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1 Introduction

One of the most important elliptic variational problems studied in Euclidean
spaces is to minimize the p–energy functional. This is equivalent to solving
the p–harmonic equation. In a general metric measure space it is not clear
what the counterpart for the p–harmonic equation is. However, in such a
space, the variational approach to p–harmonic functions is available; it is
possible to define p-harmonic functions as minimizers of the Dirichlet integral.
The basic reason is that the Sobolev spaces on a metric measure space can
be defined without the notion of partial derivatives; see e.g. [8], [22]. Direct
methods in the calculus of variations are also available and one can prove
existence results for the Dirichlet problem; see e.g. [2], [23].

A class of functions closely related to p–harmonic functions are quasimin-

imizers. A function u is called a quasiminimizer if it minimizes the Dirichlet
functional up to some multiplicative constant K, that is

∫
|Du|pdx ≤ K

∫
|Dv|pdx

among all functions v which have the same boundary values. The notion
of quasiminimizers was introduced by Giaquinta and Giusti in [7] as a tool
for unified treatment of variational integrals, elliptic equations and systems,
obstacle problems and quasiregular mappings. In the setting of metric spaces,
the approach via quasiminimizers is particularly useful, as the Euler equation
for the p–Dirichlet energy integral does not need to exist.

In recent years several papers have been published considering quasimini-
mizers in the setting of doubling metric measure spaces supporting a Poincaré
inequality, see e.g. [4], [16], [17], [3]. All notions of metric measure spaces
that appear here are explained in section 2 below. (Local) Hölder continu-
ity for quasiminimizers has been proved by Kinnunen and Shanmugalingam
[17]. In [16], Kinnunen and Martio studied nonlinear potential theory for
quasiminimizers. Boundary continuity for quasiminimizers on a bounded set
Ω with fixed boundary data was examined by J. Björn [4].

In the Euclidean setting different stability questions of the p–Dirichlet
integral have been studied. Li and Martio examined a quasilinear elliptic
operator and proved in [18] a convergence result for solutions of an obstacle
problem with varying p in a bounded subset Ω of R

n. Later they proved a
similar result for a double obstacle problem, see [19]. Both cases require a
measure or a capacity thickness condition on the complement of Ω.

Lindqvist considered stability of solutions to div(|∇u|p−2∇u) = f , i.e.
minimizers to the corresponding variational problem with varying p. The
problem is solved for a bounded subset of R

n in [20]. In [21] Lindqvist
studies stability with respect to p of the p–harmonic eigenvalue problem.
Here a question on regularity of the set Ω raises.

Assume (X,µ, d) to be a complete, locally linearly convex, doubling met-
ric measure space that supports a weak (1, p)–Poincaré inequality for some
p > 1. Our main result is the following:
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Theorem 1.1. Let Ω be an open and bounded subset of X such that X \Ω is

of positive p–capacity and uniformly p–fat. Let w ∈ N 1,s(Ω) for some s > p.
Assume p = limi→∞ pi and let (ui)

∞
i=1 be a sequence of K–quasiminimizers of

the pi–energy in Ω with boundary data w. If

ui → u µ–a.e. in Ω

then u is a K–quasiminimizer of the p–energy integral in Ω with boundary

data w.

Note that since quasiminimizers do not provide unique solutions to the
Dirichlet problem, in general, even if p does not vary, they may not converge.
In was shown by Kinnunen and Martio that the class of (local) quasimini-
mizers, for p fixed, is closed under monotone convergence, provided that the
limit function is bounded.

Stability requires usually some sort of higher integrability result such as
the Gehring lemma. In the setting of Theorem 1.1 we prove the global higher
integrability of upper gradients of quasiminimizers.

Theorem 1.2. Let Ω be an open and bounded subset of X such that X \Ω is

of positive p–capacity and uniformly p–fat. Let w ∈ N 1,s(Ω) for some s > p.
If u ∈ N 1,p(Ω) is a quasiminimizer of the p–energy integral in Ω with

boundary data w, then there exists 0 < δ0 = δ0(p) ≤ s − p such that gu ∈
Lp+δ(Ω) for all 0 < δ < δ0 and

(∫

Ω

gp+δ
u dµ

)1/(p+δ)

≤ c

[(∫

Ω

gp
u dµ

)1/p

+

(∫

Ω

gp+δ
w dµ

)1/(p+δ)
]
,

where c depends only on p and on the constants related to the space and to

the domain Ω.

One standard, yet non–trivial, assumption in the metric setting is that the
space satisfies a weak (1, q)–Poincaré inequality for some q < p, where p is the
natural exponent associated with the studied problem. However, as shown
by Keith and Zhong [12] the Poincaré inequality is a self improving property.
In quite general spaces a weak (1, p)–Poincaré implies a weak (1, q)–Poincaré
for some q < p. The same holds also for a p–fatness condition, that is a
capacity thickness property of a set. We refer the reader to sections 2.1.2
and 2.1.7 respectively.

The paper is organized as follows: in section 2 we fix the general setup
and we present basic facts about analytic tools used in metric setting. Most
of the results are stated without proofs, in some cases we add the proof for
the reader’s convenience. Since there does not exist one sufficient reference,
we decided to collect all needed definitions in subsection 2.1. For more details
we refer to [2], [4], [5], [8], [9], [11], [13], [16], [17], [22] and [23]. The reader
familiar with metric measure spaces may omit this part. Section 3 contains
the proof of Theorem 1.2 and section 4 the proof of the stability result.
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2 Preliminaries

Our notation is standard. We assume that a ball comes always with a centre
and a radius, i.e. B = B(x, r) = {y ∈ X : d(x, y) < r} with 0 < r < ∞. We
denote

uB =

∫

B

udµ =
1

µ(B)

∫

B

udµ,

and when there is no possibility for confusion, we denote with λB a ball with
the same center as B but λ times its radius.

