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1 Introduction

In fracture mechanics, an engineer is mainly interested in whether a pre-
existing macroscopic crack starts to propagate or not. In practice it means
that a suitable fracture criterion has to be computed, which provides the
required information. In general, such a fracture criterion is a vector-valued
quantity, since also the direction of the propagating crack has to be taken
into account. One such criterion is the material force acting on the crack
tip. In this paper, however, we confine ourselves to symmetric problems in
terms of geometry and boundary conditions as well as to isotropic elastic
structures. In this case, the crack direction is clearly known a priori and thus
only the material force projected into the direction of crack propagation is
of importance. This (scalar-valued) fracture criterion is well known as the
J-integral, originally due to Cherepanov [6] and Rice [15]. Generally, the
J-integral can only be computed numerically, e.g. with the finite element
method. Thus, for reliable predictions of crack propagation it is clearly of
the utmost importance to control the resulting error of the J-integral.

This type of error control leads to the approach of goal-oriented adaptive
finite element methods, as introduced by Eriksson et al. [8] and developed
further by Becker and Rannacher [4] and others. In recent years, goal-oriented
error estimates have also been developed and succesfully applied to the field
of fracture mechanics, see Rüter et al. [17, 24, 20, 21], Giner et al. [9], Heintz
et al. [10] and Xuan et al. [27]. Remarkably, the first steps in this direction
had already been taken in 1984 by Babuška and Miller [3].

Goal-oriented error estimates are based on the solution of an auxiliary
dual problem. In computational practice, the dual problem is generally solved
by the finite element method. More precisely, it is conventional practice
to solve it on the same finite element mesh as the primal problem. From
an implementational point of view, this proves convenient, since—for linear
problems—only the right-hand side has to be replaced for the dual problem
once the primal problem is solved.

One has to take into account, however, that apart from the primal prob-
lem, the dual problem and the error estimator itself, which usually also re-
quires some postprocessing in terms of auxiliary problems at the element
level, have to be computed in each adaptive step. Since the dual problem is
only solved in order to estimate the error, the computational costs for the
total error estimation procedure are therefore higher than solving the primal
problem, at least in the linear case.

Recently, Korotov at al. [13, 12] proposed a new strategy that reduces the
computational costs for the error estimator in each adaptive step considerably
and, at the same time, generalizes the canonical approach of solving the
primal and the dual problem on the same finite element mesh. In their
strategy, the dual problem is solved on an arbitrary mesh which can, as a
special case, be the same as the mesh associated with the primal problem.
In this fashion, it becomes possible to solve the dual problem on a coarser
mesh than the primal problem which does not necessarily have to be carried
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out in each adaptive step. Furthermore, it becomes possible to solve the
dual problem only once on a very fine mesh, the computation of which is
clearly more expensive than on a coarser mesh but has to be carried out only
once for the entire adaptive mesh refinement scheme. This proves especially
convenient in terms of computational costs if one is to estimate the error for
the case of different boundary conditions for the primal problem which is a
usual case in engineering practice when, e.g., different load cases have to be
investigated. In this case, the conventional way of solving the dual problem
on the same mesh in each adaptive step requires the solution of n times more
global dual problems where n is the number of load cases times the number
of adaptive mesh refinement steps in each load case.

It should be clear that in this strategy, additional computational chal-
lenges arise, since the solutions of the primal and the dual problem have to
be transferred from one mesh to the other. Particularly, when applied to
problems in fracture mechanics, even the dual load depends on the solution
of the primal problem which therefore has to be transferred onto the dual
mesh. Moreover, for the error estimator proposed in this paper an additional
term has to be computed compared to the conventional way of using the
same finite element mesh for the primal and the dual problem. This term,
however, is always exactly computable in the sense that all quantities are
known from the finite element computation. Summarizing these additional
costs, it should nevertheless be clear that they are not as expensive as solving
an additional global problem in each adaptive step.

In this paper, the strategy described above is applied to problems in
LEFM as a novel approach to estimate the error of the fracture criterion.
More precisely, we extend the strategy proposed by Korotov at al. [13, 12] to
the case of nonlinear goal quantities of interest as elaborated in Rüter and
Stein [21], where, however, the error estimators presented rely on the same
mesh for both the primal and the dual problem.

