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1 Introduction

In this paper, we give sufficient and necessary conditions in Theorems 7 and
8 for the conservativity of linear boundary control systems. Such systems are
described by differential equations of form











ż(t) = Lz(t),

Gz(t) = u(t),

y(t) = Kz(t) for all t ≥ 0.

(1.1)

All of the conditions in Theorems 7 and 8 are stated in terms of data given;
namely the operators L, K, and G, together with the Hilbert spaces they are
defined on. We shall give five PDE examples to indicate that these results are
practically applicable in concrete problems. However, our abstract setting
does not require any of the operators in (1.1) to be a partial differential
operator.

What is a (scattering) conservative linear system? By general linear sys-
tems we mean system/operator nodes ; see [13, 19] and the references therein,
including the classical works [1, 6, 7, 8, 17, 18, 20]. We assume henceforth
that the reader is familiar with such nodes; reading [13, Section 2] gives a suf-
ficient background. A boundary control system of form (1.1) always defines
an operator node, see Definition 1 and Section 2 for details.

Now, let S = [ A&B
C&D ] be a system node. The (separable) Hilbert spaces

U , Y , X, X1 := D(A) and X−1 := D(A∗)d are defined as usual for system
nodes. By A : X1 → X, B ∈ L(U ; X−1), and C ∈ L(X1; Y ) denote the main
operator, input operator, and the output operator of S, respectively. Assume
that the functions u(·) ∈ C2(R+; U), z(·) ∈ C1(R+; X), y(·) ∈ C1(R+; Y )
satisfy the differential equation associated to S:







ż(t) = A−1z(t) + Bu(t),

y(t) = C&D
[

z(t)
u(t)

]

for all t ≥ 0;
(1.2)

see [13, Proposition 2.5] for details. We say that S is energy preserving if
for any (sufficiently smooth) input u(·) and any (compatible) initial state
z(0) = z0, the unique solution of (1.2) satisfies the energy balance equation
d
dt
‖x(t)‖2

X = ‖u(t)‖2
U−‖y(t)‖2

Y , see [13, Definition 3.1]. That S is conservative
means that both S and Sd are energy preserving. Here Sd denotes the dual
system node of S as described in [13, Proposition 2.3].

This notion of conservativity is the“right one” in the sense that is a direct
extension of the well-known finite dimensional case. Hence the definition of
conservativity refers directly to Sd. Unfortunately, it is less than obvious to
relate Sd to the operators appearing in (1.1) – the data of a typical boundary
control problem. Solving these complications is the purpose of this paper.

Following [13], a conservative system node S is said to be tory (or a Julia
colligation) if Ker B = {0} and (Ran C)⊥ = {0}. A powerful characterisation
of tory nodes is given in [13, Theorem 4.4]. The main results of this paper –
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Theorems 3, 7 and 8 – are based on this theorem. These results are applied
to a number of PDE examples. In particular, a fairly complete treatment
(apart from the exponential stability) of the boundary controlled (scattering)
conservative wave equation is given.

2 Background

We develop the required background results for boundary control nodes and
show their equivalence to usual operator nodes (of boundary control type).
We review the related Cauchy problem, too.

Definition 1. Assume that U , X and Y are separable Hilbert spaces.

(i) Assume that Z is a Hilbert space, such that Z ⊂ X with a bounded
dense inclusion. Let L ∈ L(Z; X), G ∈ L(Z; X) and K ∈ L(Z; Y ) be
operators such that the following conditions hold for some α ∈ C+:

(a) U = Ran G,

(b) Ker G is dense in X,

(c) (α − L)Ker G = X, and

(d) Ker (α − L) ∩ Ker G = {0}.

Then the triple Γ = (L,G,K) is called a boundary control node. The
space Z is the solution space of Γ.

(ii) If both Γ = (L,G,K) and Γ← := (−L,K,G) are boundary control
nodes, then Γ is called a doubly boundary control node.

(iii) Let S = [ A&B
C&D ] be an operator node on spaces U , X and Y as in [13,

Definition 2.2]. Then S is called an operator node of boundary control
type (in the sense of Salamon), if ρ(A) ∩ C+ 6= ∅, Ker B = {0} and
BU ∩ X = {0}.

The spaces U , X, and Y are called input, state, and output spaces of both
Γ and S, respectively.