Throughout the paper we assume (X,µ, d) to be a complete metric space
equipped with a Borel regular measure µ satisfying 0 < µ(B) < ∞ for all
balls B of X. We will assume that the measure is doubling, i.e. there exists
a constant cd > 0 such that for every ball B in X

µ(2B) ≤ cdµ(B).

We refer to this property calling (X, d, µ) or briefly X a doubling metric
measure space. A doubling metric measure space that is complete is always
proper, that is its closed and bounded subsets are compact. In addition we
will assume that X is a locally linearly convex space (LLC).

If not otherwise mentioned, all constants depend only on the constants
of the space X, i.e. the doubling constant and the constant of the Poincaré
inequality. We allow dependence on the domain Ω and on its characteristical
constants that are clear in each context. Constants may also depend on the
quasiminimality constant K.

2.1 Basic definitions

2.1.1 Upper gradients

Let u be a real valued function on X. A non–negative Borel measurable
function g on X is said to be an upper gradient of u if for all rectifiable paths
γ joining points x and y in X we have

|u(x) − u(y)| ≤

∫

γ

gds. (2.1)

If the above property fails only for a set of paths that is of zero p–modulus
(see e.g. [11, Section 2.3] for the definition of the p–modulus of a family of
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paths), then g is said to be a p–weak upper gradient of u. We recall that if
1 < p < ∞, every function u that has a p–integrable p–weak upper gradient
has a minimal p–integrable p–weak upper gradient denoted gu.

It is important to notice that for every c ∈ R the minimal p–weak upper
gradient satisfies gu = 0 µ–almost everywhere on the set {x ∈ X : u(x) = c}.

2.1.2 Poincaré inequality

We say that the space supports a weak (1, q)–Poincaré inequality if there
exist c > 0 and τ ≥ 1 such that

∫

B

|u − uB| dµ ≤ cr

(∫

τB

gq dµ

)1/q

for all balls B(x, r) in X and all pairs {u, g} where u is a locally integrable
function on X and g is a q–weak upper gradient of u. A result of [9] shows
that in a doubling measure space a weak (1, q)–Poincaré inequality implies
a weak (t, q)–Poincaré inequality for some t > q and possibly a new τ i.e.
there exist c′ > 0 and τ ′ ≥ 1 such that

(∫

B

|u − uB|
t dµ

)1/t

≤ c′r

(∫

τ ′B

gq dµ

)1/q

, (2.2)

where {
1 ≤ t ≤ Qq/(Q − q) if q < Q,

1 ≤ t if q ≥ Q,

for all balls B in X, and Q = log2 cd.

Let 1 < p < ∞. We assume that X supports a weak (1, p)–Poincaré
inequality. In a complete doubling metric measure space supporting a weak
(1, p)–Poincaré inequality, there exists 1 < q < p such that the space admits
a weak (1, q)–Poincaré inequality by a result in [12]. Increasing q if necessary
we may additionally assume that p ∈ (q, q∗), where q∗ = qQ/(Q − q) < ∞.

2.1.3 Newtonian Spaces

Let 1 ≤ p < ∞. We define the space Ñ1,p(X) to be the collection of all p–
integrable functions u on X that have a p–integrable p–weak upper gradient
g on X. This space is equipped with the seminorm

||u|| eN1,p(X) = ||u||Lp(X) + inf ||g||Lp(X),

where the infimum is taken over all p–weak upper gradients of u. We define
the equivalence relation in Ñ1,p(X) by saying that u ∼ v if

||u − v||Ñ1,p(X) = 0.

The Newtonian space N 1,p(X) is then defined to be the space Ñ1,p(X)/ ∼
with the norm

||u||N1,p(X) = ||u|| eN1,p(X).
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2.1.4 Capacity

The p–capacity of a set E ⊂ X is defined by

Cp(E) = inf
u
‖u‖p

N1,p(X),

where the infimum is taken over all u ∈ N 1,p(X) such that u ≥ 1 on E. We
say that a property holds p–quasieverywhere (p–q.e.) if the set of points for
which the property fails it is of zero p–capacity.

Let Ω be a bounded subset of X and let E ⊂⊂ Ω, i.e. E is compactly
contained in Ω. We define the relative p–capacity of E with respect to Ω by

capp(E, Ω) = inf
u

∫

Ω

gp
u dµ,

where the infimum is taken over all u ∈ N 1,p(Ω) such that u ≥ 1 on E and
u = 0 on X \ Ω p–quasieverywhere. Lemma 2.2 in section 2.2 shows that in
a doubling metric measure space admitting a weak Poincaré inequality, the
measure and the capacities are comparable.

2.1.5 Newtonian spaces with zero boundary values

Let Ω be an arbitrary subset of X. We define N 1,p
0 (Ω) to be the set of

functions u ∈ N 1,p(Ω) that are zero on X \ Ω p–quasieverywhere. The space
N1,p

0 (Ω) is equipped with the norm

||u||N1,p

0
(Ω) = ||u||N1,p(Ω).

There are several approaches to define Newtonian spaces with zero boundary
values. In general these approaches imply different spaces but it can be shown
that for a wide class of metric spaces the definitions agree. Let us present
two other definitions based on Lipschitz functions.

Define Lip1,p
0 (Ω) to be the collection of all Lipschitz functions in N 1,p(X)

that vanish on X \ Ω and let Lip1,p
C,0(Ω) be the collection of functions in

Lip1,p
0 (Ω) that have compact support in Ω. Let H1,p

0 (Ω) be the closure of
Lip1,p

0 (Ω) in the norm of N 1,p(X) and H1,p
C,0(Ω) be the closure of Lip1,p

C,0(Ω)
in the norm of N 1,p(X). If X is proper, doubling metric measure space
supporting a (1, p)–Poincaré inequality and Ω an open subset of X, then

H1,p
C,0(Ω) = H1,p

0 (Ω) = N 1,p
0 (Ω).