The paper is organized as follows: In Section 2, the boundary value prob-
lem of linearized elasticity is introduced and the J-integral as a fracture
criterion is presented. Subsequently, in Section 3 we discuss the construction
of the dual data as required in order to solve the dual problem. Furthermore,
we derive the error representation for the error of the J-integral that is based
on the solution of the dual problem. In Section 4, we focus on averaging-
based error estimation techniques for the error of the J-integral based on the
dual solution. Finally, two illustrative numerical examples are presented in
Section 5 before the paper concludes with Section 6, which summarizes the
major findings achieved from theoretical and numerical points of view.

2 Linear elastic fracture mechanics

In this section, we introduce the J-integral concept within the framework of
LEFM. As the name implies, in LEFM we are concerned with crack propaga-
tion criteria of a pre-cracked elastic body that undergoes small deformations.
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2.1 The model problem of linearized elasticity

To begin with, we briefly present the linearized elasticity problem. Therefore,
let us first introduce the isotropic elastic body which is given by the closure
of a bounded open set Ω ⊂ R

3 with a piecewise smooth, polyhedral and
Lipschitz continuous boundary Γ such that Γ = Γ̄D ∪ Γ̄N and ΓD ∩ ΓN = ∅,
where ΓD and ΓN are the portions of the boundary Γ where Dirichlet and
Neumann boundary conditions are imposed, respectively. Assuming, for the
sake of simplicity, homogeneous Dirichlet boundary conditions, all admissible
displacements u : Ω̄ → R of the elastic body Ω̄ are elements of the Hilbert
space V = {v ∈ [H1(Ω)]3 ; v|ΓD

= 0}.
The weak formulation of the linearized elasticity problem—which is also

termed the primal problem throughout this paper—then reads: find u ∈ V
such that

a(u,v) = F (v) ∀v ∈ V (1)

with the continuous, symmetric and V-elliptic bilinear form a : V × V → R

and the continuous linear form F : V → R defined by

a(u,v) =

∫

Ω

σ(u) : ε(v) dV (2)

and

F (v) =

∫

ΓN

t̄ · v dA, (3)

respectively. Here, σ =
�

σ : ε denotes the stress tensor given in terms of the
fourth-order elasticity tensor

�
σ and the second-order strain tensor ε defined

as the symmetric gradient of u. Furthermore, t̄ ∈ [L2(ΓN)]3 are prescribed
tractions imposed on the Neumann boundary ΓN . For the sake of simplicity,
body forces are omitted in the above formulation.

The discrete counterpart of the variational problem (1) then consists in
seeking a solution u1h in a finite-dimensional subspace V1h ⊆ V satisfying

a(u1h,v1h) = F (v1h) ∀v1h ∈ V1h. (4)

In order to construct V1h we first generate a triangulation T1h of the elastic
body Ω̄. Throughout this paper, the finite element associated with each
triangle Ω̄1e ∈ T1h is chosen as the well-known simple finite element of the
P1-type.

Subtracting the finite element solution from the true solution, we may
define the discretization error as

e = u − u1h ∈ V . (5)

2.2 The J-integral as a crack propagation criterion

In the classical theory of LEFM, three principally different but equivalent
scalar-valued crack propagation criteria have been developed in the last cen-
tury, namely the energy release rate concept, the stress intensity approach
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Figure 1: Pre-cracked specimen, boundary conditions and q-function as a
pyramid function.

and the J-integral concept, as originally proposed by Cherepanov [6] and
Rice [15]. For further details on these three concepts the reader may consult
the vast literature available, e.g. Anderson [2].

In this paper, we deal with the widely-used J-integral concept. The J-
integral, which is a nonlinear functional J : V → R, can be conveniently
derived by a straightforward application of the concept of material forces,
see, e.g., Steinmann et al. [25], since J is the projection of the material force
F mat acting on the crack tip into the direction of crack propagation (given
in terms of the unit vector e|| which is a priori known in this paper due to
symmetry conditions with respect to both the boundary conditions and the
geometry of the elastic body), i.e.

J(u) = F mat · e|| =

∫

ΓJ

e|| · Σ̃(u) · n dA . (6)

Here, ΓJ is an arbitrary contour around the crack tip, n is the unit outward
normal to ΓJ and Σ̃ denotes the so-called Newton-Eshelby stress tensor given
by

Σ̃ = WsI − HT · σ (7)

with specific strain-energy function Ws, second-order identity tensor I and
displacement gradient H . Hence, the material force acting on the crack tip
can be evaluated in terms of the (material) tractions Σ̃ ·n at the contour ΓJ .
Notice the analogy to a physical force F phy which can be determined by the
(physical) tractions σ · n.

