A REFINED ERROR ANALYSIS OF MITC PLATE ELEMENTS

Mikko Lyly
Jarkko Niiranen
Rolf Stenberg

A REFINED ERROR ANALYSIS OF MITC PLATE ELEMENTS

Mikko Lyly
Jarkko Niiranen
Rolf Stenberg

Mikko Lyly, Jarkko Niiranen, Rolf Stenberg: A refined error analysis of MITC plate elements; Helsinki University of Technology, Institute of Mathematics, Research Reports A482 (2005).

Abstract

We consider the Mixed Interpolated (Tensorial Components) finite element families for the Reissner-Mindlin plate model. For the case of a convex domain with clamped boundary conditions we prove regularity results and derive new error estimates which are uniformly valid with respect to the thickness parameter.

AMS subject classifications: $65 \mathrm{~N} 30,74 \mathrm{~S} 05,74 \mathrm{~K} 20$
Keywords: Reissner-Mindlin plates, MITC finite element methods, error analysis

Correspondence

Mikko.Lyly@csc.fi, Jarkko.Niiranen@tkk.fi, Rolf.Stenberg@tkk.fi

ISBN 951-22-7537-6
ISSN 0784-3143

Helsinki University of Technology
Department of Engineering Physics and Mathematics
Institute of Mathematics
P.O. Box 1100, 02015 HUT, Finland
email:math@hut.fi http://www.math.hut.fi/

1 Introduction

One of the most successful finite element methods for the Reissner-Mindlin plate bending model is the MITC family introduced by K.-J. Bathe and coworkers [8], [6], [7]. The family has been mathematically analyzed under various assumptions: The first error analysis [7] was performed for the limiting case of a vanishing thickness and in [10], [12] the analysis was extended to a positive thickness. The result is, roughly speaking, that the error is quasioptimal in the sense that the finite element error is bounded from above by a constant times the interpolation error, and it is essential that the constant is independent of the plate thickness. The estimate is, however, somewhat unsatisfactory, because it is combined with an interpolation estimate obtained by assuming a smooth solution. In practice, the solution is never very smooth since it is known [1], [3], [4] that the solution contains strong boundary layers. In [13] an analysis is performed by taking the boundary layer into account for the free plate with a smooth boundary.

The purpose of this paper is to make an analysis in spirit of [13], but now for a clamped plate and a polygonal domain. We prove an estimate uniformly valid and, in particular, we give the estimate with respect to the loading. For this we prove a regularity result that can be used for the analysis of other finite elements as well. For simplicity, we consider a triangular MITC method, but it is clear that the results also hold for other elements of the MITC-type, such as the triangular and quadrilateral families reviewed in [10], [15]. The results of this paper are used in [11] where a postprocessing method is introduced, analyzed and tested.

2 The Reissner-Mindlin plate model

We consider a clamped plate with the midsurface $\Omega \subset \mathbb{R}^{2}$ and scale the loading f by assuming it to be of the form $f=G t^{3} g$, with G denoting the shear modulus and t denoting the thickness. This gives a well posed problem in the limit $t \rightarrow 0$, cf. [9].

We define the bilinear form

$$
\begin{equation*}
\mathcal{B}(z, \boldsymbol{\phi} ; v, \boldsymbol{\eta})=a(\boldsymbol{\phi}, \boldsymbol{\eta})+t^{-2}(\nabla z-\boldsymbol{\phi}, \nabla v-\boldsymbol{\eta}) \tag{2.1}
\end{equation*}
$$

with

$$
\begin{equation*}
a(\boldsymbol{\phi}, \boldsymbol{\eta})=\frac{1}{6}\left\{(\boldsymbol{\varepsilon}(\boldsymbol{\phi}), \boldsymbol{\varepsilon}(\boldsymbol{\eta}))+\frac{\nu}{1-\nu}(\operatorname{div} \boldsymbol{\phi}, \operatorname{div} \boldsymbol{\eta})\right\} \tag{2.2}
\end{equation*}
$$

where ν is the Poisson ratio and ε is the linear strain tensor

$$
\begin{equation*}
\varepsilon(\boldsymbol{\eta})=\frac{1}{2}\left(\nabla \boldsymbol{\eta}+(\nabla \boldsymbol{\eta})^{T}\right) \tag{2.3}
\end{equation*}
$$

The problem is then the following:
Variational formulation 2.1. Find the deflection $w \in H_{0}^{1}(\Omega)$ and the rotation $\boldsymbol{\beta} \in\left[H_{0}^{1}(\Omega)\right]^{2}$ such that

$$
\begin{equation*}
\mathcal{B}(w, \boldsymbol{\beta} ; v, \boldsymbol{\eta})=(g, v) \forall(v, \boldsymbol{\eta}) \in H_{0}^{1}(\Omega) \times\left[H_{0}^{1}(\Omega)\right]^{2} . \tag{2.4}
\end{equation*}
$$

For the analysis the problem is first written in a mixed form with the shear force

$$
\begin{equation*}
\boldsymbol{q}=\frac{1}{t^{2}}(\nabla w-\boldsymbol{\beta}) \tag{2.5}
\end{equation*}
$$

taken as an independent unknown in the space $\left[L^{2}(\Omega)\right]^{2}$ (cf. [10]). This gives the following problem:
Variational formulation 2.2. Find $(w, \boldsymbol{\beta}, \boldsymbol{q}) \in H_{0}^{1}(\Omega) \times\left[H_{0}^{1}(\Omega)\right]^{2} \times\left[L^{2}(\Omega)\right]^{2}$ such that

$$
\begin{align*}
a(\boldsymbol{\beta}, \boldsymbol{\eta})+(\boldsymbol{q}, \nabla v-\boldsymbol{\eta}) & =(g, v) \forall(v, \boldsymbol{\eta}) \in H_{0}^{1}(\Omega) \times\left[H_{0}^{1}(\Omega)\right]^{2}, \tag{2.6}\\
(\nabla w-\boldsymbol{\beta}, \boldsymbol{r})-t^{2}(\boldsymbol{q}, \boldsymbol{r}) & =0 \forall \boldsymbol{r} \in\left[L^{2}(\Omega)\right]^{2} . \tag{2.7}
\end{align*}
$$