Each boundary control node defines a Cauchy problem through equations
(1.1). The assumptions on operators L, G, and K are such that this Cauchy
problem is “correctly posed” in a sense related to “correct posedness” for
operator nodes1 and their Cauchy problems (1.2). However, the assumptions
of Definition 1 alone do not imply the existence of a (weak, strong) solution
z(·) of either (1.1) or (1.2) – something more involving the generation of a
C0-semigroup in X is required.

1In PDE applications, checking this “correct posedness ” requires certain a priori esti-
mates involving the partial differential operators and Sobolev spaces. The abstract func-
tional analysis framework does not and cannot take part in this. See how the elliptic
regularity theory is used in Subsection 7.4.
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Suppose that Γ = (L,G,K) and S = [ A&B
C&D ] satisfy the conditions of

Definition 1. It is described in Subsections 2.1 and 2.2 that such Γ and S
are in one-to-one correspondence. Moreover, the two Cauchy problems (1.1)
and (1.2) will then have the same solutions. This translation is essentially
the same as given in [15, 16] in a different notation (but, unfortunately, with
a small mistake2). For an earlier and somewhat different approach dealing
mainly with controllability questions, see [4].

2.1 Towards operator nodes

We shall now show that any boundary control node Γ defines an operator
node S in the sense of [13, Definition 2.2]. Let us first make sense about the
main operator A and its domain X1.

Proposition 1. Let Γ = (L,G,K) be a boundary control node on Hilbert
spaces U , Z, X and Y . Define the space X1 and the linear mapping A by
setting

X1 := Ker G and A := L|X1 : X1 → X.

Let α ∈ C+ satisfy conditions (c) and (d) of Definition 1. Then

(i) X1 is a closed subspace of Z, and it inherits a Hilbert space norm
‖ · ‖X′

1
from Z,

(ii) A ∈ L(X1; X) when X1 is given the norm ‖·‖X′
1
. Moreover, A : D(A) ⊂

X → X is an unbounded, closed, densely defined linear operator with
D(A) = X1 and α ∈ ρ(A), and

(iii) X1 is a Hilbert space under the norm ‖x‖X1
:= ‖(α − A)x‖X , and this

norm ‖ · ‖X1
is equivalent to norm ‖ · ‖X′

1
.

Proof. Claim (i) follows because G ∈ L(Z; U), and we attack claim (ii). For
clarity, let X ′

1 denote the Hilbert space Ker G equipped with ‖ · ‖X′
1
. Firstly,

D(A) is dense in X by condition (b) of Definition 1. To show that α ∈ ρ(A),
take any x ∈ X ′

1. We have A ∈ L(X ′
1; X) since

‖Ax‖X = ‖Lx‖X ≤ ‖L‖L(Z;X) · ‖x‖Z = ‖L‖L(Z;X) · ‖x‖X′
1
.

Because Z ⊂ X with a bounded inclusion, we have ‖x‖X ≤ C‖x‖Z = C‖x‖X′
1

for any x ∈ X ′
1. Hence, X ′

1 ⊂ X with a bounded inclusion, and it follows that
α − A ∈ L(X ′

1; X), too. By condition (c) of Definition 1, α − A : X ′
1 → X

is surjective. By condition (d), it is injective, too. Hence, there exists a
bounded inverse (α − A)−1 : X → X ′

1. Because X ′
1 ⊂ X with a bounded

inclusion, in fact (α − A)−1 ∈ L(X) and α /∈ σ(A). In particular, A is a
densely defined operator on X, with domain D(A) = Ran (α − A)−1 = X1.

2This mistake was independently discovered by G. Weiss and the author.
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Now the last claim (iii). Because (α − A)−1 : X → X ′
1 is a bounded

bijection with a bounded inverse, it follows that

‖x‖X′
1

‖(α − A)−1‖L(X;X′
1)

≤ ‖(α − A)x‖X ≤ ‖α − A‖L(X′
1;X) · ‖x‖X′

1
.

Hence, the norm ‖ · ‖X1
is equivalent to the inherited norm ‖ · ‖X′

1
.