A pre-existing crack then starts to grow in the direction of e|| if J exceeds
the (known) material dependent threshold Jc.

From a computational point of view, however, it proves convenient to
compute the J-integral by means of the equivalent domain expression

J(u) = −

∫

ΩJ

H(qe||) : Σ̃(u) dV (8)

rather than by the contour expression (6). In the above, q = q(x, y) (or
q = q(x, y, z) in three space dimensions) represents an arbitrary, piecewise
continuously differentiable weighting function with q = 1 at the crack tip and
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Figure 2: Schematic visualization of the linearizations of the J-integral.

q = 0 on the contour (or surface) ΓJ that bounds the area (or volume) ΩJ .
For example, q can be conveniently chosen as a pyramid function as shown
in Figure 1.

The domain expression (8) was introduced by Shih et al. [22]. For a
derivation of (8) in terms of material forces we refer to Heintz et al. [10].

3 The error of the J-integral

3.1 Linearizations of the J-integral

The natural choice for an error measure in linearized elasticity is the energy
norm. However, if an engineer is mainly interested in controlling the error of
the crack propagation criterion itself, the knowledge of the discretization error
measured by the (global) energy norm is not of much use. In this particular
case, an engineer is mainly interested in controlling the goal-oriented (local)
error measure J(u)−J(u1h), i.e. the error of the J-integral, within an adap-
tive mesh refinement scheme. This error measure, however, is nonlinear by
definition. Therefore, following the general framework of goal-oriented a pos-
teriori error estimation, see Eriksson et al. [8] and Becker and Rannacher [4],
as outlined in Larsson et al. [14] and Rüter et al. [19, 23], we apply the
fundamental theorem of calculus on the error measure which yields

J(u) − J(u1h) =

∫ 1

0

J ′(ξ(s); e) ds (9)

with ξ(s) = u1h + se, s ∈ [0, 1] and the tangent form of J defined as

J ′(ξ(s); e) = DuJ(u)|ξ(s) · e, (10)
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that is the Gâteaux derivative of J with respect to u in the direction of e.
Next, we define a linear functional JS : V → R by

JS(u,u1h; v) =

∫ 1

0

J ′(ξ(s); v) ds , (11)

which represents an exact linearization of the J-integral. Since the exact
linearization depends on both the true solution u and its finite element ap-
proximation u1h, it is a secant form. Combining (11) and (9) with v = e, we
end up with the important relation

J(u) − J(u1h) = JS(u,u1h; e). (12)

It should be emphasized that the above derivation holds for any nonlinear
functional J , although in this paper we focus on J defined as the J-integral.

The linearization JS, however, involves the (generally unknown) exact
solution u ∈ V . Therefore, we shall next introduce a computable approxima-
tion JT of JS by replacing the exact solution u ∈ V with the (known) finite
element solution u1h ∈ V1h. Hence, we arrive at the tangent form

JT (·) = J ′(u1h; ·) = JS(u1h,u1h; ·) ≈ JS(u,u1h; ·) (13)

that holds for small errors e only. A schematic visualization of the derivations
presented above can be seen in Figure 2.

In this paper, we confine ourselves to the domain expression of the J-
integral as defined in (8). In this case, the exact linearization of J reads

JS(u,u1h; v) =

−

∫ 1

0

∫

ΩJ

H(qe||) :
�

Σ(ξ(s)) : H(v) dV ds , (14)

whereas the associated tangent form JT is given by

JT (v) = −

∫

ΩJ

H(qe||) :
�

Σ(u1h) : H(v) dV . (15)

In the above,
�

Σ denotes the fourth-order tensor of elastic tangent moduli
associated with the Newton-Eshelby stress tensor defined as

�
Σ =

∂Σ̃

∂H
= I ⊗ σ − I ⊗σ − HT ·

�
σ, (16)

see Heintz et al. [10]. Here, ”⊗” denotes a non-standard dyadic product
operator as used e.g. in Steinmann et al. [26]. For further elaborations on
the linearizations of the domain as well as the contour expression of the
J-integral (6) we refer to Rüter and Stein [21].
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3.2 Duality techniques

