

pt
k(z)

(∫ z

0

pt
k(u)dWu

)

dWz

=
nr
∑

k=3

k−2
∑

i=1

∫ ti

ti−1

pt
k(z)

(∫ z

0

pt
k(u)dWu

)

dWz

=
nr−2
∑

i=1

nr
∑

k=i+3

∫ ti

ti−1

pt
k(z)

(∫ z

0

pt
k(u)dWu

)

dWz.

To prove (4.6) it is now sufficient to show that

n2H−1

nr
∑

k=i+3

pt
k(u)pt

k(z) → 0

for all fixed 0 < u < z, since then we can use again [6, Theorem II.1,p.58]
and argue as in the proof for the case H > 1

2
. We have

n2H−1

nr
∑

k=i+3

pt
k(u)pt

k(z)

≤ n2H−1

nr
∑

k=i+3

∫ tk

tk−1

(v − u)H−3/2dv

∫ tk

tk−1

(v − z)H−3/2dv

≤ n2H−1

nr
∑

k=i+3

(tk−1 − u)H−3/2 1

n

∫ tk

tk−1

(v − z)H−3/2dv

≤ n2H−2 (ti+2 − u)H−3/2

∫ tr

ti+2

(v − z)H−3/2dv

≤ Cn2H−2 · (z − u)H−3/2 (ti+2 − z)H−1/2

≤ Cn2H−2(z − u)H−3/2

(

t

n

)H−1/2

= CnH−3/2(z − u)H−3/2 → 0, n → ∞
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For the proof of (4.7) note that n2H−1
∑n

k=n s

t
+1(J

n,1
k )2 is tight by (4.3)

and (4.6). For k 6= l we also have

E
(

Jn,1
k Jn,2

k Jn,1
l Jn,2

l

)

= 0;

hence for

n2H−1

n
∑

k=n s

t
+1

Jn,1
k Jn,2

k

P
→ 0 (4.9)

it is sufficient to show that

n4H−2

n
∑

k=n s

t
+1

(

Jn,1Jn,2
k

)2 P
→ 0 (4.10)

as n → ∞.
We have that Jn,2

k =
∫ tk−1

tk−2
pt

k(s)dWs. Note first that

pt
k(s) ≤

(

1

2
− H

)

(tk−1 − s)H− 1

2 (4.11)

and that W is Hölder up to 1
2
. Take 0 < A < 1 and integration by parts

gives

∫ Atk−1

tk−2

pt
k(u)dWu

= pt
k(Atk−1)WAtk−1

− pt
k(tk−2)Wtk−2

−

∫ Atk−1

tk−2

Wudpt
k(u)

= pt
k(Atk−1)

(

WAtk−1
− Wtk−1

)

+ pt
k(tk−2)

(

Wtk−1
− Wtk−2

)

−

∫ Atk−1

tk−2

(

Wtk−1
− Wu

)

dpt
k(u).

Now by (4.11) and Hölder continuity of W we have that for any α < 1

|pt
k(Atk−1)

(

WAtk−1
− Wtk−1

)

| ≤ K ((1 − A) tk−1)
H− 1

2
+α

2 ,

and the same argument gives

|pt
k(tk−2)

(

Wtk−1
− Wtk−2

)

| ≤ K

(

t

n

)H− 1

2
+α

2

.

Finally one can use integration by parts to check that
∣

∣

∣

∣

∣

∫ Atk−1

tk−2

(

Wtk−1
− Wu

)

dpt
k(u)

∣

∣

∣

∣

∣

≤ K

(

((1 − A) tk−1)
H− 1

2
+α

2 +

(

t

n

)H− 1

2
+α

2

)

.
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Finally, let A → 1 and we have

n2H−1 max
k

(Jn,2
k )2 ≤ Cn2H−1

(

t

n

)2H−1+α

;

this proves (4.10) and also (4.9). We can repeat the arguments to conclude
that

n2H−1

n
∑

k=n s

t
+1

Jn,1
k Jn,3

k

P
→ 0 (4.12)

as n → 0. The last sum in (4.7) can be treated analogously, since
∫ tk

s
uH− 3

2 (u−

s)H− 1

2 ≤ cHsH− 3

2 (tk − s)H+ 1

2 , and this gives the estimate

|Jn,4
k | =

∣

∣

∣

∣

∣

∫ tk

tk−1

s1/2−H

∫ tk

s

uH−3/2(u − s)H−1/2du dWs

∣

∣

∣

∣

∣

≤ CtH− 1

2
+γn−H+ 1

2
−γ

with 0 < γ < 1
2
.