The subject is discussed and the equality is proved in [23].

2.1.6 Quasiminimizers

Let Ω be an open subset of X. Let w ∈ N 1,p(Ω). We say that u ∈ N 1,p(Ω)
is a quasiminimizer of the p–energy integral in Ω with boundary data w, if
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u − w ∈ N 1,p
0 (Ω) and there exists a constant K > 0 such that for all open

Ω′ ⊂⊂ Ω and all φ ∈ N 1,p
0 (Ω′) we have

∫

Ω′

gp
u dµ ≤ K

∫

Ω′

gp
u+φ dµ . (2.3)

Quasiminimizers can be defined in several different ways. For example
the integral can be taken just over Ω′ instead of its closure. Also requiring
that Ω′ is compactly contained in Ω is not necessary. As for test functions,
it is possible to use compactly supported Lipschitz functions or φ ∈ N 1,p(Ω)
such that supp φ ⊂⊂ Ω instead of N 1,p

0 (Ω)–functions. Also, in these cases the
integral in (2.3) can be taken over the support of φ or the set {φ 6= 0}. All
these definitions are equivalent. For further discussion and the equivalence
proof see [1].

2.1.7 LLC property and p–fatness

The local linear convexity i.e. LCC–property of X means that there exist
constants C > 0 and r0 > 0 such that for all balls B in X with radius at
most r0, every pair of points in the annulus 2B \ B can be connected by a
curve lying in the annulus 2CB \ C−1B.

We say that the set E ⊂ X is uniformly p–fat if there exist constants
cf > 0 and r0 > 0 such that for all x ∈ E and 0 < r < r0

capp(E ∩ B(x, r); B(x, 2r)) ≥ cf capp(B(x, r); B(x, 2r)).

If X is a proper, LLC, doubling metric measure space supporting a (1, q)–
Poincaré inequality for some 1 < q < p and Ω is an open and bounded subset
of X such that capp(X \Ω) > 0 and X \Ω is uniformly p–fat, then Theorem
1.2 in [5] says that X \ Ω is also uniformly p0–fat for some p0 < p.

2.2 Preliminary results

Here we collect some basic facts concerning properties of capacity, Newtonian
spaces and Sobolev–Poincaré type inequalities in the metric setting.

We start with an upper gradient lemma. Its proof follows the same way
as the proof of Lemma 2.4. in [16].

Lemma 2.1. Suppose that u, v ∈ N 1,p(X) and that η is a Lipschitz contin-

uous function in X with 0 ≤ η ≤ 1. Let gu, gv and gη be the p–weak upper

gradients of u, v and η, respectively. Define w = u + η(v − u). Then

gw ≤ (1 − η)gu + ηgv + |v − u|gη

µ–almost everywhere in X.

The next lemma provides an estimate for the capacity of a ball and shows
that capacities capp and Cp are essentially equivalent. For the proof see [4].
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Lemma 2.2. Let X be a doubling metric measure space admitting a weak

(1, q)–Poincaré inequality and let E ⊂ B = B(x0, r) with 0 < r < diam X/6.
There exists c > 0 such that

µ(E)

crq
≤ capq(E, 2B) ≤

cµ(B)

rq
(2.4)

and
Cq(E)

c(1 + rq)
≤ capq(E, 2B) ≤ 2q−1

(
1 +

1

rq

)
Cq(E).

The following proposition is a capacity version of the Sobolev–Poincaré
inequality. The proof is a straightforward generalization of the Euclidean
case, nevertheless we present it here for the reader’s convenience. One can
also see [4] for a proof of the appropriate Poincaré inequality.

Proposition 2.3. Let X be a doubling metric measure space admitting a

weak (1, q)–Poincaré inequality and u ∈ N 1,q(X) be q–quasicontinuous. Then

there exists c > 0 such that for all balls B in X and S = {x ∈ 1
2
B : u(x) = 0}

the inequality
(∫

B

|u|t dµ

)1/t

≤

(
c

capq(S,B)

∫

τ ′B

gq dµ

)1/q

(2.5)

holds for t and τ ′ are as in (2.2).

Proof. If uB = 0 then the assertion follows from the (t, q)–Poincaré inequality
(2.2) and (2.4). We may thus assume that uB = 1. Take a Lipschitz cut–off
function η such that 0 ≤ η ≤ 1, η ≡ 1 on 1

2
B, supp η ⊂ B and gη ≤ c

r
. Then

φ = −η(u − uB) ∈ N 1,p
0 (B) and φ = 1 on S. Therefore

capq(S,B) ≤

∫

B

gq
φ dµ .

Since gφ ≤ |u − uB|gη + ηgu, we have

capq(S,B) ≤
c

rq

∫

B

|u − uB|
q dµ +c

∫

B

gq
u dµ .

The space X admits the (q, q)–Poincaré inequality, so we obtain

capq(S,B) ≤ c

∫

τ ′B

gq
u dµ,

and therefore

1 = uB ≤

(
c

capq(S,B)

∫

τ ′B

gq
u dµ

)1/q

.

We can now estimate
(∫

B

|u|t dµ

)1/t

≤ c

(∫

B

|u − uB|
t dµ

)1/t

+ cuB

≤

(
c

capq(S,B)

∫

τ ′B

gq
u dµ

)1/q

,

by the (t, q)–Poincaré inequality and (2.4).
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The next lemma is a Sobolev type inequality for Newtonian functions
with zero boundary values. For a proof see [4] or [17].