For further reference, we give our regularity results with a more general right hand side:
Variational formulation 2.3. Find $(w, \boldsymbol{\beta}, \boldsymbol{q}) \in H_{0}^{1}(\Omega) \times\left[H_{0}^{1}(\Omega)\right]^{2} \times\left[L^{2}(\Omega)\right]^{2}$ such that

$$
\begin{equation*}
a(\boldsymbol{\beta}, \boldsymbol{\eta})+(\boldsymbol{q}, \nabla v-\boldsymbol{\eta})=(g, v)+(\boldsymbol{G}, \boldsymbol{\eta}) \tag{2.8}
\end{equation*}
$$

for all $(v, \boldsymbol{\eta}) \in H_{0}^{1}(\Omega) \times\left[H_{0}^{1}(\Omega)\right]^{2}$, and

$$
\begin{equation*}
(\nabla w-\boldsymbol{\beta}, \boldsymbol{r})-t^{2}(\boldsymbol{q}, \boldsymbol{r})=0 \quad \forall \boldsymbol{r} \in\left[L^{2}(\Omega)\right]^{2} . \tag{2.9}
\end{equation*}
$$

For clarifying the detailed regularity structure of the problem the Helmholtz decomposition is used for the shear force. In [9] it is proved that for $\boldsymbol{q} \in$ $\left[L^{2}(\Omega)\right]^{2}$ one can write

$$
\begin{equation*}
\boldsymbol{q}=\nabla \psi+\boldsymbol{\operatorname { r o t }} p \tag{2.10}
\end{equation*}
$$

with a unique pair $(\psi, p) \in H_{0}^{1}(\Omega) \times\left[H^{1}(\Omega) \cap L_{0}^{2}(\Omega)\right]$, and the following orthogonality holds

$$
\begin{equation*}
(\nabla \psi, \operatorname{rot} p)=0 \tag{2.11}
\end{equation*}
$$

By using the same orthogonal splitting for the test function

$$
\begin{equation*}
\boldsymbol{r}=\nabla v+\operatorname{rot} q \tag{2.12}
\end{equation*}
$$

the above formulations are equivalent to the following problem:
Variational formulation 2.4. Find $(w, \boldsymbol{\beta}, \psi, p) \in H_{0}^{1}(\Omega) \times\left[H_{0}^{1}(\Omega)\right]^{2} \times$ $H_{0}^{1}(\Omega) \times\left[H^{1}(\Omega) \cap L_{0}^{2}(\Omega)\right]$ such that

$$
\begin{array}{rlrl}
(\nabla \psi, \nabla \varphi) & =(g, \varphi) & \forall \varphi \in H_{0}^{1}(\Omega), \\
a(\boldsymbol{\beta}, \boldsymbol{\eta})-(\operatorname{rot} p, \boldsymbol{\eta}) & =(\nabla \psi, \boldsymbol{\eta})+(\boldsymbol{G}, \boldsymbol{\eta}) & \forall \boldsymbol{\eta} \in\left[H_{0}^{1}(\Omega)\right]^{2} \\
t^{2}(\operatorname{rot} p, \operatorname{rot} q)+(\boldsymbol{\beta}, \boldsymbol{\operatorname { r o t } q)} & =0 \quad \forall q \in H^{1}(\Omega) \cap L_{0}^{2}(\Omega), \\
(\nabla w, \nabla v) & =(\boldsymbol{\beta}, \nabla v)+t^{2}(\nabla \psi, \nabla v) \quad \forall v \in H_{0}^{1}(\Omega) \tag{2.16}
\end{array}
$$

In the limit $t \rightarrow 0$ the solution $(w, \boldsymbol{\beta})=\left(w^{t}, \boldsymbol{\beta}^{t}\right)$ converges to the Kirchhoff limit with

$$
\begin{equation*}
\boldsymbol{\beta}^{0}=\nabla w^{0} . \tag{2.17}
\end{equation*}
$$

We write

$$
\begin{equation*}
w=w^{0}+w^{r} \text { and } \boldsymbol{\beta}=\boldsymbol{\beta}^{0}+\boldsymbol{\beta}^{r} \tag{2.18}
\end{equation*}
$$

We now prove the following global and interior regularity estimates:

Theorem 2.1. Let Ω be a convex polygonal domain and let Ω_{i} be a domain compactly embedded in Ω. With $g \in H^{s-2}(\Omega)$ and $t g \in H^{s-1}(\Omega), s \geq 1$, it then holds

$$
\begin{align*}
& \left\|w^{0}\right\|_{3}+t^{-1}\left\|w^{r}\right\|_{2}+\|\boldsymbol{\beta}\|_{2}+\|\psi\|_{1}+\|p\|_{1}+t\|p\|_{2} \tag{2.19}\\
& \quad \leq C\left(\|g\|_{-1}+t\|g\|_{0}+\|\boldsymbol{G}\|_{0}\right)
\end{align*}
$$

and

$$
\begin{align*}
& \left\|w^{0}\right\|_{s+2, \Omega_{i}}+t^{-1}\left\|w^{r}\right\|_{s+1, \Omega_{i}}+\|\boldsymbol{\beta}\|_{s+1, \Omega_{i}}+\|\psi\|_{s, \Omega_{i}}+\|p\|_{s, \Omega_{i}}+t\|p\|_{s+1, \Omega_{i}} \\
& \leq C\left(\|g\|_{s-2}+t\|g\|_{s-1}+\|\boldsymbol{G}\|_{s-1}\right) . \tag{2.20}
\end{align*}
$$

Proof. Step 1. As w^{0} is the Kirchhoff solution it is clear that

$$
\begin{equation*}
\left\|w^{0}\right\|_{3} \leq C\|g\|_{-1} \text { and }\left\|w^{0}\right\|_{s+2, \Omega_{i}} \leq C\|g\|_{s-2} \tag{2.21}
\end{equation*}
$$

Let now $\Omega^{\prime} \subset \subset \Omega^{\prime \prime} \subset \subset \Omega$, (with $\subset \subset$ denoting a compact embedding) be arbitrary. For the solution of the Poisson problem (2.13) above we have

$$
\begin{equation*}
\|\psi\|_{l} \leq C\|g\|_{l-2}, \text { for } l=1,2, \quad \text { and } \quad\|\psi\|_{s, \Omega^{\prime \prime}} \leq C\|g\|_{s-2} . \tag{2.22}
\end{equation*}
$$

