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1 Introduction

One of the most successful finite element methods for the Reissner–Mindlin
plate bending model is the MITC family introduced by K.-J. Bathe and co-
workers [8], [6], [7]. The family has been mathematically analyzed under
various assumptions: The first error analysis [7] was performed for the limit-
ing case of a vanishing thickness and in [10], [12] the analysis was extended to
a positive thickness. The result is, roughly speaking, that the error is quasi-
optimal in the sense that the finite element error is bounded from above by a
constant times the interpolation error, and it is essential that the constant is
independent of the plate thickness. The estimate is, however, somewhat un-
satisfactory, because it is combined with an interpolation estimate obtained
by assuming a smooth solution. In practice, the solution is never very smooth
since it is known [1], [3], [4] that the solution contains strong boundary layers.
In [13] an analysis is performed by taking the boundary layer into account
for the free plate with a smooth boundary.

The purpose of this paper is to make an analysis in spirit of [13], but
now for a clamped plate and a polygonal domain. We prove an estimate
uniformly valid and, in particular, we give the estimate with respect to the
loading. For this we prove a regularity result that can be used for the analysis
of other finite elements as well. For simplicity, we consider a triangular MITC
method, but it is clear that the results also hold for other elements of the
MITC-type, such as the triangular and quadrilateral families reviewed in [10],
[15]. The results of this paper are used in [11] where a postprocessing method
is introduced, analyzed and tested.

2 The Reissner–Mindlin plate model

We consider a clamped plate with the midsurface Ω ⊂ R2 and scale the
loading f by assuming it to be of the form f = Gt3g, with G denoting the
shear modulus and t denoting the thickness. This gives a well posed problem
in the limit t → 0, cf. [9].

We define the bilinear form

B(z,φ; v,η) = a(φ,η) + t−2(∇z − φ,∇v − η), (2.1)

with

a(φ,η) =
1

6
{(ε(φ), ε(η)) +

ν

1 − ν
(div φ, div η)}, (2.2)

where ν is the Poisson ratio and ε is the linear strain tensor

ε(η) =
1

2
(∇η + (∇η)T ). (2.3)

The problem is then the following:

Variational formulation 2.1. Find the deflection w ∈ H1
0 (Ω) and the ro-

tation β ∈ [H1
0 (Ω)]2 such that

B(w,β; v,η) = (g, v) ∀(v,η) ∈ H1
0 (Ω) × [H1

0 (Ω)]2. (2.4)
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For the analysis the problem is first written in a mixed form with the
shear force

q =
1

t2
(∇w − β) (2.5)

taken as an independent unknown in the space [L2(Ω)]2 (cf. [10]). This gives
the following problem:

Variational formulation 2.2. Find (w,β, q) ∈ H1
0 (Ω)×[H1

0 (Ω)]2×[L2(Ω)]2

such that

a(β,η) + (q,∇v − η) = (g, v) ∀(v,η) ∈ H1
0 (Ω) × [H1

0 (Ω)]2, (2.6)

(∇w − β, r) − t2(q, r) = 0 ∀r ∈ [L2(Ω)]2. (2.7)

For further reference, we give our regularity results with a more general
right hand side:

Variational formulation 2.3. Find (w,β, q) ∈ H1
0 (Ω)×[H1

0 (Ω)]2×[L2(Ω)]2

such that
a(β,η) + (q,∇v − η) = (g, v) + (G,η) (2.8)

for all (v,η) ∈ H1
0 (Ω) × [H1

0 (Ω)]2, and

(∇w − β, r) − t2(q, r) = 0 ∀r ∈ [L2(Ω)]2. (2.9)

For clarifying the detailed regularity structure of the problem the Helmholtz
decomposition is used for the shear force. In [9] it is proved that for q ∈
[L2(Ω)]2 one can write

q = ∇ψ + rot p, (2.10)

with a unique pair (ψ, p) ∈ H1
0 (Ω) × [H1(Ω) ∩ L2

0(Ω)], and the following
orthogonality holds

(∇ψ, rot p) = 0. (2.11)

By using the same orthogonal splitting for the test function

r = ∇v + rot q (2.12)

the above formulations are equivalent to the following problem:

Variational formulation 2.4. Find (w,β, ψ, p) ∈ H1
0 (Ω) × [H1

0 (Ω)]2 ×
H1

0 (Ω) × [H1(Ω) ∩ L2
0(Ω)] such that

(∇ψ,∇ϕ) = (g, ϕ) ∀ϕ ∈ H1
0 (Ω), (2.13)

a(β,η) − (rot p,η) = (∇ψ,η) + (G,η) ∀η ∈ [H1
0 (Ω)]2, (2.14)

t2(rot p, rot q) + (β, rot q) = 0 ∀q ∈ H1(Ω) ∩ L2
0(Ω), (2.15)