In order to estimate the error of the J-integral, we follow the general strategy
of solving an auxiliary dual problem. The dual problem is based on the
dual bilinear form a∗ : V × V → R defined by a∗(u,v) = a(v,u). Since
a is symmetric in the case of linearized elasticity, the dual bilinear form a∗

coincides with a and the dual problem reads: find a solution
∗

u ∈ V that
satisfies

a(
∗

u,v) = JS(u,u1h; v) ∀v ∈ V . (17)

As in the case of the primal problem (1), we can, at best, approximate the
dual solution

∗

u by the finite element solution
∗

u2h ∈ V2h ⊆ V of the uniquely
solvable discretized dual problem

a(
∗

u2h,v2h) = JT (v2h) ∀v2h ∈ V2h, (18)

where also JS is approximated by JT . Here, V2h is a finite-dimensional sub-
space of V constructed on a triangulation T2h of Ω̄. Following the recent work
by Korotov et al. [13, 12] we construct V2h independently of V1h. Hence, V2h

is generally neither a subspace of V1h nor is V1h a subspace of V2h, cf. Rüter
et al. [18]. Note that although it is not required that the finite elements
associated with each triangle Ω̄2e ∈ T2h are of the same type as used in the
primal problem, it clearly proves convenient to use the same finite elements.

Recalling (12) and setting v = e in (17) it is now trivial to observe in
the case of small errors e that the error of the J-integral can be exactly
represented by

JS(u,u1h; e) = a(e,
∗

u − v2h) + a(e,v2h), (19)

which holds for any v2h ∈ V2h.
Upon introducing the weak residual of the primal problem R : V → R,

defined as
R(v) = F (v) − a(u1h,v), (20)

and setting v2h =
∗

u2h it is easy to see (by replacing F (v) with a(u,v) in
(20) according to (1)) that (19) can be recast into the following form

JS(u,u1h; e) = R(e∗

u
) + R(

∗

u2h), (21)

where e∗

u
=

∗

u −
∗

u2h denotes the discretization error of the dual problem.
Likewise, we may further introduce the weak residual of the dual problem

R∗

u
: V → R which is defined as

R∗

u
(v) = JS(u,u1h; v) − a(

∗

u2h,v). (22)

With this notation at hand, (21) may be equivalently expressed by

JS(u,u1h; e) = R∗

u
(e) + R(

∗

u2h), (23)

since R(e∗

u
) = R∗

u
(e), which is, in structural mechanics, also known as Betti’s

theorem, cf. Cirak and Ramm [7].
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Figure 3: Construction of the supermesh that contains both the primal mesh
and the dual mesh.

As a special case, let us construct V2h such that V2h ⊆ V1h. In other
words, we construct the finite element mesh of the dual problem (18) in such
a fashion that it is hierarchically included in the finite element mesh of the
primal problem (4). In this case, the dual mesh is generally coarser than the
primal mesh. As a limit case, these meshes may also coincide which is the
usual strategy to solve the discretized dual problem (18). In these cases, the
weak residual R(

∗

u2h) clearly vanishes due to the Galerkin orthogonality. This
is easily verified by means of (20) and (4) and the fact that

∗

u2h ∈ V2h ⊂ V1h.
In all other cases the weak residual R(

∗

u2h) is at least exactly computable.

Clearly, the mesh associated with the dual problem does not necessarily
have to be coarser than the primal mesh. Also the other case is of special
interest where V1h ⊆ V2h. If we choose quite a fine dual mesh and thus
construct V2h much larger than V1h, then the discretization error e∗

u
is quite

small compared to e. As a consequence, the discrete dual problem (18) needs
to be computed only once within the entire adaptive mesh refinement process.
This is especially appealing when the dual data is constructed independently
of the primal FE-solution u1h ∈ V1h, which is, however, clearly not the case
for the J-integral and other nonlinear functionals, since the linearization
always depends on u1h.

Summarizing the above, the approach presented can be seen as a gen-
eralization of the common strategy to solve the discrete primal and dual
problems on the same mesh. As such, the limit case of coinciding meshes for
the discrete primal and dual problem is clearly included in this approach as
a special case.