We finally obtain, letting n → ∞ in (4.5), that

Ct4H−2([M ]t − [M ]s) ≤ t2H−1(t − s);

this means that the bracket [M ] is absolutely continuous with respect to
Lebesgue measure, and since [M ]t =

∫ t

0
s1−2Hd[W ]s the same holds true for

the bracket [W ] and we have

[W ]t − [W ]s ≤ K(t − s) (4.13)

with some constant K = K(t, ω,H).

4.5 Other estimates

Next we estimate the sums

jn,2 := n2H−1

n
∑

k=n s

t
+1

∫ tk−1

tk−2

(

pt
k (u)

)2
d[W ]u

and

jn,3 := n2H−1

n
∑

k=n s

t
+1

∫ tk

tk−1

(

(

s

tk

) 1

2
−H

(tk − s)H− 1

2

)2

d[W ]s (4.14)

from above.
The estimate (4.11) gives

jn,2 ≤ CHn2H−1

n
∑

k=n s

t
+1

∫ tk−1

tk−2

(tk−1 − s)2H−1d[W ]s. (4.15)
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Lemma 4.1. For a fixed A ∈ (0, 1) we have the estimate

∫ tk−1

tk−2

(tk−1 − s)2H−1d[W ]s

≤

(

A
t

n

)2H−1
(

[W ]tk−1
− [W ]tk−2

)

+ C

(

A
t

n

)2H

.

(4.16)

Proof. Take A ∈ (0, 1) and use (4.16)

∫ tk−1

tk−2

(tk−1 − s)2H−1 d[W ]s

≤

∫ tk−1−A t

n

tk−2

+

∫ tk−1

tk−1−A t

n

(tk−1 − s)2H−1 d[W ]s

≤

(

A
t

n

)2H−1
(

[W ]tk−1
− [W ]tk−2

)

+ C

(

A
t

n

)2H

.

We can now estimate the sums. For the estimate in (4.15) we obtain,
using the inequality (4.16)

jn,2 ≤ C(At)2H−1 ([W ]t − [W ]s) + KA2Ht2H−1(t − s). (4.17)

Note that this estimate gives in the same way as in the case of H > 1
2

that

Qt
n := n2H−1

n
∑

k=n s

t

∫ tk−1

tk−2

pt
k(u)

∫ u

tk−2

pt
k(s)dWsdWu

satisfies Qt
n = oP (1).

It is now quite obvious that for the sum (4.14) we have similar upper
bound to (4.17):

jn,3 ≤ C(At)2H−1 ([W ]t − [W ]s) + KA2Ht2H−1(t − s). (4.18)

We can again repeat the arguments for iterated stochastic integrals and
obtain

n2H−1

n
∑

k=n s

t
+1

(Jn,3
k )2

≤ C(At)2H−1 ([W ]t − [W ]s) + KA2Ht2H−1(t − s) + St
n

with St
n = oP (1).

We shall work with

jn,4 := n2H−1

n
∑

k=n s

t
+1

∫ tk

tk−1

v1−2H

(∫ tk

v

uH− 3

2 (u − v)H− 1

2 du

)2

d[W ]v.

24



With Schwartz inequality we obtain

jn,4 ≤ n2H−1

n
∑

k=n s

t
+1

∫ tk

tk−1

v1−2H

∫ tk

v

u2H−3du

∫ tk

v

(u − v)2H−1du d[W ]v

≤ C
t

n

n
∑

k=n s

t
+1

∫ tk

tk−1

(v2H−2 − t2H−2
k )d[W ]v

≤ CK
t

n

n
∑

k=n s

t
+1

∫ tk

tk−1

(t2H−2
k−1 − t2H−2

k )dv

= CK

(

t

n

)2
(

s2H − t2H
)

.

This shows that j4
n = op(1), and hence also n2H−1

∑n
k=n s

t

(Jn,4
k )2 = oP (1);

we see this by repeating the iterated integral arguments.
In order the asymptotic expansion to hold, we need to check that

n2H−1

n
∑

k=n s

t
+1

Jn,2
k Jn,3

k = oP (1).

We leave this to the reader.
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