(∇w,∇v) = (β,∇v) + t2(∇ψ,∇v) ∀v ∈ H1
0 (Ω). (2.16)

In the limit t → 0 the solution (w,β) = (wt,βt) converges to the Kirchhoff
limit with

β0 = ∇w0. (2.17)

We write
w = w0 + wr and β = β0 + βr. (2.18)

We now prove the following global and interior regularity estimates:
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Theorem 2.1. Let Ω be a convex polygonal domain and let Ωi be a domain
compactly embedded in Ω. With g ∈ Hs−2(Ω) and tg ∈ Hs−1(Ω), s ≥ 1, it
then holds

‖w0‖3 + t−1‖wr‖2 + ‖β‖2 + ‖ψ‖1 + ‖p‖1 + t‖p‖2

≤ C(‖g‖−1 + t‖g‖0 + ‖G‖0)
(2.19)

and

‖w0‖s+2,Ωi
+ t−1‖wr‖s+1,Ωi

+ ‖β‖s+1,Ωi
+ ‖ψ‖s,Ωi

+ ‖p‖s,Ωi
+ t‖p‖s+1,Ωi

≤ C(‖g‖s−2 + t‖g‖s−1 + ‖G‖s−1).

(2.20)

Proof. Step 1. As w0 is the Kirchhoff solution it is clear that

‖w0‖3 ≤ C‖g‖−1 and ‖w0‖s+2,Ωi
≤ C‖g‖s−2. (2.21)

Let now Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω, (with ⊂⊂ denoting a compact embedding) be
arbitrary. For the solution of the Poisson problem (2.13) above we have

‖ψ‖l ≤ C‖g‖l−2, for l = 1, 2, and ‖ψ‖s,Ω′′ ≤ C‖g‖s−2. (2.22)

Step 2. To obtain the other estimates we rely on the results proved by
Arnold, Falk and Liu [2], [5] for the following general problem: find (Φ, P ) ∈
[H1

0 (Ω)]2 × [H1(Ω) ∩ L2
0(Ω)] such that

a(Φ,η) − (rotP,η) = (F ,η), η ∈ [H1
0 (Ω)]2, (2.23)

t2(rotP, rot q) + (Φ, rot q) = (K, q), q ∈ H1(Ω) ∩ L2
0(Ω). (2.24)

For this problem the following estimates are in essence proved in [2], [5]:

‖Φ‖2 + ‖P‖1 + t‖P‖2 + t2‖P‖3 ≤ C(‖F ‖0 + ‖K‖1) (2.25)

and

‖Φ‖l+2,Ω′ + ‖P‖l+1,Ω′ + t‖P‖l+2,Ω′ + t2‖P‖l+3,Ω′

≤ C(‖F ‖l,Ω′′ + ‖K‖l+1,Ω′′),
(2.26)

with l ≥ 0. Applying these results with Φ = β, P = p, F = ∇ψ+G, K = 0,
Ω′ = Ωi, and l = s − 1, gives

‖β‖2 + ‖p‖1 + t‖p‖2 ≤ C
(
‖∇ψ‖0 + ‖G‖0

)
(2.27)

and

‖β‖s+1,Ωi
+ ‖p‖s,Ωi

+ t‖p‖s+1,Ωi
≤ C

(
‖∇ψ‖s−1,Ω′′ + ‖G‖s−1,Ω′′

)
. (2.28)

Hence, we obtain all of the asserted estimates except the one for wr. To this
end, let (β0, p0) be the solution of (2.14)–(2.15) with t = 0. From the results
in [2], [5] one obtains

‖β − β0‖1 ≤ Ct
(
‖∇ψ‖0 + ‖G‖0

)
. (2.29)
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The difference wr = w − w0 satisfies

(∇wr,∇v) = (β − β0,∇v) + t2(g, v), v ∈ H1
0 (Ω), (2.30)

and hence the H2-regularity for the Poisson problem gives

‖wr‖2 ≤ C
(
‖β − β0‖1 + t2‖g‖0

)
. (2.31)

Combining this with (2.29) and (2.22) gives the remaining part of the global
regularity estimate (2.19).