Lemma 2.4. Let 1 < p < ∞ and X be a doubling metric measure space

supporting a weak (1, q)–Poincaré inequality for some 1 < q < p. Moreover,

let u ∈ N 1,p
0 (B) and the radius r of B at most diam X/3. Then

(∫

B

|u|tdµ

)1/t

≤ cr

(∫

B

gq
udµ

)1/q

,

where t and τ ′ are as in (2.2).

Next we present some useful results concerning Newtonian spaces with
zero boundary values. Proposition 2.5 provides a characterisation for N 1,p

0 –
functions by means of the Hardy inequality. Lemma 2.6 gives a sufficient
condition for a sequence of N 1,p

0 –functions to converge to a N 1,p
0 –function.

Finally, Lemma 2.7 shows that N 1,p
0 can be presented as an intersection of

N1,p and of zero Newtonian spaces with a lower exponent. For a proof of the
following proposition, see [5].

Proposition 2.5. Let X be a proper, doubling, LLC metric measure space

supporting a weak (1, q)–Poincaré inequality for some 1 < q < p and suppose

that Ω is a bounded domain in X such that X \ Ω is uniformly p–fat. Then

there is a constant c(Ω, p) > 0 such that a function u ∈ N 1,p(X) is in N 1,p
0 (Ω)

if and only if

∫

Ω

(
|u(x)|

dist(x,X \ Ω)

)p

dµ ≤ c

∫

Ω

gu(x)p dµ . (2.6)

Remark that the constant c in the above proposition formally depends on
p. However, if p varies inside a bounded interval, the arguments in the proof of
Proposition 2.5 show that the appropriate constants are uniformly bounded.
For this reason, since in our case all exponents vary inside a bounded interval
(q, q∗) we omit the dependence of the constant on p.

Lemma 2.6. In the setting of Proposition 2.5, let (ui)
∞
i=1 be a bounded se-

quence in N 1,p
0 (Ω). If ui → u µ–a.e., then u ∈ N 1,p

0 (Ω).

Lemma 2.6 is formulated in [13] for (X, d, µ) doubling without further
requirements and for Ω open such that X \ Ω satisfies a measure thickness
assumption. In general a measure thickness condition is stronger than a
fatness assumption. However, the lemma follows also from Proposition 2.5
and the fact that u ∈ N 1,p(Ω) is in N 1,p

0 (Ω) if

|u(x)|

dist(x,X \ Ω)

is in Lp(Ω) for an open Ω and 1 < p < ∞. See [5] and [13].
The assertion of the next proposition is not trivial but depends on the set

Ω. Even in R
n some type of thickness assumption on the domain is needed,
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see [10]. Li and Martio show in [18] that for example p–fatness of R
n \ Ω

suffices to (2.7) to hold. The same result exists in the metric case and the
proof follows from Proposition 2.5.

Proposition 2.7. Let X be a proper, doubling, LLC metric measure space

supporting a weak (1, q)–Poincaré inequality for some 1 < q < p and suppose

that Ω is a bounded domain in X such that X \ Ω is uniformly p–fat. Then

N1,p
0 (Ω) = N 1,p(Ω) ∩

⋂

s<p

N1,s
0 (Ω). (2.7)

Proof. The inclusion ”⊃” in (2.7) in clear as Ω is bounded. It remains to
prove the case ”⊂”.

Since X \ Ω is uniformly p–fat, it is also (p − ε)–fat for all ε > 0 small
enough as discussed in section 2.1.7. Consequently,

∫

Ω

(
|u|

dist(z,X \ Ω)

)p−ε

dµ ≤ c

∫

Ω

gp−ε
u dµ (2.8)

for all ε > 0 small enough, by Proposition 2.5. We show now that (2.6) holds
also for p. Indeed,

∫

Ω

(
|u|

dist(z,X \ Ω)

)p

dµ = lim
ε→0

∫

Ω

(
|u|

dist(z,X \ Ω)

)p−ε

dµ

≤ lim
ε→0

c

∫

Ω

gp−ε
u dµ = c

∫

Ω

gp
u dµ,

and the assertion follows by Proposition 2.5.

3 Quasiminima – higher integrability of up-

per gradients

The local regularity of quasiminimizers (i.e. Hölder continuity) was studied
by Kinnunen and Shanmugalingam in [17]. In particular they proved the
following Caccioppoli type inequality.

Theorem 3.1 (Caccioppoli inequality). Let Ω be an open subset of X.

If u ∈ N 1,p(Ω) is a quasiminimizer of the p–energy integral in Ω then there

exists c > 0 such that for all x ∈ Ω and 0 < r < R so that B(x,R) ⊂ Ω
∫

B(x,r)

gp
u dµ ≤

c

(R − r)p

∫

B(x,R)

|u − uB(x,R)|
p dµ . (3.9)

We prove the global higher intergrability of upper gradients of quasimin-
imizers. The proof follows similar way as the Euclidean proof of Kilpeläinen
and Koskela in [14] for solutions of p–harmonic type equations. The growth
of integrability is achieved in a standard way by application of the Gehring
lemma (its proof in the metric setting may be found for example in [24]).
Remark, that the lemma holds in all doubling metric measure spaces.
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Theorem 3.2 (Gehring lemma). Let s ∈ [s0, s1], where s0, s1 > 1 are

fixed. Let g ∈ Ls
loc(X) and f ∈ Ls1

loc(X) be non–negative functions. Assume

that there exists constant b > 1 such that for every ball B ⊂ σB ⊂ X the

following inequality
∫

B

gs dµ ≤ b

[(∫

σB

g dµ

)s

+

∫

σB

f s dµ

]

holds for some σ > 1. Then there exists ε0 = ε0(s0, s1, cd, σ, b) > 0 such that

g ∈ Ls̃
loc(X,µ) for s̃ ∈ [s, s + ε0) and moreover

(∫

B

gs̃ dµ

)1/s̃

≤ c

[(∫

σB

gs dµ

)1/s

+

(∫

σB

f s̃ dµ

)1/s̃
]

for c = c(s0, s1, cd, σ, b).