Step 2. To obtain the other estimates we rely on the results proved by Arnold, Falk and Liu [2], [5] for the following general problem: find $(\boldsymbol{\Phi}, P) \in$ $\left[H_{0}^{1}(\Omega)\right]^{2} \times\left[H^{1}(\Omega) \cap L_{0}^{2}(\Omega)\right]$ such that

$$
\begin{align*}
a(\boldsymbol{\Phi}, \boldsymbol{\eta})-(\operatorname{rot} P, \boldsymbol{\eta}) & =(\boldsymbol{F}, \boldsymbol{\eta}), & & \boldsymbol{\eta} \in\left[H_{0}^{1}(\Omega)\right]^{2} \tag{2.23}\\
t^{2}(\operatorname{rot} P, \boldsymbol{\operatorname { r o t }} q)+(\boldsymbol{\Phi}, \boldsymbol{\operatorname { r o t }} q) & =(K, q), & & q \in H^{1}(\Omega) \cap L_{0}^{2}(\Omega) . \tag{2.24}
\end{align*}
$$

For this problem the following estimates are in essence proved in [2], [5]:

$$
\begin{equation*}
\|\boldsymbol{\Phi}\|_{2}+\|P\|_{1}+t\|P\|_{2}+t^{2}\|P\|_{3} \leq C\left(\|\boldsymbol{F}\|_{0}+\|K\|_{1}\right) \tag{2.25}
\end{equation*}
$$

and

$$
\begin{align*}
& \|\boldsymbol{\Phi}\|_{l+2, \Omega^{\prime}}+\|P\|_{l+1, \Omega^{\prime}}+t\|P\|_{l+2, \Omega^{\prime}}+t^{2}\|P\|_{l+3, \Omega^{\prime}} \tag{2.26}\\
& \leq C\left(\|\boldsymbol{F}\|_{l, \Omega^{\prime \prime}}+\|K\|_{l+1, \Omega^{\prime \prime}}\right)
\end{align*}
$$

with $l \geq 0$. Applying these results with $\boldsymbol{\Phi}=\boldsymbol{\beta}, P=p, \boldsymbol{F}=\nabla \psi+\boldsymbol{G}, K=0$, $\Omega^{\prime}=\Omega_{i}$, and $l=s-1$, gives

$$
\begin{equation*}
\|\boldsymbol{\beta}\|_{2}+\|p\|_{1}+t\|p\|_{2} \leq C\left(\|\nabla \psi\|_{0}+\|\boldsymbol{G}\|_{0}\right) \tag{2.27}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\boldsymbol{\beta}\|_{s+1, \Omega_{i}}+\|p\|_{s, \Omega_{i}}+t\|p\|_{s+1, \Omega_{i}} \leq C\left(\|\nabla \psi\|_{s-1, \Omega^{\prime \prime}}+\|\boldsymbol{G}\|_{s-1, \Omega^{\prime \prime}}\right) . \tag{2.28}
\end{equation*}
$$

Hence, we obtain all of the asserted estimates except the one for w^{r}. To this end, let $\left(\boldsymbol{\beta}^{0}, p^{0}\right)$ be the solution of (2.14)-(2.15) with $t=0$. From the results in [2], [5] one obtains

$$
\begin{equation*}
\left\|\boldsymbol{\beta}-\boldsymbol{\beta}^{0}\right\|_{1} \leq C t\left(\|\nabla \psi\|_{0}+\|\boldsymbol{G}\|_{0}\right) . \tag{2.29}
\end{equation*}
$$

The difference $w^{r}=w-w^{0}$ satisfies

$$
\begin{equation*}
\left(\nabla w^{r}, \nabla v\right)=\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{0}, \nabla v\right)+t^{2}(g, v), \quad v \in H_{0}^{1}(\Omega) \tag{2.30}
\end{equation*}
$$

and hence the H^{2}-regularity for the Poisson problem gives

$$
\begin{equation*}
\left\|w^{r}\right\|_{2} \leq C\left(\left\|\boldsymbol{\beta}-\boldsymbol{\beta}^{0}\right\|_{1}+t^{2}\|g\|_{0}\right) \tag{2.31}
\end{equation*}
$$

Combining this with (2.29) and (2.22) gives the remaining part of the global regularity estimate (2.19).

Step 3. Next, let us derive the remaining local estimates in (2.20). From (2.14)-(2.15) we obtain

$$
\begin{array}{lc}
a\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{0}, \boldsymbol{\eta}\right)-\left(\operatorname{rot}\left(p-p^{0}\right), \boldsymbol{\eta}\right)=0, & \boldsymbol{\eta} \in\left[H_{0}^{1}(\Omega)\right]^{2}, \\
\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{0}, \boldsymbol{\operatorname { r o t }} q\right)=-t^{2}(\operatorname{rot} p, \boldsymbol{\operatorname { r o t }} q), & q \in H^{1}(\Omega) \cap L_{0}^{2}(\Omega) . \tag{2.33}
\end{array}
$$

From (2.15) it follows that p satisfies the natural boundary condition $\partial p / \partial n=$ 0 on $\partial \Omega$, and the right hand side of (2.33) above is equal to $t^{2}(\Delta p, q)$. Hence, applying the estimate (2.26) with $\boldsymbol{\Phi}=\boldsymbol{\beta}-\boldsymbol{\beta}^{0}, P=p-p^{0}, \boldsymbol{F}=\mathbf{0}, K=t^{2} \Delta p$, $\Omega^{\prime}=\Omega_{i}$ and $l=s-2$, gives

$$
\begin{equation*}
\left\|\boldsymbol{\beta}-\boldsymbol{\beta}^{0}\right\|_{s, \Omega_{i}} \leq C t^{2}\|p\|_{s+1, \Omega^{\prime \prime}} \tag{2.34}
\end{equation*}
$$

Exactly in the same way as before we now get

$$
\begin{equation*}
t\|p\|_{s+1, \Omega^{\prime \prime}} \leq C\|g\|_{s-2} \tag{2.35}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left\|\boldsymbol{\beta}-\boldsymbol{\beta}^{0}\right\|_{s, \Omega_{i}} \leq C t\|g\|_{s-2} \tag{2.36}
\end{equation*}
$$

The equation (2.30) and the interior elliptic regularity for the Poisson problem then gives

$$
\begin{align*}
\left\|w^{r}\right\|_{s+1, \Omega_{i}} & \leq C\left(\left\|\boldsymbol{\beta}-\boldsymbol{\beta}^{0}\right\|_{s, \Omega_{i}}+t^{2}\|g\|_{s-1}\right) \tag{2.37}\\
& \leq C t\left(\|g\|_{s-2}+t\|g\|_{s-1}\right)
\end{align*}
$$

which concludes the proof.