Step 3. Next, let us derive the remaining local estimates in (2.20). From
(2.14)–(2.15) we obtain

a(β − β0,η) − (rot (p − p0),η) = 0, η ∈ [H1
0 (Ω)]2, (2.32)

(β − β0, rot q) = −t2(rot p, rot q), q ∈ H1(Ω) ∩ L2
0(Ω). (2.33)

From (2.15) it follows that p satisfies the natural boundary condition ∂p/∂n =
0 on ∂Ω, and the right hand side of (2.33) above is equal to t2(∆p, q). Hence,
applying the estimate (2.26) with Φ = β−β0, P = p−p0, F = 0, K = t2∆p,
Ω′ = Ωi and l = s − 2, gives

‖β − β0‖s,Ωi
≤ Ct2‖p‖s+1,Ω′′ . (2.34)

Exactly in the same way as before we now get

t‖p‖s+1,Ω′′ ≤ C‖g‖s−2 (2.35)

and hence
‖β − β0‖s,Ωi

≤ Ct‖g‖s−2. (2.36)

The equation (2.30) and the interior elliptic regularity for the Poisson prob-
lem then gives

‖wr‖s+1,Ωi
≤ C

(
‖β − β0‖s,Ωi

+ t2‖g‖s−1

)

≤ Ct
(
‖g‖s−2 + t‖g‖s−1

)
,

(2.37)

which concludes the proof.

3 The MITC Finite Elements

Let us recall the triangular MITC elements [7], [10]. Let Ch be the triangu-
lation of Ω and let us denote h = maxK∈Ch

hK , where hK is the diameter of
K. Pk(K) denotes the space of polynomials of degree k on K. Throughout
the paper C denotes a positive constant independent of both the mesh size
h and the plate thickness t.

The finite element subspaces Wh ⊂ H1
0 (Ω) and V h ⊂ [H1

0 (Ω)]2 are defined
for the polynomial degree k ≥ 2 as follows:

Wh = {w ∈ H1
0 (Ω) | w|K ∈ Pk(K) ∀K ∈ Ch}, (3.1)

V h = {η ∈ [H1
0 (Ω)]2 | η|K ∈ [Pk(K)]2 ⊕ [Bk+1(K)]2 ∀K ∈ Ch}, (3.2)
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with the ”bubble space”

Bk+1(K) = {b = b3p | p ∈ P̃k−2(K), b3 ∈ P3(K), b3|E = 0 ∀E ⊂ ∂K},
(3.3)

where P̃k−2(K) is the space of homogenous polynomials of degree k − 2 on
the element K.

The rotated Raviart–Thomas space of order k − 1 is denoted by

Qh = { r ∈ H(rot; Ω) | r|K ∈ [Pk−1(K)]2 ⊕ (y,−x)P̃k−1(K) ∀K ∈ Ch }.
(3.4)

The reduction operator Rh : [H1(Ω)]2 → Qh is defined by the conditions

〈(Rhη − η) · τE, p〉E = 0 ∀p ∈ Pk−1(E) ∀E ⊂ ∂K, (3.5)

(Rhη − η,p)K = 0 ∀p ∈ [Pk−2(K)]2. (3.6)

Here E denotes an edge to K and τ E is the unit tangent to E. (·, ·)K and
〈·, ·〉E are the L2-inner products.

The MITC method is now defined as follows:

Method 3.1. Find the deflection wh ∈ Wh and the rotation βh ∈ V h such
that

Bh(wh,βh; v,η) = (g, v) ∀(v,η) ∈ Wh × V h, (3.7)

with the modified bilinear form

Bh(z,φ; v,η) = a(φ,η) +
1

t2
(Rh(∇z − φ),Rh(∇v − η)). (3.8)

The discrete shear force qh ∈ Qh is

qh =
1

t2
Rh(∇wh − βh). (3.9)

Now, the mixed variant of Method 3.1 is of the following form [10]:

Method 3.2. Find (wh,βh, qh) ∈ Wh × V h × Qh ⊂ H1
0 (Ω) × [H1

0 (Ω)]2 ×
[L2(Ω)]2 such that

a(βh,η) + (qh,Rh(∇v − η)) = (g, v) ∀(v,η) ∈ Wh × V h, (3.10)

(Rh(∇wh − βh), r) − t2(qh, r) = 0 ∀r ∈ Qh. (3.11)

The key in the error analysis of the MITC elements performed in [10], [12]
is that there exists a discrete Helmholtz decomposition. For this we define

Ph = { q ∈ L2
0(Ω) | q|K ∈ Pk−1(K) ∀K ∈ Ch }. (3.12)

Lemma 3.1. For every r ∈ Qh there exists unique v ∈ Wh, q ∈ Ph and
α ∈ Qh such that

r = ∇v + α (3.13)

and
(α, s) = (rot s, q) ∀s ∈ Qh. (3.14)
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The second relation motivates the notation