Proof of Theorem 1.2. Recall that X is a locally linearly convex space that
supports a weak (1, q)–Poincaré inequality for some 1 < q < p. Since p ∈
(q, q∗), the space supports also a weak (p, q)–Poincaré inequality (see 2.1.2).
Remember also that X \ Ω is uniformly p–fat.

As mentioned in section 2.1.7, if X \ Ω is uniformly p–fat, then X \ Ω is
also uniformly p0–fat for some p0 < p. If p0 < q, we can increase it in order
to have q = p0 and to be able to use the (p, p0)–Poincaré inequality. If p0 ≥ q
then the (p, p0)–Poincaré inequality follows from the Hölder inequality.

Choose a ball B0 in X such that Ω ⊂⊂ B0 ⊂ 2B0. Fix r > 0 and let
B = B(x0, r) be a ball such that 4λB ⊂ 2B0, where λ is the multiplicative
coefficient of radius in the (p, p0)–Poincaré inequality.

If 2λB ⊂ Ω then by the Caccioppoli estimate (3.9), doubling condition
and (p, p0)–Poincaré inequality we have

(∫

B

gp
u dµ

)1/p

≤
c

r

(∫

2B

|u − u2B|
p dµ

)1/p

≤ c

(∫

2λB

gp0

u dµ

)1/p0

.

(3.10)

Assume thus that 2λB \ Ω 6= ∅. Choose a Lipschitz cut–off function η such
that 0 ≤ η ≤ 1, η ≡ 1 on B, supp η ⊂ 2B and gη ≤ c

r
. Then η(u − w) ∈

N1,p
0 (2B ∩ Ω) and we may use it as a test function in (2.3). Hence

∫

2B∩Ω

gp
u dµ ≤ K

∫

2B∩Ω

gp
v dµ,

where v = u−η(u−w) and gv ≤ |u−w|gη + (1−η)(gu +gw) +gw. Therefore
we obtain
∫

B∩Ω

gp
u dµ ≤ c

∫

(2B\B)∩Ω

(1 − η)pgp
u dµ

+ c

∫

2B∩Ω

|u − w|pgp
η dµ +c

∫

2B∩Ω

(2 − η)pgp
w dµ .

12



Adding c
∫

B∩Ω
gp

u dµ to the both sides of the inequality and dividing by (1+c)
implies

∫

B∩Ω

gp
u dµ ≤ θ

∫

2B∩Ω

gp
u dµ +

θ

rp

∫

2B∩Ω

|u − w|p dµ +θ

∫

2B∩Ω

gp
w dµ,

where θ = c/(1 + c) < 1. Applying a standard technical iteration lemma (see
[6, lemma 3.1, ch. V]) we obtain

∫

B∩Ω

gp
u dµ ≤

c

rp

∫

2B∩Ω

|u − w|p dµ +c

∫

2B∩Ω

gp
w dµ . (3.11)

We will consider the integrals on the right–hand side on the larger ball 4B.
We estimate the first integral on the right–hand side using Proposition 2.3
with q = p0. This gives

(
c

rp

∫

4B

|u − w|p dµ

)1/p

≤
c

r

(
1

capp0
(S, 4B)

∫

4λB

gp0

u−w dµ

)1/p0

≤ c

(
µ(2B)r−p0

capp0
(S, 4B)

∫

4λB

gp0

u−w dµ

)1/p0

by the doubling condition. Here the set S = {x ∈ 2B : u(x) = w(x)}. Since
u = w p–q.e. (and thus p0–q.e.) in X \ Ω and the set X \ Ω is uniformly
p0–fat, we have

capp0
(S, 4B) ≥ capp0

(2B \ Ω; 4B) ≥ cf capp0
(2B; 4B) ≥ cµ(2B)r−p0 .

Hence,

(
c

rp

∫

4B

|u − w|p dµ

)1/p

≤ c

(∫

4λB

gp0

u−w dµ

)1/p0

= c

(
1

µ(4λB)

∫

4λB∩Ω

gp0

u−w dµ

)1/p0

,

because u − w = 0 p–q.e. and thus µ–a.e. in X \ Ω and therefore gu−w = 0
µ–a.e. in X \ Ω. A simple estimation gives now

(
c

rp

∫

4B

|u − w|p dµ

)1/p

≤ c

(
1

µ(4λB)

∫

4λB∩Ω

gp0

u dµ

)1/p0

+ c

(
1

µ(4λB)

∫

4λB∩Ω

gp0

w dµ

)1/p0

. (3.12)

By the Hölder inequality

(
1

µ(4λB)

∫

4λB∩Ω

gp0

w dµ

)1/p0

=

(∫

4λB

gp0

w χ4λB∩Ω dµ

)1/p0

≤

(∫

4λB

gp
wχ4λB∩Ω dµ

)1/p

=

(
1

µ(4λB)

∫

4λB∩Ω

gp
w dµ

)1/p

,

(3.13)
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so that combining (3.11), (3.13), (3.12) and using the doubling property we
obtain the inequality

(
1

µ(B)

∫

B∩Ω

gp
u dµ

)1/p

≤ b

(
1

µ(4λB)

∫

4λB∩Ω

gp0

u dµ

)1/p0

+ c

(
1

µ(4λB)

∫

4λB∩Ω

gp
w dµ

)1/p

. (3.14)

Here the constants b and c depend only on p, Ω and on the constants asso-
ciated to the structure of the space.