From now on, we always use the norm ‖x‖X1
:= ‖(α−A)x‖X on X1. By

X−1 denote the completion of X in norm ‖x‖X−1
:= ‖(α − A)−1x‖. Regard

X as a subspace of X−1 with the natural inclusion operator coming from the
completion process. As is well known in the context of rigged Hilbert spaces,
A : X1 → X has a linear extension to an operator A−1 : X → X−1 satisfying
A−1 ∈ L(X,X−1).

Next we extract the input operator B ∈ L(U ; X−1) from Γ. We also show
that the norm of Z is equivalent to another norm that can easily be expressed
with the aid of A−1 and B.

Proposition 2. Let Γ = (L,G,K) be a boundary control node on Hilbert
spaces U , Z, X and Y . Let X1 and A be as in Proposition 1, and let α ∈ ρ(A)
be arbitrary. Then

(i) there exists a unique operator B ∈ L(U ; X−1) satisfying the equation

Lz = (A−1|Z)z + BGz for all z ∈ Z, (2.1)

(ii) we have (α − A−1)
−1B ∈ L(U ; Z), G(α − A−1)

−1B = I and Ker B =
{0},

(iii) X1 ∩ (α − A−1)
−1BU = {0}, Z = X1+̇(α − A−1)

−1BU , and the norm
of Z is equivalent to the Hilbert space norm

‖z‖2
X1+(α−A−1)−1BU = ‖x‖2

X1
+ ‖u‖2

U where z = x + (α − A−1)
−1Bu.

(2.2)

Proof. Because G ∈ L(Z; U) is surjective, there exists a right inverse H ∈
L(U ; Z) such that GH = I on all of Z. Define B := (L−A−1|Z)H. Because
L ∈ L(Z; X) and X ⊂ X−1 with a bounded inclusion, it follows that L ∈
L(Z; X−1). Because Z ⊂ X with a bounded inclusion, A−1|Z ∈ L(Z; X−1)
and hence B ∈ L(U ; X−1). It is clear from construction that BGz = (L −
A−1|Z)Gz for z = Hu, u ∈ U . Since Z = Ker G+̇Ran H, equation (2.1)
follows.

If there were two operators B1, B2 ∈ L(U ; X−1) satisfying (2.1) with
B = B1, B2, then their difference would satisfy (B1 − B2)u = 0 for all u ∈
Ran (G) = U . Thus B is uniquely defined and does not depend on the
particular choice of the right inverse H.
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In order to prove (ii), let α ∈ ρ(A) and u ∈ U be arbitrary. We start with
the identity (α − A−1|Z) Hu − (α − L) Hu = Bu ∈ X−1. Now we have (at
least formally)

G (α − A−1)
−1 (α − A−1|Z) Hu − G (α − A−1)

−1 (α − L) Hu

= G (α − A−1)
−1 Bu.

The first term in the left is well-defined for all u ∈ U . By cancelling the
resolvents and recalling GHu = u, we get (still formally)

u − G (α − A−1)
−1 (α − L) Hu = G (α − A−1)

−1 Bu. (2.3)

This time Hu ∈ Z and hence (α − A)−1 (α − L) Hu ∈ X1, no matter what
value α ∈ ρ(A) attains. So the second term on the left of (2.3) is well-defined,
too, and this computation verifies that G (α − A−1)

−1 Bu is a well-defined
element of U .

But X1 = Ker G by definition, and hence the identity I = G (α − A−1)
−1 B

follows from (2.3). The above computations show that (α − A−1)
−1 BU ⊂ Z.

As (α − A−1)
−1 B ∈ L(U ; X) and Z ⊂ X with a dense inclusion, it follows

(by the compatibility of Banach spaces Z and X) that (α − A−1)
−1 B ∈

L(U ; Z).
It remains to establish claim (iii). Suppose x ∈ X1 ∩ (α − A−1)

−1BU ,
x 6= 0. As X1 = Ker G, then Gx = 0. As x = (α − A−1)

−1Bu for some
u 6= 0, we have by claim (ii) that Gx = u 6= 0, a contradiction.

For any z ∈ Z, define u := Gz ∈ U . Then x1 := z − (α − A−1)
−1Bu

satisfies Gx1 = Gz − G(α − A−1)
−1Bu = Gz − u = 0. Hence x1 ∈ Ker G =

X1, and trivially z = x1 + (α − A−1)
−1Bu. This proves that Z ⊂ X1 +

(α − A−1)
−1BU . The converse inclusion follows as we have already proved

(α − A−1)
−1BU ⊂ Z for claim (ii).