3 The MITC Finite Elements

Let us recall the triangular MITC elements [7], [10]. Let \mathcal{C}_{h} be the triangulation of $\bar{\Omega}$ and let us denote $h=\max _{K \in \mathcal{C}_{h}} h_{K}$, where h_{K} is the diameter of $K . P_{k}(K)$ denotes the space of polynomials of degree k on K. Throughout the paper C denotes a positive constant independent of both the mesh size h and the plate thickness t.

The finite element subspaces $W_{h} \subset H_{0}^{1}(\Omega)$ and $\boldsymbol{V}_{h} \subset\left[H_{0}^{1}(\Omega)\right]^{2}$ are defined for the polynomial degree $k \geq 2$ as follows:

$$
\begin{align*}
W_{h} & =\left\{w \in H_{0}^{1}(\Omega) \mid w_{\mid K} \in P_{k}(K) \forall K \in \mathcal{C}_{h}\right\}, \tag{3.1}\\
\boldsymbol{V}_{h} & =\left\{\boldsymbol{\eta} \in\left[H_{0}^{1}(\Omega)\right]^{2} \mid \boldsymbol{\eta}_{\mid K} \in\left[P_{k}(K)\right]^{2} \oplus\left[B_{k+1}(K)\right]^{2} \forall K \in \mathcal{C}_{h}\right\}, \tag{3.2}
\end{align*}
$$

with the "bubble space"

$$
\begin{equation*}
B_{k+1}(K)=\left\{b=b_{3} p \mid p \in \tilde{P}_{k-2}(K), b_{3} \in P_{3}(K), b_{3 \mid E}=0 \quad \forall E \subset \partial K\right\} \tag{3.3}
\end{equation*}
$$

where $\widetilde{P}_{k-2}(K)$ is the space of homogenous polynomials of degree $k-2$ on the element K.

The rotated Raviart-Thomas space of order $k-1$ is denoted by

$$
\begin{equation*}
\boldsymbol{Q}_{h}=\left\{\boldsymbol{r} \in \boldsymbol{H}(\operatorname{rot} ; \Omega) \mid \boldsymbol{r}_{\mid K} \in\left[P_{k-1}(K)\right]^{2} \oplus(y,-x) \tilde{P}_{k-1}(K) \forall K \in \mathcal{C}_{h}\right\} . \tag{3.4}
\end{equation*}
$$

The reduction operator $\boldsymbol{R}_{h}:\left[H^{1}(\Omega)\right]^{2} \rightarrow \boldsymbol{Q}_{h}$ is defined by the conditions

$$
\begin{align*}
\left\langle\left(\boldsymbol{R}_{h} \boldsymbol{\eta}-\boldsymbol{\eta}\right) \cdot \boldsymbol{\tau}_{E}, p\right\rangle_{E} & =0 \quad \forall p \in P_{k-1}(E) \forall E \subset \partial K, \tag{3.5}\\
\left(\boldsymbol{R}_{h} \boldsymbol{\eta}-\boldsymbol{\eta}, \boldsymbol{p}\right)_{K} & =0 \forall \boldsymbol{p} \in\left[P_{k-2}(K)\right]^{2} . \tag{3.6}
\end{align*}
$$

Here E denotes an edge to K and $\boldsymbol{\tau}_{E}$ is the unit tangent to $E .(\cdot, \cdot)_{K}$ and $\langle\cdot, \cdot\rangle_{E}$ are the L^{2}-inner products.

The MITC method is now defined as follows:
Method 3.1. Find the deflection $w_{h} \in W_{h}$ and the rotation $\boldsymbol{\beta}_{h} \in \boldsymbol{V}_{h}$ such that

$$
\begin{equation*}
\mathcal{B}_{h}\left(w_{h}, \boldsymbol{\beta}_{h} ; v, \boldsymbol{\eta}\right)=(g, v) \forall(v, \boldsymbol{\eta}) \in W_{h} \times \boldsymbol{V}_{h}, \tag{3.7}
\end{equation*}
$$

with the modified bilinear form

$$
\begin{equation*}
\mathcal{B}_{h}(z, \boldsymbol{\phi} ; v, \boldsymbol{\eta})=a(\boldsymbol{\phi}, \boldsymbol{\eta})+\frac{1}{t^{2}}\left(\boldsymbol{R}_{h}(\nabla z-\boldsymbol{\phi}), \boldsymbol{R}_{h}(\nabla v-\boldsymbol{\eta})\right) . \tag{3.8}
\end{equation*}
$$

The discrete shear force $\boldsymbol{q}_{h} \in \boldsymbol{Q}_{h}$ is

$$
\begin{equation*}
\boldsymbol{q}_{h}=\frac{1}{t^{2}} \boldsymbol{R}_{h}\left(\nabla w_{h}-\boldsymbol{\beta}_{h}\right) . \tag{3.9}
\end{equation*}
$$

Now, the mixed variant of Method 3.1 is of the following form [10]:
Method 3.2. Find $\left(w_{h}, \boldsymbol{\beta}_{h}, \boldsymbol{q}_{h}\right) \in W_{h} \times \boldsymbol{V}_{h} \times \boldsymbol{Q}_{h} \subset H_{0}^{1}(\Omega) \times\left[H_{0}^{1}(\Omega)\right]^{2} \times$ $\left[L^{2}(\Omega)\right]^{2}$ such that

$$
\begin{align*}
a\left(\boldsymbol{\beta}_{h}, \boldsymbol{\eta}\right)+\left(\boldsymbol{q}_{h}, \boldsymbol{R}_{h}(\nabla v-\boldsymbol{\eta})\right) & =(g, v) \forall(v, \boldsymbol{\eta}) \in W_{h} \times \boldsymbol{V}_{h}, \tag{3.10}\\
\left(\boldsymbol{R}_{h}\left(\nabla w_{h}-\boldsymbol{\beta}_{h}\right), \boldsymbol{r}\right)-t^{2}\left(\boldsymbol{q}_{h}, \boldsymbol{r}\right) & =0 \quad \forall \boldsymbol{r} \in \boldsymbol{Q}_{h} . \tag{3.11}
\end{align*}
$$