α = roth q (3.15)

and we have the orthogonality

(roth q,∇v) = 0. (3.16)

Note that this gives [12], with L2-projections Πh : L2
0(Ω) → Ph and Π h :

[L2(Ω)]2 → Qh,

rothΠhq = Π hrot q ∀q ∈ H1(Ω), (3.17)

and for q ∈ Ph

(roth q,Rhβh) = (q, rotβh). (3.18)

By using this result and writing

qh = ∇ψh + roth ph (3.19)

and
r = ∇v + roth q (3.20)

in Method 3.2 we get the equivalent formulation:

Method 3.3. Find (wh,βh, ψh, ph) ∈ Wh × V h × Wh × Ph such that

(∇ψh,∇ϕ) = (g, ϕ) ∀ϕ ∈ Wh, (3.21)

a(βh,η) − (ph, rot η) = (∇ψh,Rhη) ∀η ∈ V h, (3.22)

t2(roth ph, roth q) + (rot βh, q) = 0 ∀q ∈ Ph, (3.23)

(∇wh,∇v) = (Rhβh,∇v) + t2(∇ψh,∇v) ∀v ∈ Wh.
(3.24)

We now estimate the errors between the continuous Variational formu-
lation 2.4 (with G = 0) and the discrete Method 3.3. In Wh and V h we
use the standard Lagrange interpolants with the well-known estimates of the
following type:

Lemma 3.2. There is a positive constant C such that

‖v − Ihv‖1,K ≤ Chm−1
K ‖v‖m,K ∀v ∈ Hm(K), (3.25)

where 2 ≤ m ≤ k + 1.

In the discrete shear space Qh we use the Raviart–Thomas interpolation
operator defined in (3.5)–(3.6) for which it holds:

Lemma 3.3. [14] There is a positive constant C such that

‖η − Rhη‖0,K ≤ Chm
K‖η‖m,K ∀η ∈ [Hm(K)]2, (3.26)

where 1 ≤ m ≤ k.
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In order to have a measure of the influence of the boundary layer we use
the following notation. With the interior region Ωi we denote

Ωh
i = ∪K⊂Ωi

K, Ωh
b = Ω \ Ωh

i (3.27)

and

hi = max
K∈Ωh

i

hK , hb = max
K∈Ωh

b

hK . (3.28)

Our error estimate is now the following:

Theorem 3.1. Let Ω be a convex polygon and suppose that the plate is
clamped. For g ∈ Hk−2(Ω), tg ∈ Hk−1(Ω) it then holds

‖w − wh‖1 + ‖β − βh‖1 + ‖ψ − ψh‖1 + ‖p − ph‖0 + t‖rot p − roth ph‖0

≤ C{hk
i (‖g‖k−2 + t‖g‖k−1) + hb(‖g‖−1 + t‖g‖0)}

(3.29)

and

‖w − wh‖0 + ‖β − βh‖0

≤ Ch{hk
i (‖g‖k−2 + t‖g‖k−1) + hb(‖g‖−1 + t‖g‖0)}.

(3.30)

Proof. Step 1. From (2.13) and (3.21) we get

|ψ − ψh|1 ≤ |ψ − Ihψ|1

≤ |ψ − Ihψ|1,Ωh
i

+ |ψ − Ihψ|1,Ωh
b
.

(3.31)

In Ωh
i we apply Lemma 3.2 with m = k + 1 and in Ωh

b with m = 2, and then
we use Theorem 2.1 and obtain

|ψ − Ihψ|1,Ωh
i

+ |ψ − Ihψ|1,Ωh
b

≤ C
(
hk

i ‖ψ‖k+1,Ωh
i

+ hb‖ψ‖2,Ωh
b

)

≤ C{hk
i (‖g‖k−2 + t‖g‖k−1) + hb(‖g‖−1 + t‖g‖0)}.

(3.32)

Step 2. The equations (3.22)–(3.23) are a discretization of the singularly
perturbed Stokes system (2.14)–(2.15) (with G = 0). For this we have the
stability in the norms ‖·‖1 (for the rotation) and ‖·‖0 + t‖roth (·)‖0 (for
the pressure). By the standard arguments, taking the non-consistency into
account (cf. [12]), we get

‖β − βh‖1 + ‖p − ph‖0 + t‖rot p − roth ph‖0

≤ C
(
‖β − Ihβ‖1 + ‖p − Πhp‖0 + t‖rot p − roth Πhp‖0

+ |ψ − ψh|1 + sup
η∈V h

|(∇ψh,Rhη − η)|

‖η‖1

)
.