3.3 Transfer of the finite element solution

As it turns out in general, for the computation of the approximate dual
solution

∗

u2h ∈ V2h a transfer of the primal finite element solution u1h ∈
V1h into the finite-dimensional subspace V2h is required, since JT depends

10



explicitly on u1h ∈ V1h as was already observed in (15). Clearly, this transfer
is trivial whenever V1h ⊆ V2h. In this paper, however, we construct V2h in
such a fashion that the dual finite element mesh is coarser than the primal
mesh. Moreover, in general we have V2h 6⊆ V1h.

The transfer of the solution u1h ∈ V1h into the finite-dimensional subspace
V2h can be carried out by means of the so-called supermesh strategy. A
supermesh is a finite element mesh that contains both the mesh associated
with the primal and the dual problem.

In order to construct the supermesh, we first create a new partition of
the elastic body such that

Ω̄ =
⋃

i,j

Ω̄1e,i ∩ Ω̄2e,j (24)

with Ω̄1e,i ∈ T1h and Ω̄2e,j ∈ T2h. In general, however, this new partition
is not a triangulation of Ω̄, since the intersection of (the interiors of) two
elements Ω1e,i ∩ Ω2e,j is either a triangle, a quadrilateral, a pentagon or a
hexagon whenever it is non-empty, cf. Figure 3 where three of the four cases
are visualized. Hence, if the intersection is non-empty and not a triangle,
the non-triangular element is refined until we found a triangulation Tsm of
the closed domain Ω̄. This procedure is depicted schematically in Figure 3.
As can be observed, degenerated elements may occur in this fashion. In the
numerical examples presented in Section 5, it can be seen that such elements
have in fact only a small influence on the estimated error.

In practical examples, however, it proves very convenient to make use of
the special case where one mesh is hierarchically included in the other. In this
fashion, only one initial triangulation of the structure under consideration is
required, since the different meshes for the primal and the dual problem
result from adaptive mesh refinements. This has the further advantage that
the construction of the supermesh is always trivial (since it coincides with
the finer mesh) and thus degenerated elements cannot occur. Moreover, in
this case it becomes also possible to extend the strategy straightforwardly to
three-dimensional problems.

Now it is easily verified that the solution u1h ∈ V1h is also an element of
the finite-dimensional subspace Vsm ⊆ V of the supermesh, since V1h ⊆ Vsm.
Obviously, the supermesh is constructed such that also V2h ⊆ Vsm holds.
Note that in the special case where one mesh is hierarchically included in the
other, we find that either Vsm = V1h or Vsm = V2h.

Recalling the linearization of the J-integral (15), it is immediately evident
that only gradients of the solution u1h ∈ V1h have to be transferred into
V2h. Since the gradients are constant in each triangle of the supermesh, the
transferred gradient is computed as the weighted average of all supermesh
elements that are contained in one element of the dual mesh as visualized in
Figure 3.

It should finally be noted that the procedure described above does not
have to be repeated over all elements of the dual mesh triangulation T2h,
since the linearized J-integral JT is evaluated over the subdomain ΩJ only.
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4 Goal-oriented a posteriori error estimation

4.1 The error estimator

Now that we have at our disposal the finite element solutions u1h ∈ V1h and
∗

u2h ∈ V2h as well as the error representations for the error of the J-integral
(19), (21) and (23) we show next how a posteriori error estimates for the
error of the J-integral can be established.

Recalling the error representation (21), the error of the J-integral could
be computed if the weak residuals on the right-hand side of (21) were exactly
computable. As was already pointed out, the second term, i.e. R(

∗

u2h), is
indeed exactly computable. Thus, upper and lower bounds on the error of the
J-integral can be derived if the weak residual R(e∗

u
) can be bounded from

above and from below. For finding such error bounds, various strategies
based on residual- hierarchical or averaging-type error estimates have been
developed in recent years, see e.g. Ainsworth and Oden [1] and Stein and
Rüter [23] for a brief survey.

In this paper, however, we follow the general idea of Zienkiewicz and
Zhu [28] and aim at approximating the weak residual R(e∗

u
) by an averaging

technique in the sense that the approximate gradient fields, that appear in
the weak residual, are recovered. In this fashion, upper or lower bounds on
the error cannot generally be obtained. However, a sufficiently sharp estimate
without bounding properties can be expected. For the derivation of reliable
and efficient averaging techniques we refer to Rodŕıguez [16] and Carstensen
and Funken [5].