The key in the error analysis of the MITC elements performed in [10], [12] is that there exists a discrete Helmholtz decomposition. For this we define

$$
\begin{equation*}
P_{h}=\left\{q \in L_{0}^{2}(\Omega) \mid q_{\mid K} \in P_{k-1}(K) \forall K \in \mathcal{C}_{h}\right\} . \tag{3.12}
\end{equation*}
$$

Lemma 3.1. For every $\boldsymbol{r} \in \boldsymbol{Q}_{h}$ there exists unique $v \in W_{h}, q \in P_{h}$ and $\boldsymbol{\alpha} \in \boldsymbol{Q}_{h}$ such that

$$
\begin{equation*}
\boldsymbol{r}=\nabla v+\boldsymbol{\alpha} \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
(\boldsymbol{\alpha}, \boldsymbol{s})=(\operatorname{rot} s, q) \quad \forall \boldsymbol{s} \in \boldsymbol{Q}_{h} . \tag{3.14}
\end{equation*}
$$

The second relation motivates the notation

$$
\begin{equation*}
\boldsymbol{\alpha}=\operatorname{rot}_{h} q \tag{3.15}
\end{equation*}
$$

and we have the orthogonality

$$
\begin{equation*}
\left(\operatorname{rot}_{h} q, \nabla v\right)=0 . \tag{3.16}
\end{equation*}
$$

Note that this gives [12], with L^{2}-projections $\Pi_{h}: L_{0}^{2}(\Omega) \rightarrow P_{h}$ and $\boldsymbol{\Pi}_{h}$: $\left[L^{2}(\Omega)\right]^{2} \rightarrow \boldsymbol{Q}_{h}$,

$$
\begin{equation*}
\operatorname{rot}_{h} \Pi_{h} q=\boldsymbol{\Pi}_{h} \operatorname{rot} q \quad \forall q \in H^{1}(\Omega), \tag{3.17}
\end{equation*}
$$

and for $q \in P_{h}$

$$
\begin{equation*}
\left(\boldsymbol{\operatorname { r o t }}_{h} q, \boldsymbol{R}_{h} \boldsymbol{\beta}_{h}\right)=\left(q, \operatorname{rot} \boldsymbol{\beta}_{h}\right) . \tag{3.18}
\end{equation*}
$$

By using this result and writing

$$
\begin{equation*}
\boldsymbol{q}_{h}=\nabla \psi_{h}+\operatorname{rot}_{h} p_{h} \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{r}=\nabla v+\operatorname{rot}_{k} q \tag{3.20}
\end{equation*}
$$

in Method 3.2 we get the equivalent formulation:
Method 3.3. Find $\left(w_{h}, \boldsymbol{\beta}_{h}, \psi_{h}, p_{h}\right) \in W_{h} \times \boldsymbol{V}_{h} \times W_{h} \times P_{h}$ such that

$$
\begin{align*}
\left(\nabla \psi_{h}, \nabla \varphi\right) & =(g, \varphi) \quad \forall \varphi \in W_{h}, \tag{3.21}\\
a\left(\boldsymbol{\beta}_{h}, \boldsymbol{\eta}\right)-\left(p_{h}, \operatorname{rot} \boldsymbol{\eta}\right) & =\left(\nabla \psi_{h}, \boldsymbol{R}_{h} \boldsymbol{\eta}\right) \quad \forall \boldsymbol{\eta} \in \boldsymbol{V}_{h}, \tag{3.22}\\
t^{2}\left(\operatorname{rot}_{h} p_{h}, \operatorname{rot}_{h} q\right)+\left(\operatorname{rot} \boldsymbol{\beta}_{h}, q\right) & =0 \quad \forall q \in P_{h}, \tag{3.23}\\
\left(\nabla w_{h}, \nabla v\right) & =\left(\boldsymbol{R}_{h} \boldsymbol{\beta}_{h}, \nabla v\right)+t^{2}\left(\nabla \psi_{h}, \nabla v\right) \quad \forall v \in W_{h} . \tag{3.24}
\end{align*}
$$

We now estimate the errors between the continuous Variational formulation 2.4 (with $\boldsymbol{G}=\mathbf{0}$) and the discrete Method 3.3. In W_{h} and \boldsymbol{V}_{h} we use the standard Lagrange interpolants with the well-known estimates of the following type:

Lemma 3.2. There is a positive constant C such that

$$
\begin{equation*}
\left\|v-I_{h} v\right\|_{1, K} \leq C h_{K}^{m-1}\|v\|_{m, K} \quad \forall v \in H^{m}(K) \tag{3.25}
\end{equation*}
$$

where $2 \leq m \leq k+1$.
In the discrete shear space \boldsymbol{Q}_{h} we use the Raviart-Thomas interpolation operator defined in (3.5)-(3.6) for which it holds:

Lemma 3.3. [14] There is a positive constant C such that

$$
\begin{equation*}
\left\|\boldsymbol{\eta}-\boldsymbol{R}_{h} \boldsymbol{\eta}\right\|_{0, K} \leq C h_{K}^{m}\|\boldsymbol{\eta}\|_{m, K} \quad \forall \boldsymbol{\eta} \in\left[H^{m}(K)\right]^{2} \tag{3.26}
\end{equation*}
$$

where $1 \leq m \leq k$.