Set now

g(x) =

{
gp0

u if x ∈ Ω,

0 otherwise,

f(x) =

{
gp0

w if x ∈ Ω,

0 otherwise

and s = p/p0. The inequalities (3.10) and (3.14) imply that whenever 4λB ⊂
2B0, the following reverse Hölder inequality

∫

B

gs dµ ≤ b

(∫

4λB

g dµ

)s

+ c

∫

4λB

f s dµ

holds for s > 1 (p is strictly greater than p0) and with b = b(p). Applying
now the Gehring lemma we obtain better integrability of g and the inequality

(∫

B

gs̃ dµ

)1/s̃

≤ c
[(∫

4λB

gs dµ

)1/s

+

(∫

4λB

f s̃ dµ

)1/s̃]
(3.15)

for c = c(b, cd, λ) and s̃ ∈ [s, s + ε0), where ε0 = ε0(b, cd, λ). Since the
diameter of Ω is finite we may choose a finite number of balls B(xj, rj),
j = 1, 2, . . . , N , such that

B(xj, 2λrj) ⊂ B0 and Ω ⊂
N⋃

j=1

B(xj, rj)

with fixed λ. The statement now follows by multiplying (3.15) by µ(4λB)1/s̃

and summing over B(xj, rj). This may require changing the constant c a
bit, but the change will depend only on the doubling constant cd and on the
domain Ω. Remark that with λ and cd fixed, the constant c will depend
essentially only on p.

4 Proof of the stability result

By a remark in section 2.1.7 we can assume that X \ Ω is uniformly p0–fat.
Since p = limi→∞ pi we can assume also that pi ∈ (q, q∗).

14



Functions ui are supposed to be not equal to the boundary data w, i.e. we
assume that there is a set of positive measure where ui 6= w µ–a.e., otherwise
the result is trivial.

We start with a lemma concerning uniform higher integrability of ui and
u.

Lemma 4.1. Let ui and u be as in Theorem 1.1. Then there exists ε0 > 0
such that

ui, u ∈ Lp+ε0(Ω)

gui
, gu ∈ Lp+ε0(Ω)

and there is a subsequence such that

gui
⇀ gu weakly in Lp+ε0(Ω).

Proof. By Theorem 1.2 for every pi there exists δi = δi(pi) such that the
minimal pi–weak upper gradient gui

belongs to the space Lpi+δi(Ω) and

(∫

Ω

gpi+δi

ui
dµ

)1/(pi+δi)

≤ ci

(∫

Ω

gpi

ui
dµ

)1/pi

+ ci

(∫

Ω

gpi+δi

w dµ

)1/(pi+δi)

. (4.16)

Since ui is a quasiminimizer of the pi–energy functional in Ω with bound-
ary data w and thus ui − w ∈ N 1,pi

0 (Ω), we have

∫

Ω

gpi

ui
dµ ≤ K

∫

Ω

gpi

w dµ

≤ K(µ(Ω))δi/(pi+δi)

(∫

Ω

gpi+δi

w dµ

)pi/(pi+δi)

,

and therefore

(∫

Ω

gpi+δi

ui
dµ

)1/(pi+δi)

≤ ci

(∫

Ω

gpi+δi

w dµ

)1/(pi+δi)

. (4.17)

Now remark that when pi ∈ (q, q∗) and pi → p we have

δi ≥ δ0 = δ0(p) and ci ≤ c = c(p).

Indeed, in order to prove (4.16) we first show that a reverse Hölder inequality

(
1

µ(B)

∫

B∩Ω

gpi

ui
dµ

)1/pi

≤ bi

(
1

µ(σB)

∫

σB∩Ω

gp0

ui
dµ

)1/p0

+ ci

(
1

µ(σB)

∫

σB∩Ω

gpi

w dµ

)1/pi

(4.18)
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holds for some σ > 1 and then we apply the Gehring lemma. The constant
bi in (4.18) depends on pi. However, when pi ∈ (q, q∗), it may be chosen
independently on pi i.e. bi ≤ b for some b = b(p). The bound will depend
on p due to the fact, that we apply the (1, p0)–Poincaré inequality and p0 is
chosen to be sufficiently close to p. The assertion follows because of the fact
that in (4.16) δi is inverse proportional to bi and ci is comparable to bi (see
e.g. [24]).

For i sufficiently large we may assume

p + ε0 ≤ pi + δ0 ≤ pi + δi ≤ s,

where ε0 = δ0/2. By this assumption and the uniform bound for ci, applying
the Hölder inequality and (4.17) we obtain

(∫

Ω

gp+ε0

ui
dµ

)1/p+ε0

≤ c

(∫

Ω

gpi+δi

ui
dµ

)1/(pi+δi)

≤ c

(∫

Ω

gs
w dµ

)1/s

< ∞.

Since
(∫

Ω

gp+ε0

ui−w dµ

)1/p+ε0

≤

(∫

Ω

gp+ε0

ui
dµ

)1/p+ε0

+

(∫

Ω

gp+ε0

w dµ

)1/p+ε0

≤ c

(∫

Ω

gs
w dµ

)1/s

,

it follows that
sup

i
‖gui−w‖Lp+ε0 (Ω) < ∞. (4.19)

Using Proposition 2.3 we are able to find a uniform Lp+ε0–bound for the
sequence (ui − w) as well. Observe, that decreasing ε0 if necessary, we may
additionally assume that p + ε0 < q∗. So choose t = p + ε0, q = p + ε0 in
Proposition 2.3 and fix B0 = B(x0, r0) such that Ω ⊂ B0. We note again
that the minimal pi–weak upper gradient of ui − w satisfies gui−w = 0 µ-
a.e. on the set S = {x ∈ B0 : u(x) = w(x)}. On the other hand ui − w is
zero pi–quasieverywhere on X \ Ω and thus µ–almost everywhere on X \ Ω.
In addition, observe that p–fatness always implies p + ε0–fatness, so that
capp+ε0