It is clear that (2.2) defines another Hilbert space norm for Z. By a short
estimation, we learn that for all z ∈ Z ⊂ X

‖z‖X ≤ max
(

1, ‖(α − A−1)
−1B‖L(U ;X)

)

· (‖x1‖X1
+ ‖u‖U) (2.4)

where z = x1+(α−A−1)
−1Bu is the unique decomposition of z ∈ Z according

to Z = X1+̇(α − A−1)
−1BU .

It follows from (2.4) that the inclusion Z ⊂ X is bounded, when Z is given
the norm in (2.2). It is an explicit assumption that the inclusion Z ⊂ X in
bounded, with the original norm of Z. Hence, these two differently normed
versions of Z are compatible Banach spaces, and their norms are accordingly
equivalent.

Note that the spaces X1 and (α − A−1)
−1BU are orthogonal in Z, when

Z is given the norm (2.2).

Proposition 3. Let Γ = (L,G,K) be a boundary control node on Hilbert
spaces U , Z, X and Y . Let the spaces X1, X−1 and operators A, A−1, B be
as in Propositions 1 and 2. Define the vector space

V := {[ x
u ] ∈ [ X

U ] : A−1x + Bu ∈ X} (2.5)
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and equip it with the Hilbert space norm

∥

∥[ x
u ]

∥

∥

2

V
:= ‖x‖2

X + ‖u‖2
U + ‖A−1x + Bu‖2

X . (2.6)

Then

(i) V ⊂ [ Z
U ] with a bounded inclusion,

(ii) the operator C&D : V → Y defined by

C&D

[

x
u

]

:= Kx (2.7)

satisfies C&D ∈ L(V ; Y ), and

(iii) the identity V = [ I
G ] Z holds.

Proof. To prove (i), we show the following functional analytic fact: if H1,
H2, and H3 are Banach spaces, if H2 ⊂ H3 with a bounded inclusion, and
if T ∈ L(H1; H3) with Ran T ⊂ H2, then T ∈ L(H1; H2). By the closed
graph theorem, it is enough to show that T is closed as a mapping from H1

to H2. Suppose gj → g in H1 and Tgj → h in H2. Since H2 ⊂ H3 with a
bounded inclusion, Tgj → h in H3, too. Because T ∈ L(H1; H3), it follows
that h = Tg. Hence T is closed as required.

Recalling that Z ⊂ X with a bounded inclusion, claim (i) follows by
setting H1 = V , H2 = [ Z

U ], H3 = [ X
U ], and letting T be the natural inclusion

from V to [ X
U ]. To prove (ii), estimate for [ x

u ] ∈ V

∥

∥C&D [ x
u ]

∥

∥

Y
= ‖

[

K 0
]

[ x
u ] ‖Y ≤ ‖

[

K 0
]

‖L([Z
U ];Y ) · ‖ [ x

u ] ‖[Z
U ]

≤ ‖K‖L(Z;Y ) · C‖ [ x
u ] ‖V ,

where C is the norm of the inclusion V ⊂ [ Z
U ].

To prove claim (iii), note that V :=
{

[ x
u ] ∈ [ Z

U ]
∣

∣ A−1x + Bu ∈ X
}

by
claim (i) and let α ∈ ρ(A). Now, as (α − A)−1 : X1 → X is a bounded
bijection, we have for any [ x

u ] ∈ [ Z
U ]

A−1x + Bu ∈ X

⇔ (α − A)−1A−1x + (α − A−1)
−1Bu ∈ X1

⇔ − x + α(α − A)−1x + (α − A−1)
−1Bu ∈ X1

⇔ − x + (α − A−1)
−1Bu ∈ X1,

where the last equivalence holds since α(α − A−1)
−1x ∈ X1 as x ∈ Z ⊂ X.

Using X1 := Ker G and G(α − A−1)
−1Bu = u completes the proof.

Now we have all the ingredients to put up an operator node of boundary
control type in the sense of Definition 1:
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Theorem 1. Let Γ = (L,G,K) be a boundary control node on Hilbert spaces
U , Z, X and Y . Let the spaces X1, X−1, V and operators A, A−1, B,
C&D be as in Propositions 1, 2 and 3. Define A&B := [A−1 B] |V . Then
S = [ A&B

C&D ] is an operator node with D(S) = V = [ I
G ] Z. Moreover, S is of the

boundary control type in the sense that Ker B = {0} and Ran B ∩X = {0}.
Proof. All this follows from the properties of an operator node in [13, Section
2], and Propositions 1, 2 and 3.