In order to have a measure of the influence of the boundary layer we use the following notation. With the interior region Ω_{i} we denote

$$
\begin{equation*}
\Omega_{i}^{h}=\cup_{K \subset \Omega_{i}} K, \quad \Omega_{b}^{h}=\Omega \backslash \Omega_{i}^{h} \tag{3.27}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{i}=\max _{K \in \Omega_{i}^{h}} h_{K}, \quad h_{b}=\max _{K \in \Omega_{b}^{h}} h_{K} . \tag{3.28}
\end{equation*}
$$

Our error estimate is now the following:
Theorem 3.1. Let Ω be a convex polygon and suppose that the plate is clamped. For $g \in H^{k-2}(\Omega), t g \in H^{k-1}(\Omega)$ it then holds

$$
\begin{align*}
& \left\|w-w_{h}\right\|_{1}+\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{h}\right\|_{1}+\left\|\psi-\psi_{h}\right\|_{1}+\left\|p-p_{h}\right\|_{0}+t\left\|\operatorname{rot} p-\operatorname{rot}_{h} p_{h}\right\|_{0} \\
& \quad \leq C\left\{h_{i}^{k}\left(\|g\|_{k-2}+t\|g\|_{k-1}\right)+h_{b}\left(\|g\|_{-1}+t\|g\|_{0}\right)\right\} \tag{3.29}
\end{align*}
$$

and

$$
\begin{align*}
& \left\|w-w_{h}\right\|_{0}+\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{h}\right\|_{0} \tag{3.30}\\
& \quad \leq C h\left\{h_{i}^{k}\left(\|g\|_{k-2}+t\|g\|_{k-1}\right)+h_{b}\left(\|g\|_{-1}+t\|g\|_{0}\right)\right\} .
\end{align*}
$$

Proof. Step 1. From (2.13) and (3.21) we get

$$
\begin{align*}
\left|\psi-\psi_{h}\right|_{1} & \leq\left|\psi-I_{h} \psi\right|_{1} \\
& \leq\left|\psi-I_{h} \psi\right|_{1, \Omega_{i}^{h}}+\left|\psi-I_{h} \psi\right|_{1, \Omega_{b}^{h}} . \tag{3.31}
\end{align*}
$$

In Ω_{i}^{h} we apply Lemma 3.2 with $m=k+1$ and in Ω_{b}^{h} with $m=2$, and then we use Theorem 2.1 and obtain

$$
\begin{align*}
\mid \psi & -\left.I_{h} \psi\right|_{1, \Omega_{i}^{h}}+\left|\psi-I_{h} \psi\right|_{1, \Omega_{b}^{h}} \\
& \leq C\left(h_{i}^{k}\|\psi\|_{k+1, \Omega_{i}^{h}}+h_{b}\|\psi\|_{2, \Omega_{b}^{h}}\right) \tag{3.32}\\
& \leq C\left\{h_{i}^{k}\left(\|g\|_{k-2}+t\|g\|_{k-1}\right)+h_{b}\left(\|g\|_{-1}+t\|g\|_{0}\right)\right\}
\end{align*}
$$

Step 2. The equations (3.22)-(3.23) are a discretization of the singularly perturbed Stokes system (2.14)-(2.15) (with $\boldsymbol{G}=\mathbf{0}$). For this we have the stability in the norms $\|\cdot\|_{1}$ (for the rotation) and $\|\cdot\|_{0}+t\left\|\operatorname{rot}_{h}(\cdot)\right\|_{0}$ (for the pressure). By the standard arguments, taking the non-consistency into account (cf. [12]), we get

$$
\begin{align*}
\| \boldsymbol{\beta} & -\boldsymbol{\beta}_{h}\left\|_{1}+\right\| p-p_{h}\left\|_{0}+t\right\| \operatorname{rot} p-\operatorname{rot}_{h} p_{h} \|_{0} \\
\leq & C\left(\left\|\boldsymbol{\beta}-\boldsymbol{I}_{h} \boldsymbol{\beta}\right\|_{1}+\left\|p-\Pi_{h} p\right\|_{0}+t\left\|\operatorname{rot} p-\operatorname{rot}_{h} \Pi_{h} p\right\|_{0}\right. \tag{3.33}\\
& \left.+\left|\psi-\psi_{h}\right|_{1}+\sup _{\boldsymbol{\eta} \in \boldsymbol{V}_{h}} \frac{\left|\left(\nabla \psi_{h}, \boldsymbol{R}_{h} \boldsymbol{\eta}-\boldsymbol{\eta}\right)\right|}{\|\boldsymbol{\eta}\|_{1}}\right) .
\end{align*}
$$

The first two terms above we estimate as before by using the interpolation estimates and Theorem 2.1

$$
\begin{align*}
\| \boldsymbol{\beta}- & \boldsymbol{I}_{h} \boldsymbol{\beta}\left\|_{1}+\right\| p-\Pi_{h} p \|_{0} \\
\leq & \left\|\boldsymbol{\beta}-\boldsymbol{I}_{h} \boldsymbol{\beta}\right\|_{1, \Omega_{i}^{h}}+\left\|p-\Pi_{h} p\right\|_{0, \Omega_{i}^{h}} \\
& +\left\|\boldsymbol{\beta}-\boldsymbol{I}_{h} \boldsymbol{\beta}\right\|_{1, \Omega_{b}^{h}}+\left\|p-\Pi_{h} p\right\|_{0, \Omega_{b}^{h}} \tag{3.34}\\
\leq & C h_{i}^{k}\left(\|\boldsymbol{\beta}\|_{k+1, \Omega_{i}^{h}}+\|p\|_{k, \Omega_{i}^{h}}\right)+C h_{b}\left(\|\boldsymbol{\beta}\|_{2, \Omega_{b}^{h}}+\|p\|_{1, \Omega_{b}^{h}}\right) \\
\leq & C\left\{h_{i}^{k}\left(\|g\|_{k-2}+t\|g\|_{k-1}\right)+h_{b}\left(\|g\|_{-1}+t\|g\|_{0}\right)\right\} .
\end{align*}
$$

For the third term the relation (3.17) and the interpolation estimate give

$$
\begin{align*}
& t\left\|\operatorname{rot} p-\operatorname{rot}_{h} \Pi_{h} p\right\|_{0}=t\left\|\operatorname{rot} p-\boldsymbol{\Pi}_{h} \operatorname{rot} p\right\|_{0} \\
& \quad \leq t\left\|\operatorname{rot} p-\boldsymbol{\Pi}_{h} \operatorname{rot} p\right\|_{0, \Omega_{i}^{h}}+t\left\|\operatorname{rot} p-\boldsymbol{\Pi}_{h} \operatorname{rot} p\right\|_{0, \Omega_{b}^{h}} \\
& \quad \leq C\left(h_{i}^{k}\|t \operatorname{rot} p\|_{k, \Omega_{i}^{h}}+h_{b}\|t \operatorname{rot} p\|_{1, \Omega_{b}^{h}}\right) \tag{3.35}\\
& \quad \leq C\left\{h_{i}^{k}\left(\|g\|_{k-2}+t\|g\|_{k-1}\right)+h_{b}\left(\|g\|_{-1}+t\|g\|_{0}\right)\right\} .
\end{align*}
$$