As was already mentioned, the cornerstone of goal-oriented averaging er-
ror estimators is the construction of recovered gradient fields ε∗(u1h) and
ε∗(

∗

u2h) for both the primal and the dual problem that are “better” approx-
imations of the exact gradient fields ε(u) and ε(

∗

u) than the ones obtained
by the finite element solutions u1h and

∗

u2h, respectively. This qualitative
proposition can be turned into the following quantitative statements

‖ε(u) − ε∗(u1h)‖L2(Ω) ≤ C1‖ε(u) − ε(u1h)‖L2(Ω) (25)

and
‖ε(

∗

u) − ε∗(
∗

u2h)‖L2(Ω) ≤ C2‖ε(
∗

u) − ε(
∗

u2h)‖L2(Ω) (26)

with constants C1, C2 ∈ [0, 1).
With the definition of the weak residual (20) and the bilinear form (2) as

well as the linear functional (3) we then obtain the goal-oriented a posteriori
error estimator

J(u) − J(u1h) ≈
∑

Ω̄1e∈T1h

{η1e + η2e,a − η2e,b} (27)

with element contributions

η1e =

∫

Ω1e

[ε∗(u1h) − ε(u1h)] :
�

σ :
[

ε∗(
∗

u2h) − ε(
∗

u2h)
]

dV (28a)
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as well as

η2e,a =

∫

∂Ω1e∩ΓN

t̄ ·
∗

u2h dA (28b)

and

η2e,b =

∫

Ω1e

ε(u1h) :
�

σ : ε(
∗

u2h) dV . (28c)

4.2 On the computation of the error estimator

In order to be able to compute the error estimator (27), we first have to
determine the recovered gradient fields ε∗(u1h) and ε∗(

∗

u2h) on the finite
element meshes of the primal and the dual problem, respectively. Although
all the fields to be recovered are generally discontinuous on the interelement
boundaries, a continuous and therefore improved field can be easily created by
means of the ansatz functions for the generally C0-continuous displacement
field as used to compute the finite element solutions u1h and

∗

u2h.
As a consequence, appropriate nodal values are required. For this pur-

pose, various strategies have been developed in recent years. Maybe the
simplest one, which is used in this paper, is to average the nodal values ob-
tained from the adjacent elements weighted by the area of these elements,
see Hlaváček and Kř́ıžek [11]. A more advanced strategy is the so-called
superconvergent patch recovery technique (SPR technique) as introduced by
Zienkiewicz and Zhu [29]. For further details on the SPR technique in the
framework of goal-oriented error estimators in nonlinear elastic fracture me-
chanics we refer to Rüter and Stein [20].

Once these recovered gradient fields are available on both the primal and
the dual mesh, the error estimator (27) can be computed by means of the
sum of the element contributions from each element Ω̄1e of the primal mesh.
This requires a transformation of the dual solution

∗

u2h into V1h. In principle,
this transformation can be carried out in much the same way as elaborated
in Section 3.3. However, a quadrature rule of higher order is required. More
precisely, the integrals in (27) are evaluated numerically by the following
well-known quadrature formula

∫

Ω1e

ε∗(u1h)dV ≈
1

3
meas Ω1e

3
∑

i=1

ε∗(u1h(mi)), (29)

where mi are the midpoints of the sides of each triangular element Ω̄1e ∈ T1h

of the primal mesh.
Clearly, for the evaluation of (27) we also have to compute the values

ε∗(
∗

u2h(mi)) for i = 1, 2, 3. Generally, however, one has to take into account
that the midpoints mi of the sides of each triangular element Ω̄1e ∈ T1h of the
primal mesh are not on the midpoints of the sides of each triangular element
Ω̄2e ∈ T2h of the dual mesh as visualized in Figure 4. Thus, the point values
ε∗(

∗

u2h(mi)) for i = 1, 2, 3 have to be carefully determined which is of course
trivial in the case of linear triangles.
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m1

m3

m2

dual mesh

primal mesh

Figure 4: Numerical integration points mi to compute the error estimator
(27) on the primal and the dual mesh.

The computation of the point values ε(u1h(mi)) and ε(
∗

u2h(mi)) for i =
1, 2, 3 turns out to be quite easy, since the finite element strain fields are
constant in each element.

We further remark that only the error estimator (27) is integrated numer-
ically with the above quadrature rule (29). All other integrals are integrated
numerically using one quadrature point in the center of the triangle.