2.2 Towards boundary control nodes

Now we shall go to the converse direction: we show that any operator node
S = [ A&B

C&D ] of boundary control type defines an unique boundary control node
Γ = (L,G,K), see Definition 1. In this subsection, the spaces X1 = D(A),
X−1 and the operators A ∈ L(X1; X), A−1 ∈ L(X; X−1), B ∈ L(U ; X−1) are
defined as usual for the operator node S. Moreover, we define

Z := X1 + (α − A−1)
−1BU (2.8)

for some α ∈ ρ(A). The Hilbert space V = D(S) is given by (2.5) and (2.6);
see [13, Section 2] for details.

Proposition 4. Assume S = [ A&B
C&D ] is an operator node on Hilbert spaces

U , X and Y , such that BU ∩X = {0} and Ker B = {0}. Then the following
holds:

(i) There exists a unique linear map G ∈ L(Z; U) such that V = [ I
G ] Z.

Moreover, [ I
G ] ∈ L(Z; V ), Ran G = U , and Ker G = X1.

(ii) There exists a unique linear mapping K ∈ L(Z; Y ) satisfying K =
C&D [ I

G ], Kx = C&D [ x
u ] for all [ x

u ] ∈ V , and C&D =
[

K 0
]

|V .
We have Ran K = Y if and only if Ran C&D = Y .

(iii) The operator L : Z → X, defined by

Lz := (A−1|Z)z + BGz for all z ∈ Z,

satisfies L ∈ L(Z; X), (α−L)Ker G = X, and Ker (α−L)∩Ker G =
{0} for all α ∈ ρ(A).

Proof. Let us start with claim (i). Because BU ∩X = {0} and Ker B = {0},
for each z ∈ Z ⊂ X there exists this time a unique u ∈ U such that A−1z +
Bu ∈ X. Namely, if there were two, say u1 6= u2, then B(u1−u2) ∈ BU ∩X.
Hence B(u1 − u2) = 0 and thus u1 = u2. Let us call this (well-defined)
mapping Z 3 z 7→ u ∈ U by G.

Such G is clearly linear, and so is [ I
G ] : Z → [ X

U ]. It follows from the
definition of G that [ I

G ] Z ⊂ V . Conversely, if [ x
u ] ∈ V , then A−1x+Bu ∈ X

and hence x ∈ Z. Then [ I
G ] x ∈ V and u = Gx by a similar uniqueness

argument as given above. It now follows that [ I
G ] Z = V and that [ I

G ] : Z →
V is a bijection, since the operator is trivially injective.
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We proceed to show that [ I
G ] ∈ L(Z; V ) and G ∈ L(Z; U). As Z is

complete, it is enough to show that [ I
G ] is closable. Let zj → 0 in the

norm of Z and [ I
G ] zj → [ z0

u0 ] ∈ V in the norm of V . As Z ⊂ X with
bounded inclusion, it follows that zj → 0 in the norm of X. As V ⊂ [ X

U ]
with a bounded inclusion (see (2.5) and (2.6)), it follows that zj → z0 in
the norm of X. Hence z0 = 0. Recalling that [ 0

u0
] ∈ V , we must have

Bu0 ∈ BU ∩ X = {0}. Hence, [ z0
u0 ] = [ 0

0 ] and the closability of [ I
G ] follows.

Note that G =
[

0 I
]

|V · [ I
G ]. Because

[

0 I
]

|V ∈ L(V ; U) by a simple
estimate, it follows G ∈ L(Z; U).

We show next that Ran G = U . Because S is an operator node, there
exists a xu ∈ Z such that [ xu

u ] ∈ V for every u ∈ U . Indeed, take xu =
(α−A−1)

−1Bu ∈ Z and note that A−1xu +Bu = α(α−A−1)
−1Bu ∈ Z ⊂ X.

By what we have already proved above, such xu is unique and it satisfies
u = Gxu.