Next, let $\boldsymbol{T}_{h}:\left[L^{2}(\Omega)\right]^{2} \rightarrow\left\{\boldsymbol{r} \in\left[L^{2}(\Omega)\right]^{2} \mid \boldsymbol{r}_{\mid K} \in\left[P_{k-2}(K)\right]^{2} \forall K \in \mathcal{C}_{h}\right\}$ be the L^{2}-projection. Then, by (3.6) it holds

$$
\begin{equation*}
\left(\boldsymbol{T}_{h} \nabla \psi, \boldsymbol{\eta}-\boldsymbol{R}_{h} \boldsymbol{\eta}\right)=0 \tag{3.36}
\end{equation*}
$$

Therefore, we obtain

$$
\begin{align*}
&\left(\nabla \psi_{h}, \boldsymbol{\eta}-\boldsymbol{R}_{h} \boldsymbol{\eta}\right)=\left(\nabla\left(\psi_{h}-\psi\right), \boldsymbol{\eta}-\boldsymbol{R}_{h} \boldsymbol{\eta}\right)+\left(\nabla \psi-\boldsymbol{T}_{h} \nabla \psi, \boldsymbol{\eta}-\boldsymbol{R}_{h} \boldsymbol{\eta}\right) \\
& \leq\left\|\nabla\left(\psi-\psi_{h}\right)\right\|_{0}\left\|\boldsymbol{\eta}-\boldsymbol{R}_{h} \boldsymbol{\eta}\right\|_{0}+\left(\nabla \psi-\boldsymbol{T}_{h} \nabla \psi, \boldsymbol{\eta}-\boldsymbol{R}_{h} \boldsymbol{\eta}\right) \\
& \leq C\left\|\nabla\left(\psi-\psi_{h}\right)\right\|_{0}\|\boldsymbol{\eta}\|_{1}+\left(\nabla \psi-\boldsymbol{T}_{h} \nabla \psi, \boldsymbol{\eta}-\boldsymbol{R}_{h} \boldsymbol{\eta}\right) \\
&= C\left\|\nabla\left(\psi-\psi_{h}\right)\right\|_{0}\|\boldsymbol{\eta}\|_{1}+\left(\nabla \psi-\boldsymbol{T}_{h} \nabla \psi, \boldsymbol{\eta}-\boldsymbol{R}_{h} \boldsymbol{\eta}\right)_{\Omega_{i}^{h}} \\
&+\left(\nabla \psi-\boldsymbol{T}_{h} \nabla \psi, \boldsymbol{\eta}-\boldsymbol{R}_{h} \boldsymbol{\eta}\right)_{\Omega_{b}^{h}} \\
& \leq C\left\|\nabla\left(\psi-\psi_{h}\right)\right\|_{0}\|\boldsymbol{\eta}\|_{1}+\left\|\nabla \psi-\boldsymbol{T}_{h} \nabla \psi\right\|_{0, \Omega_{i}^{h}}\left\|\boldsymbol{\eta}-\boldsymbol{R}_{h} \boldsymbol{\eta}\right\|_{0, \Omega_{i}^{h}} \\
&+\left\|\nabla \psi-\boldsymbol{T}_{h} \nabla \psi\right\|_{0 \Omega_{b}^{h}}\left\|\boldsymbol{\eta}-\boldsymbol{R}_{h} \boldsymbol{\eta}\right\|_{0, \Omega_{b}^{h}} \\
& \leq C\left\|\nabla\left(\psi-\psi_{h}\right)\right\|_{0}\|\boldsymbol{\eta}\|_{1}+C h_{i}^{k}\|\nabla \psi\|_{k-1, \Omega_{i}^{h}}\|\boldsymbol{\eta}\|_{1, \Omega_{i}^{h}} \\
&+C h_{b}\|\nabla \psi\|_{0, \Omega_{b}^{h}}\|\boldsymbol{\eta}\|_{1, \Omega_{b}^{h}} . \tag{3.37}
\end{align*}
$$

From Theorem 2.1 and the estimates already proved we thus have

$$
\begin{equation*}
\sup _{\boldsymbol{\eta} \in \boldsymbol{V}_{h}} \frac{\left|\left(\nabla \psi_{h}, \boldsymbol{R}_{h} \boldsymbol{\eta}-\boldsymbol{\eta}\right)\right|}{\|\boldsymbol{\eta}\|_{1}} \leq C\left\{h_{i}^{k}\left(\|g\|_{k-2}+t\|g\|_{k-1}\right)+h_{b}\left(\|g\|_{-1}+t\|g\|_{0}\right)\right\} \tag{3.38}
\end{equation*}
$$

The right hand side of (3.33) is then bounded by the right hand side in the asserted estimate (3.29).

Step 3. From (2.16) and (3.24), by using (2.13) and (3.21), we get

$$
\begin{equation*}
\left\|w-w_{h}\right\|_{1} \leq\left\|\boldsymbol{\beta}-\boldsymbol{R}_{h} \boldsymbol{\beta}_{h}\right\|_{0} . \tag{3.39}
\end{equation*}
$$

Now, it holds

$$
\begin{align*}
\left\|\boldsymbol{\beta}-\boldsymbol{R}_{h} \boldsymbol{\beta}_{h}\right\|_{0} & =\left\|\left(\boldsymbol{\beta}-\boldsymbol{R}_{h} \boldsymbol{\beta}\right)+\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{h}\right)+\left(\boldsymbol{I}-\boldsymbol{R}_{h}\right)\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{h}\right)\right\|_{0} \\
& \leq\left\|\boldsymbol{\beta}-\boldsymbol{R}_{h} \boldsymbol{\beta}\right\|_{0}+\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{h}\right\|_{0}+\left\|\left(\boldsymbol{I}-\boldsymbol{R}_{h}\right)\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{h}\right)\right\|_{0} . \tag{3.40}
\end{align*}
$$

By using Lemma 3.3 and the previous estimates we then get

$$
\begin{equation*}
\left\|w-w_{h}\right\|_{1} \leq C\left\{h_{i}^{k}\left(\|g\|_{k-2}+t\|g\|_{k-1}\right)+h_{b}\left(\|g\|_{-1}+t\|g\|_{0}\right)\right\} . \tag{3.41}
\end{equation*}
$$

We have now proved the asserted estimate (3.29).
Step 4. The L^{2}-estimates for the deflection and the rotation are proven by adapting the usual duality technique (cf. [10], [12]) and using the regularity estimate (2.19).