(S, 2B0) ≥ cµ(B0)r
p+ε0 . It follows that

(∫

Ω

|ui − w|p+ε0 dµ

)1/p+ε0

≤ c

(∫

2B0

|ui − w|p+ε0 dµ

)1/p+ε0

≤

(
c

capp+ε0
(S, 2B0)

∫

2τ ′B0

gp+ε0

ui−w dµ

)1/p+ε0

≤ cr0

(∫

Ω

gp+ε0

ui−w dµ

)1/p+ε0

≤ c

(∫

Ω

gs
w dµ

)1/s

,
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by the Hölder inequality. Together with (4.19) this implies

sup
i

‖ui − w‖N1,p+ε0(Ω) < ∞.

So the sequence (ui−w) is uniformly bounded in N 1,p+ε0(Ω) and it follows
that there exist ũ ∈ N 1,p+ε0(Ω) and a subsequence (that we continue denoting
(ui − w)) such that

ui − w → ũ − w in Lp+ε0(Ω)
gui

⇀ gũ weakly in Lp+ε0(Ω).

Since ui → u µ–a.e. it follows that ũ = u µ–a.e. and equally gũ = gu

µ–a.e.

Let D ⊂ Ω be a compact set and for t > 0 write

D(t) = {x ∈ Ω: dist(x,D) < t}.

Then D(t) ⊂⊂ Ω for t ∈ (0, t0) where t0 = dist(D,X \ Ω). We reformulate a
lemma by Kinnunen and Martio [16] so that it corrensponds to the present
case.

Lemma 4.2. Let ui, u be as in Theorem 1.1. Then for almost every t ∈
(0, t0) we have

lim sup
i→∞

∫

D(t)

gpi

ui
dµ ≤ c

∫

D(t)

gp
u dµ,

where the constant c depends only on K and p.

Proof. Let 0 < t′ < t < t0. Choose a Lipschitz cut–off function η such that
0 ≤ η ≤ 1 and

η = 1 on D(t′),
η = 0 on Ω \ D(t).

Define a function
φi = η(u − ui).

For i large enough pi < p + ε0. Then, since ui and u belong to N 1,p+ε0(Ω) it
follows that φi ∈ N 1,pi

0 (D(t)). Therefore by the quasiminimizing property of
ui we have

∫

D(t′)

gpi

ui
dµ ≤

∫

D(t)

gpi

ui
dµ ≤ K

∫

D(t)

gpi

ui+φi
dµ .

Lemma 2.1 implies

gui+φi
≤ (1 − η)gui

+ gη|u − ui| + ηgu,

and hence
∫

D(t′)

gpi

ui
dµ ≤ c

(∫

D(t)

(1 − η)pigpi

ui
dµ

+

∫

D(t)

gpi

η |u − ui|
pi dµ +

∫

D(t)

ηpigpi

u dµ

)
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with c depending only on D and pi. Observing that η ≡ 1 on D(t′) we add
c
∫

D(t′)
gpi

ui
dµ to the both sides of the inequality and obtain

(1 + c)

∫

D(t′)

gpi

ui
dµ ≤ c

(∫

D(t)

(1 − η)pigpi

ui
dµ

+

∫

D(t)

gpi

η |u − ui|
pi dµ +

∫

D(t)

ηpigpi

u dµ

)
.

Define now on (0, t0) a function

Ψ(t) = lim sup
i→∞

∫

D(t)

gpi

ui
dµ .

By definition Ψ is a nondecreasing function of t and by the uniform higher
integrability of ui it is finite for every t ∈ (0, t0). Therefore its set of points
of discontinuity is at most countable. Let t be a point of continuity of Ψ.
Taking limes superior on both sides of the last inequality we obtain

(1 + c)Ψ(t′) ≤ cΨ(t) + c lim sup
i→∞

∫

D(t)

|u − ui|
pi dµ +c

∫

D(t)

gp
u dµ .

The second term on the right hand side tends to zero. To see this, apply first
the Hölder inequality and then the Lebesgue monotone convergence theorem.
Hence, since t is a point of continuity of Ψ we obtain

(1 + c)Ψ(t) ≤ cΨ(t) + c

∫

D(t)

gp
u dµ,

and furthermore

Ψ(t) ≤ c

∫

D(t)

gp
u dµ .

Proof of Theorem 1.1 . In order to show that u is a quasiminimizer of the
p–energy integral with boundary data w, we need to show first that u−w ∈
N1,p

0 (Ω). This does not follow immediately from the compactness argument
used to extract the convergent subsequence.

We proceed as follows. For every ε > 0 and for i sufficiently large pi > p−ε
so that ui − w ∈ N 1,p−ε

0 (Ω). By the Sobolev inequality (Lemma 2.4) we get

||ui − w||N1,p−ε

0
(Ω) ≤ c||gui−w||Lp−ε(Ω)

≤ c||gui−w||Lp(Ω),

i.e. the norms of (ui − w) are uniformly bounded in N 1,p−ε
0 (Ω).

As X \ Ω is uniformly p0–fat, it is also uniformly (p − ε)–fat for ε small
enough. In addition, ui → u µ–a.e., so by Lemma 2.6

u − w ∈ N 1,p−ε
0 (Ω)
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for all ε > 0 such that p0 < p − ε. Hence, by Proposition 2.7, the p–fatness
of X \ Ω implies also

u − w ∈ N 1,p
0 (Ω).