If x ∈ Ker G, then [ x
0 ] ∈ V , A−1x ∈ X, and thus x ∈ D(A). Conversely,

let x ∈ D(A). Then [ x
0 ] ∈ V , and it follows that Gx = 0 because V = [ I

G ] Z.
Now claim (i) is proved.

That K ∈ L(Z; Y ) follows from C&D ∈ L(V ; Y ) and claim (i). Moreover,
Ran K = Ran C&D and Kx = C&D [ x

u ] for all [ x
u ] ∈ V follow as [ I

G ] : Z →
V is a bijection.

It remains to prove (iii). Let z ∈ Z be arbitrary. Then [ z
Gz ] ∈ V ,

Lz = A−1z + BGz ∈ X and thus L : Z → X. Since Z ⊂ X with a bounded
inclusion, we conclude that A−1|Z ∈ L(Z; X−1) and hence L ∈ L(Z; X−1),
too. Because Ran L ⊂ X and X ⊂ X−1 with a bounded inclusion, we
conclude that L ∈ L(Z; X) using the technique presented in the beginning
of the proof of Proposition 3.

Let α ∈ ρ(A) and x ∈ Ker (α − L) ∩ Ker G. Clearly (α − L)Ker G = X
is equivalent to the fact that (α − A)X1 = X. Furthermore, x ∈ X1 and
0 = (α−L)x = (α−A)x = 0, which implies x = 0. The proof is complete.

We have now proved the following theorem:

Theorem 2. Assume S = [ A&B
C&D ] is an operator node of boundary control

type on Hilbert spaces U , X and Y with D(S) = V . Define the space Z by
(2.8), and let the operators L ∈ L(Z; X), G ∈ L(Z; U) and K ∈ L(Z; Y ) be
as in Proposition 4.

Then Γ = (L,G,K) is a boundary control node (in the sense of Definition
1) on Hilbert spaces U , X and Y , with the solution space Z.

By inspecting the translation procedures of Subsections 2.1 and 2.2, we
see that the boundary control nodes Γ = (L,G,K) and the operator nodes
S = [ A&B

C&D ] of boundary control type are in one-to-one correspondence. In
particular, the solution space Z for Γ is same as the space given by (2.8) for
for the operator node S corresponding to Γ. For general operator nodes, we
have yet another characterisation for the same space

Z = X1 + (α − A−1)
−1BU (2.9)

= {z ∈ X : ∃u ∈ U such that [ x
u ] ∈ D(S)}.
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It is a characterising property for operator nodes of boundary control type that
we can write the direct sum decomposition Z = X1+̇(α − A−1)

−1 instead of
(2.8). Analogously, it is true only for S of boundary control type that the
space V = D(S) (given by (2.5)) can be written as in form V = [ I

G ] Z for
some operator G ∈ L(Z; U).

2.3 The Cauchy problem

We now solve the Cauchy problem for the formal system (1.1). This is re-
duced to the corresponding Cauchy problem (1.2) system nodes, as presented
in [13, Proposition 2.5].

Lemma 1. Assume that Γ = (L,G,K) is a boundary control node, such
that A = L|Ker G : D(A) ⊂ X → X is a generator of a C0-semigroup.
Let u ∈ C2([0,∞); U) and z0 ∈ Z be such that the compatibility condition
Gz0 = u(0) is satisfied.

Then the Cauchy problem (1.1) has a unique classical solution z(·) ∈
C([0,∞); Z) ∩ C1([0,∞); X), such that z(0) = z0 and y(·) ∈ C([0,∞); Y ).

Proof. By S = [ A&B
C&D ] denote the operator node that is related to Γ as in

Theorems 1 and 2. By V and Z denote the two common Hilbert spaces for
Γ and S that have been described in Subsections 2.1 and 2.2. Since A is
the generator of a C0-semigroup it follows from [13, Proposition 2.5] that
there exists a unique z(·) ∈ C1([0,∞); X) ∩ C2([0,∞); X−1) such that (1.2)

holds and
[

z(·)
u(·)

]

∈ C([0,∞); V ). Since V ⊂ [ Z
U ] with a bounded inclusion

by Proposition 3, it follows that z(·) ∈ C([0,∞); Z) and u(t) = Gz(t) for all
t ≥ 0. Since L = A−1|Z + BG, (1.2) implies that for all t ≥ 0

ż(t) = A−1z(t) + Bu(t) = (A−1|Z + BG) z(t) = Lz(t).