Remark 3.1. For the shear force the previous theorem gives the estimate

$$
\begin{equation*}
t\left\|\boldsymbol{q}-\boldsymbol{q}_{h}\right\|_{0} \leq C\left\{h_{i}^{k}\left(\|g\|_{k-2}+t\|g\|_{k-1}\right)+h_{b}\left(\|g\|_{-1}+t\|g\|_{0}\right)\right\} \tag{3.42}
\end{equation*}
$$

which is utilized in the analysis of the postprocessing method in [11]. Also the splitting $w=w^{r}+w^{0}$ for the deflection and the corresponding regularity result of Theorem 2.1, which we have not used here, are utilized in [11].

References

[1] D. N. Arnold and R. S. Falk. Edge effects in the Reissner-Mindlin plate theory. In A. K. Noor, T. Belytschko, and J. C. Simo, editors, Analytic and Computational Models of Shells, pages 71-90, New York, 1989. ASME.
[2] D. N. Arnold and R. S. Falk. A uniformly accurate finite element method for the Reissner-Mindlin plate. SIAM J. Num. Anal., 26:1276-1290, 1989.
[3] D. N. Arnold and R. S. Falk. The boundary layer for the ReissnerMindlin plate model. SIAM J. Math. Anal., 21:281-312, 1990.
[4] D. N. Arnold and R. S. Falk. Asymptotic analysis of the boundary layer for the Reissner-Mindlin plate model. SIAM J. Math. Anal., 27:486-514, 1996.
[5] D. N. Arnold and X. Liu. Interior estimates for a low order finite element method for the Reissner-Mindlin plate model. Adv. Comp. Math., 7:337360, 1997.
[6] K.-J. Bathe and F. Brezzi. On the convergence of a four node plate bending element based on Reissner-Mindlin theory. In J. R. Whiteman, editor, The Mathematics of Finite Elements and Applications V, MAFELAP 1984, pages 491-503. Academic Press, 1985.
[7] K.-J. Bathe, F. Brezzi, and M. Fortin. Mixed-interpolated elements for Reissner-Mindlin plates. Int. J. Num. Meths. Eng., 28:1787-1801, 1989.
[8] K.-J. Bathe and E. Dvorkin. A four node plate bending element based on Mindlin-Reissner plate theory and mixed interpolation. Int. J. Num. Meths. Eng., 21:367-383, 1985.
[9] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer Verlag, New York, 1991.
[10] F. Brezzi, M. Fortin, and R. Stenberg. Error analysis of mixedinterpolated elements for Reissner-Mindlin plates. Math. Mod. Meth. Appl. Sci., 1:125-151, 1991.
[11] M. Lyly, J. Niiranen, and R. Stenberg. Superconvergence and postprocessing of MITC plate elements. Research Reports A 474, Helsinki University of Technology, Institute of Mathematics, January 2005.
[12] P. Peisker and D. Braess. Uniform convergence of mixed interpolated elements for Reissner-Mindlin plates. $M^{2} A N, 26: 557-574,1992$.
[13] J. Pitkäranta and M. Suri. Design principles and error analysis for reduced-shear plate-bending finite elements. Numer. Math., 75:223-266, 1996.
[14] P.-A. Raviart and J. M. Thomas. A mixed finite element method for second order elliptic problems. In Mathematical Aspects of the Finite Element Method. Lecture Notes in Math. 606, pages 292-315. SpringerVerlag, 1977.
[15] R. Stenberg and M. Suri. An $h p$ error analysis of MITC plate elements. SIAM J. Num. Anal., 34:544-568, 1997.
(continued from the back cover)
A479 Jarmo Malinen
Conservativity of Time-Flow Invertible and Boundary Control Systems
December 2004

A478 Niko Marola
Moser's Method for minimizers on metric measure spaces
October 2004

A477 Tuomo T. Kuusi
Moser's Method for a Nonlinear Parabolic Equation
October 2004

A476 Dario Gasbarra, Esko Valkeila, Lioudmila Vostrikova
Enlargement of filtration and additional information in pricing models: a Bayesian approach
October 2004

A475 Iivo Vehviläinen
Applyining mathematical finance tools to the competitive Nordic electricity market
October 2004

A474 Mikko Lyly, Jarkko Niiranen, Rolf Stenberg
Superconvergence and postprocessing of MITC plate elements
January 2005

A473 Carlo Lovadina, Rolf Stenberg
Energy norm a posteriori error estimates for mixed finite element methods October 2004

A472 Carlo Lovadina, Rolf Stenberg
A posteriori error analysis of the linked interpolation technique for plate bending problems
September 2004

A471 Nuutti Hyvönen
Diffusive tomography methods: Special boundary conditions and characterization of inclusions
April 2004

HELSINKI UNIVERSITY OF TECHNOLOGY INSTITUTE OF MATHEMATICS RESEARCH REPORTS

The list of reports is continued inside. Electronical versions of the reports are available at http://www.math.hut.fi/reports/ .

A485 Sampsa Pursiainen
Bayesian approach to detection of anomalies in electrical impedance tomogra-
phy
April 2005

A484 Visa Latvala, Niko Marola, Mikko Pere
Harnack's inequality for a nonlinear eigenvalue problem on metric spaces
March 2005

A482 Mikko Lyly, Jarkko Niiranen, Rolf Stenberg
A refined error analysis of MITC plate elements
April 2005

A481 Dario Gasbarra, Tommi Sottinen, Esko Valkeila
Gaussia Bridges
December 2004

A480 Ville Havu, Jarmo Malinen
Approximation of the Laplace transform by the Cayley transform
December 2004