It should finally be noted that the accuracy of the numerical integration
scheme as presented above is further improved by subdividing each element
of the primal mesh Ω̄1e uniformly into several subtriangles.

5 Numerical Examples

In this section, we present two numerical examples showing the performance
of the goal-oriented a posteriori error estimator (27) based on different meshes
for the primal and the dual problem. The required algorithms have been
implemented in a Matlab c© finite element code that has been developed at the
University of Jyväskylä and at Helsinki University of Technology, Finland.

5.1 Plate with a central hole

The system considered in this first numerical example is a pre-cracked glass
plate with a central hole in plane-stress state subjected to horizontal tension
loads. Due to symmetry considerations only one quarter of the system needs
to be modeled. Further information about the geometry of the plate can
be gathered from Figure 5. The material data for the plate is assumed
as follows: Young’s modulus E = 64000 N/mm2, Poisson’s ratio ν = 0.2
and critical value Jc = 0.015 kJ/m2 which corresponds to borosilicate glass.
The reference value for the given loads was determined using around 100000
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Figure 5: Plate with a central hole, modeled quarter of the system, boundary
conditions and integration domain ΩJ for the domain expression of the J-
integral which is separated into three parts according to the pyramid function
q defined on ΩJ .

Figure 6: Deformed primal (top) and dual (bottom) meshes.
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Figure 7: Estimated error measures J(u) − J(u1h).
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Figure 8: Effectivity indices.

degrees of freedom and reads J/2 = 0.0129 kJ/m2. Thus, under the given
loading F = 0.5 N/mm2 the crack will propagate.

Our aim in this example is to investigate how the choice of different
dual meshes with different degrees of freedom, that are either hierarchically
included in the primal mesh or entirely different from the primal mesh, influ-
ence the error estimator. More precisely, in the first computation, both the
initial primal and the dual mesh are identical with 134 degrees of freedom.
In the second computation, the initial mesh of the primal problem has 341
degrees of freedom whereas the dual mesh is not hierarchically included in
the primal mesh and has 131 degrees of freedom.

The associated deformations in the latter case are depicted in Figure 6.
Clearly, the deformations are magnified, since both the primal and dual prob-
lem are linear.

In both computations investigated, the dual mesh remains the same in
each adaptive computation, i.e. only the primal mesh is refined within the
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Figure 9: Adaptively refined primal mesh, 19267 degrees of freedom.
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Figure 10: Estimated error splitted into contributions according to (27).

adaptive mesh refinement scheme. Thus, as was already pointed out, the
strategy proposed is quite inexpensive compared to the straightforward ap-
proach where the dual solution is computed on the same mesh as the primal
problem in each adaptive step.

In Figure 7, the estimated error of the J-integral for both computations
is plotted. Both estimators investigated show an optimal convergence curve.
Apparently, the estimated error in each adaptive refinement step is higher
in the case where the dual mesh is not hierarchically included in the primal
mesh, which becomes immediately evident, since the initial mesh of the pri-
mal problem is much finer compared to the first computation. Therefore,
compared to the first computation, the solution of the second computation
based on this uniform initial mesh is not as accurate as the solution based
on an adaptively refined mesh for the same number of degrees of freedom.
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Figure 11: Parallel-edge-cracked plate, modeled system, boundary conditions
and integration domain ΩJ for the domain expression of the J-integral which
is separated into three parts according to the pyramid function q defined on
ΩJ .

The associated effectivity indices, i.e. the ratio of the estimated error to
the true error, are visualized in Figure 8 and show that both computations
result in a similar effectivity. This, in turn, means that it makes no differ-
ence whether or not the dual mesh is hierarchically included in the primal
mesh. Moreover, the effectivity indices demonstrate that the approach pre-
sented yields quite sharp error estimates that become even sharper with more
degrees of freedom.

In this paper, an element is refined if the scaled error indicator at the
element level, i.e. the error indicator divided by the largest error indicator,
exceeds a given tolerance. The refined primal mesh obtained by this strategy
with 19267 degrees of freedom of the last adaptive step is shown in Figure 9.
It can be observed that the mesh is heavily refined on the hole and around
the crack tip which could clearly be expected because of the stress singularity
at the crack tip.