Since C&D and K are connected by (2.7), we conclude that z(·) solves (1.1).
The uniqueness is checked by going a similar reasoning in reverse order.

Theorem 1 gives a working interpretation to differential equation (1.1).
Note that the trajectory z(·) is continuous in Z ⊂ X, but ż(·) is computed
(as a limit of a differential quotient) in the norm of X.

3 Conservativity and time-flow inverses

For some system nodes S = [ A&B
C&D ], equations (1.2) can be solved backwards

in time for smooth signals, if the input and output are interchanged by each
other, too. For bounded B, C, D, and D−1, the inverse dynamics can be
obtained easily:

{

ż(t) =
(

−A + BD−1C
)

−1
z(t) − BD−1y(t),

u(t) = −D−1Cz(t) + D−1y(t).

The general case is covered by a formal definition which unfortunately does
not give much help for the verification time-flow invertibility:
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Definition 2. Let S = [ A&B
C&D ] be an operator node with V = D(S). We say

that S is time-flow invertible, if there exists an operator node S← =
[

[A&B]←

[C&D]←

]

with domain D(S←) = V ← ⊂ [ X
Y ] and the main operator A←, such that

(i) both ρ(A) ∩ C+ 6= ∅ and ρ(A←) ∩ C+ 6= ∅,

(ii)

[

1 0
C&D

]

: V → V ← is a bounded bijection, and

(iii) we have on all of V ←

S← =

[

−A−1 −B
0 I

] [

1 0
C&D

]−1

. (3.1)

When these conditions hold for S and S←, we say that S← is the time-flow
inverse of S.

A boundary control node Γ = (L,G,K) is time-flow invertible, if the
operator node S obtained in Theorem 1 is time-flow invertible.

For a deeper treatment of time-flow invertibility, see [19, 21]. Whenever
S = [ A&B

C&D ] has a time-flow inverse, we have [ 1 0
C&D ]

−1
=

[

1 0
[C&D]←

]

. It follows
from this that (S←)← = S. To understand the underlying symmetry in

things, consider the following two propositions. From now on, Sd =
[

[A&B]d

[C&D]d

]

denotes the dual node of S, see [13, Proposition 2.3] for details.

Proposition 5. Let S be a system node. Then S is conservative if and only
if it is time-flow invertible and Sd = S←.

Proof. Assume Sd = S←. Then by Definition 2 we have V d = V ← = [ I 0
C&D ] V

and (3.1) implies

[

[A&B]d

[C&D]d

] [

I 0
C&D

]

=

[

−A−1 −B
0 I

]

on V. (3.2)

Now [13, Lemma 3.2] implies that S is energy preserving. Furthermore,
Sd = S← ⇔ (Sd)d = (S←)d and with some good faith3 (S←)d = (Sd)←, too.
Thus (Sd)d = (Sd)← and by dualizing the above argument, also Sd is energy
preserving. The conservativity of S follows.

Conversely, let S be conservative. Then (3.2) and its dual version give

[

I 0
[C&D]d

] [

I 0
C&D

]

=

[

I 0
0 I

]

on V and

[

I 0
C&D

] [

I 0
[C&D]d

]

=

[

I 0
0 I

]

on V d.

Hence [ I 0
C&D ] : V → V d is a bounded bijection from V onto V d. Identity

(3.2) implies directly Sd = S←, where the operator S← is defined by (3.1)

3...or by a rather long computation...
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on V d. But now S← is a system node with D(S←) = V d, since Sd is a
system node. In particular, the main operator of S← satisfies A← = A∗, and
certainly ρ(A∗)∩C+ = ρ(A)∩C+ 6= ∅, where ρ(A) denotes the conjugate set
of ρ(A). We conclude that S is time-flow invertible by Definition 2, and its
time flow inverse satisfies S← = Sd.

Let us give another easy piece:

Proposition 6. An energy preserving system node S is conservative if and
only if it is time-flow invertible.

Proof. Conservativity implies time-flow invertibility, by Proposition 5. For
the converse direction, assume that S is both energy preserving and time-
flow invertible with the operator node S← given by (3.1). The time-flow
invertibility implies that [ 1 0

C&D ] V = V ←. Now identity (3.1) gives

S←
[

1 0
C&D

]

=

[

−A−1 −B
0 I

]

on all of V.