It remains to show that for every open Ω′ ⊂⊂ Ω and every φ ∈ N 1,p
0 (Ω′)

∫

Ω′

gp
u dµ ≤ K

∫

Ω′

gp
u+φ dµ . (4.20)

Let ε > 0 be arbitrary. For i sufficiently large pi > p − ε. Since (gui
)

converges weakly to gu, for every µ–measurable subset E of Ω we have
∫

E

gp−ε
u dµ ≤ lim inf

i

∫

E

gp−ε
ui

dµ

≤ lim inf
i

(∫

E

gpi

ui
dµ

)(p−ε)/pi

µ(E)1−(p−ε)/pi

≤ lim inf
i

(∫

E

gpi

ui
dµ

)(p−ε)/p

µ(E)ε/p,

where we use the Hölder inequality. Passing to zero with ε we conclude that
∫

E

gp
u dµ ≤ lim inf

i

∫

E

gpi

ui
dµ . (4.21)

We will first show that the inequality (4.20) holds for every Lipschitz
function compactly supported in Ω′, i.e. for φ ∈ LipC(Ω′). Fix ε > 0 and
choose open sets Ω′′ and Ω0 such that

Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω0 ⊂⊂ Ω

and ∫

Ω0\Ω′

gp
u dµ < ε.

Let η be a Lipschitz cut–off function such that 0 ≤ η ≤ 1, η = 1 in a
neighbourhood of Ω′, and η = 0 in Ω \ Ω′′. Define a function φi as

φi = φ + η(u − ui).

Since φ ∈ LipC(Ω′) and both ui, u ∈ N 1,p+ε0(Ω) it follows that φi ∈ N 1,pi

0 (Ω′′).
Hence by the quasiminimizing property of ui we get

∫

Ω′′

gpi

ui
dµ ≤ K

∫

Ω′′

gpi

ui+φi
dµ

= K

∫

Ω′

gpi

ui+φi
dµ +

∫

Ω′′\Ω′

gpi

ui+φi
dµ .

(4.22)

Since η ≡ 1 in a neighbourhood of Ω′ it follows that

ui + φi = u + φ in a neighbourhood of Ω′. (4.23)
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On the other hand, in Ω′′ \ Ω′ we have φ ≡ 0, and therefore

ui + φi = ui + η(u − ui).

Now Lemma 2.1 implies that

gui+φi
≤ (1 − η)gui

+ ηgu + gη|u − ui|.

Therefore
∫

Ω′′\Ω′

gpi

ui+φi
dµ ≤ c

∫

Ω′′\Ω′

(1 − η)pigpi

ui
dµ

+ c

∫

Ω′′\Ω′

ηpigpi

u dµ +c

∫

Ω′′\Ω′

gpi

η |u − ui|
pi dµ . (4.24)

We estimate the integrals on the right–hand side separately.
Since η ≡ 1 on a neighbourhood of Ω′, there exists a compact set D ⊂ Ω′′

such that D ∩ Ω′ = ∅ and
∫

Ω′′\Ω′

(1 − η)pigpi

ui
dµ ≤

∫

D

gpi

ui
dµ .

For t sufficiently small we have D(t) ⊂ Ω0 \ Ω′. So we choose t such that we
may apply lemma 4.2, in other words

lim sup
i→∞

∫

D(t)

gpi

ui
dµ ≤ c

∫

D(t)

gp
u dµ .

Consequently

lim sup
i→∞

∫

Ω′′\Ω′

(1 − η)pigpi

ui
dµ ≤ lim sup

i→∞

∫

D

gpi

ui
dµ

≤ lim sup
i→∞

∫

D(t)

gpi

ui
dµ ≤ c

∫

D(t)

gp
u dµ ≤ cε,

(4.25)

by the choice of Ω0.
Also the second integral is arbitrarily small. Again by the choice of Ω0

we have

lim sup
i→∞

∫

Ω′′\Ω′

ηpigpi

u dµ ≤

∫

Ω′′\Ω′

gp
u dµ ≤

∫

Ω0\Ω′

gp
u dµ ≤ ε. (4.26)

Observe, that for a Lipschitz function its minimal p–weak upper gradient
is bounded by its Lipschitz constant µ–almost everywhere. This allows us to
conclude that

lim sup
i→∞

∫

Ω′′\Ω′

gpi

η |u − ui|
pi dµ ≤ c lim sup

i→∞

∫

Ω′′\Ω′

|u − ui|
pi dµ

≤ c lim sup
i→∞

(∫

Ω′′\Ω′

|u − ui|
p+ε0 dµ

) pi
p+ε0

= 0,

(4.27)
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by the Lebesgue monotone convergence theorem.
By the estimates (4.25), (4.26) and (4.27) we obtain from (4.24)

lim sup
i→∞

∫

Ω′′\Ω′

gpi

ui+φi
dµ ≤ cε. (4.28)

Finally by (4.21), (4.22), (4.23) and (4.28) we have

∫

Ω′

gp
u dµ ≤ lim inf

i→∞

∫

Ω′′

gpi

ui
dµ

≤ K lim inf
i→∞

∫

Ω′′

gpi

ui+φi
dµ

≤ K lim inf
i→∞

∫

Ω′

gpi

u+φ dµ +K lim inf
i→∞

∫

Ω′′\Ω′

gpi

ui+φi
dµ

≤ K

∫

Ω′

gp
u+φ dµ +cε

(4.29)

Passing to zero with ε we obtain the desired inequality for any φ ∈ LipC(Ω′).
The result for φ ∈ N 1,p

0 (Ω′) follows by approximation, i.e. if φ ∈ N 1,p
0 (Ω′)

then for any ε > 0 we may find a function φε ∈ LipC(Ω′) such that

‖φε − φ‖N1,p(Ω′) < ε.
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