(3.33)

9



The first two terms above we estimate as before by using the interpolation
estimates and Theorem 2.1

‖β − Ihβ‖1 + ‖p − Πhp‖0

≤ ‖β − Ihβ‖1,Ωh
i

+ ‖p − Πhp‖0,Ωh
i

+ ‖β − Ihβ‖1,Ωh
b

+ ‖p − Πhp‖0,Ωh
b

≤ Chk
i

(
‖β‖k+1,Ωh

i
+ ‖p‖k,Ωh

i

)
+ Chb

(
‖β‖2,Ωh

b
+ ‖p‖1,Ωh

b

)

≤ C{hk
i (‖g‖k−2 + t‖g‖k−1) + hb(‖g‖−1 + t‖g‖0)}.

(3.34)

For the third term the relation (3.17) and the interpolation estimate give

t‖rot p − roth Πhp‖0 = t‖rot p −Π hrot p‖0

≤ t‖rot p −Π hrot p‖0,Ωh
i

+ t‖rot p −Π hrot p‖0,Ωh
b

≤ C
(
hk

i ‖t rot p‖k,Ωh
i

+ hb‖t rot p‖1,Ωh
b

)

≤ C{hk
i (‖g‖k−2 + t‖g‖k−1) + hb(‖g‖−1 + t‖g‖0)}.

(3.35)

Next, let T h : [L2(Ω)]2 → {r ∈ [L2(Ω)]2 | r|K ∈ [Pk−2(K)]2 ∀K ∈ Ch} be
the L2-projection. Then, by (3.6) it holds

(T h∇ψ,η − Rhη) = 0. (3.36)

Therefore, we obtain

(∇ψh,η − Rhη) = (∇(ψh − ψ),η − Rhη) + (∇ψ − T h∇ψ,η − Rhη)

≤ ‖∇(ψ − ψh)‖0‖η − Rhη‖0 + (∇ψ − T h∇ψ,η − Rhη)

≤ C‖∇(ψ − ψh)‖0‖η‖1 + (∇ψ − T h∇ψ,η − Rhη)

= C‖∇(ψ − ψh)‖0‖η‖1 + (∇ψ − T h∇ψ,η − Rhη)Ωh
i

+ (∇ψ − T h∇ψ,η − Rhη)Ωh
b

≤ C‖∇(ψ − ψh)‖0‖η‖1 + ‖∇ψ − T h∇ψ‖0,Ωh
i
‖η − Rhη‖0,Ωh

i

+ ‖∇ψ − T h∇ψ‖0,Ωh
b
‖η − Rhη‖0,Ωh

b

≤ C‖∇(ψ − ψh)‖0‖η‖1 + Chk
i ‖∇ψ‖k−1,Ωh

i
‖η‖1,Ωh

i

+ Chb‖∇ψ‖0,Ωh
b
‖η‖1,Ωh

b
.

(3.37)

From Theorem 2.1 and the estimates already proved we thus have

sup
η∈V h

|(∇ψh,Rhη − η)|

‖η‖1

≤ C{hk
i (‖g‖k−2 + t‖g‖k−1) + hb(‖g‖−1 + t‖g‖0)}.

(3.38)
The right hand side of (3.33) is then bounded by the right hand side in the
asserted estimate (3.29).

Step 3. From (2.16) and (3.24), by using (2.13) and (3.21), we get

‖w − wh‖1 ≤ ‖β − Rhβh‖0. (3.39)
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Now, it holds

‖β − Rhβh‖0 = ‖(β − Rhβ) + (β − βh) + (I − Rh)(β − βh)‖0

≤ ‖β − Rhβ‖0 + ‖β − βh‖0 + ‖(I − Rh)(β − βh)‖0.
(3.40)

By using Lemma 3.3 and the previous estimates we then get

‖w − wh‖1 ≤ C{hk
i (‖g‖k−2 + t‖g‖k−1) + hb(‖g‖−1 + t‖g‖0)}. (3.41)

We have now proved the asserted estimate (3.29).
Step 4. The L2-estimates for the deflection and the rotation are proven by

adapting the usual duality technique (cf. [10], [12]) and using the regularity
estimate (2.19).

Remark 3.1. For the shear force the previous theorem gives the estimate

t‖q − qh‖0 ≤ C{hk
i (‖g‖k−2 + t‖g‖k−1) + hb(‖g‖−1 + t‖g‖0)}, (3.42)

which is utilized in the analysis of the postprocessing method in [11]. Also
the splitting w = wr +w0 for the deflection and the corresponding regularity
result of Theorem 2.1, which we have not used here, are utilized in [11].
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