However, the mesh is also refined along the Neumann boundary which can
be explained by means of Figure 10 where the (global) error contributions
η1, η2,a and η2,b according to the definitions in (28) are plotted for the case of
our second computation. Clearly, the boundary term η2,a remains constant
during the adaptive mesh refinement process, since the dual solution is com-
puted on one mesh only. Consequently, η2,a gets more and more dominant
compared to the estimated term η1. Furthermore, the volume term η2,b is
of about the same order than η2,a. However, the number of elements that
share the Neumann boundary ΓN is much less than the total number of ele-
ments. The conclusion to be drawn is that the element contributions η2e,a are
much higher than η2e,b and η1e which results in the heavy mesh refinements
observed along the Neumann boundary ΓN .

Furthermore, Figure 10 shows the interesting result that with increasing
number of degrees of freedom the part η2,a − η2,b contributes more and more
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Figure 12: Deformed primal solution (top) as well as deformed dual solutions
of the first (middle) and the second (bottom) computation.

to the error estimator (27) compared to η1. Thus, for rather fine meshes the
part η1 does not have to be computed very accurately in order to get sharp
error estimates. In the limit case of extremely fine meshes, η1 could even be
neglected. In this case, the strategy proposed in this paper allows the com-
putation of an error estimator without any term that has to be estimated. As
a consequence, this strategy could, in principle, be extended to discretization
schemes that are not based on finite elements, e.g. the element free Galerkin
method.

5.2 Plate subjected to 4-point bending

In the second numerical example, let us consider a parallel-edge-cracked plate
in plane-stress state subjected to 4-point bending, as depicted in Figure 11.
The material data is the same as in the previous example, whereas the chosen
load in this example is F = 0.6 N/mm2. Due to symmetry considerations,
only one half of the specimen is modeled. The reference value for the J-
integral is taken from Rüter and Stein [21] and reads J/2 = 0.012886 kJ/m2.

Our objective in this example is to investigate the influence of different
dual meshes with different degrees of freedom on the error estimator. To this
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Figure 13: Estimated error measures J(u) − J(u1h).
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Figure 14: Effectivity indices.

end, again two computations have been carried out. In the first computation,
the dual mesh consists of 168 degrees of freedom, whereas in the second
computation the dual mesh is constructed such that it has 482 degrees of
freedom. In both cases, the dual meshes are not hierarchically related to the
primal mesh, which has 380 degrees of freedom in either case. The resulting
deformations are depicted in Figure 12.

The associated convergence curves of the estimated error and the corre-
sponding effectivity indices are plotted in Figures 13 and 14, respectively. As
in the previous example, the error estimator shows an optimal convergence
rate in both cases. At first sight, it seems as if the computation based on the
coarser dual mesh yields better results that are closer to the desired value of
one. However, the results obtained from the finer dual mesh seem to con-
verge closer to one. Hence, it is obvious that a finer dual mesh yields better
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Figure 15: Adaptively refined primal mesh, 11267 degrees of freedom.

results, whereas also the results from the coarser dual mesh are acceptable if
one takes into account that the computation is cheaper with a coarser mesh.

Finally, the 9th adaptively refined primal mesh of the first computation
can be seen in Figure 15. Again, it can be observed that heavy mesh refine-
ments take place at the singularities, i.e. at the supports and at the crack
tip and along the Neumann boundary, especially where we have jumps in the
tractions.

6 Conclusions

In this paper, we presented averaging-type goal-oriented a posteriori error
estimators for the error of the (nonlinear) J-integral within the framework
of linear elastic fracture mechanics. Goal-oriented error estimators are based
on the solution of an auxiliary dual problem which was, in this paper, solved
on a different mesh than the primal problem. In this fashion, we need to
transfer the solutions from one mesh to the other. Furthermore, for the er-
ror estimator we obtain an additional term which, in turn, is always exactly
computable. On the other hand, the strategy proposed in this paper has
the obvious advantage that the dual solution does not have to be computed
in every adaptive mesh refinement step and thus reduces the computational
costs considerably compared to the common strategy to solve both the primal
and the dual problem in each adaptive step on the same mesh. In general,
this strategy could be extended to nonlinear model problems such as finite
elasticity. However, one has to take into account that in this case, the dual
problem depends on the tangent of the last step used in the Newton itera-
tions and therefore leads to certain restrictions. Moreover, in the numerical
examples we obtained good numerical evidence for the effectivity of the error
estimator presented in this paper.
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