By [13, Lemma 3.2], the energy-preserving property implies [ 1 0
C&D ] V ⊂ V d

and

Sd

[

I 0
C&D

]

=

[

−A−1 −B
0 I

]

on all of V.

We conclude that V ← ⊂ V d, S← = Sd|V ← and A← = Ad|X←
1 . It remains to

show that V d = V ←.
Since both Ad and A← generate a C0-semigroup on X, it follows that

Xd
1 = X←

1 , A← = Ad and Xd
−1 = X←

−1. Moreover, S← = Sd|V ← implies
[A&B]← = [A∗

−1 C∗]|V ←, and hence [A∗
−1 C∗] : [ X

Y ] → Xd
−1 is a bounded

extension of [A&B]←. Since V ← is dense in [ X
Y ] (see [13, equation (2.2)]),

this is the only possible bounded extension on these spaces. We conclude
that [A←

−1 C←] = [A∗
−1 C∗] on all of [ X

Y ], and V = V ← follows.

We give in Theorem 3 yet another characterisation for tory systems. The
motivation for this result is the following: for boundary control nodes Γ =
(L,G,K) associated to dynamics (1.1), the time-flow inverse is very easy to
guess. Indeed, as will be seen in Theorem 6, it is Γ← = (−L,K,G) whenever
such Γ← satisfies the axioms (a) – (d) of Definition 1. On the other hand,
computing the dual system Γd is quite difficult 4. The following proposition
contains the trick involved.

Proposition 7. Assume S = [ A&B
C&D ] is a time-flow invertible system node.

Let A← : X←
1 → X be the main operator and C← the output operator of the

time-flow inverse S←. Assume that the dual cross-term equation holds

C&D

[

I
B∗

]

= 0 on Xd
1 ,

4Conversely, the adjoint node Sd is almost trivial to obtain for an operator node S, but
the time-flow inverse S← is given by the rather difficult formula (3.1) in Definition 2.
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and A∗ = A← (with equal domains). Then

A−1 + A∗ + BB∗ = 0 on Xd
1 and C← = B∗ on Xd

1 .

Proof. Because A∗ = A←, we have X←
1 = Xd

1 . Hence [ x
0 ] ∈ V ← for all

x ∈ Xd
1 . Because [ 1 0

C&D ] : V → V ← is a bounded bijection (by the existence
of the time-flow inverse), there exists for any x ∈ Xd

1 a unique vector [ x1
u1 ] ∈ V

such that
[

x
0

]

=

[

1 0
C&D

] [

x1

u1

]

.

By using the assumed dual cross-term equation, we see that in fact x1 = x
and u1 = B∗x. Hence, for any x ∈ Xd

1

[

A←x
C←x

]

= S←
[

x
0

]

=

[

−A−1 −B
0 I

] [

1 0
C&D

]−1 [

x
0

]

=

[

−A−1 −B
0 I

] [

x
B∗x

]

=

[

−A−1x − BB∗x
B∗x

]

.

But A←x = A∗x by assumption, and the claim follows.

We can now characterise tory systems without referring to the dual system
at all:

Theorem 3. Assume that S = [ A&B
C&D ] is a time-flow invertible operator node.

By A← : X←
1 → X denote the main operator of the time-flow inverse S←.

Then S is tory5 if and only if

(i) Ker B = {0},

(ii) A + A∗
−1 = −C∗C on X1,

(iii) C&D

[

I
B∗

]

= 0 on Xd
1 , and

(iv) We have A← = A∗ with equal domains, i.e. X←
1 = Xd

1 .

Proof. Conditions (i) – (iii) are necessary for toryness, again by [13, Theorem
4.4]. By Proposition 5, tory systems satisfy Sd = S←, and (iv) follows, too.

Assume that conditions (i) – (iv) hold. Then the dual Liapunov equation
is given by Proposition 7, and S is tory by [13, Theorem 4.4] provided we
can show that Ker C∗ = {0}. Following [13, Proposition 2.4], decompose
the space Y orthogonally Y =

[

Y1

Y0

]

where Y1 = Ran C and Y0 = Y ⊥
1 . The

induced decomposition of S is then given by

S =

[

[A&B]r
[C&D]r
0 D01

]

: V →
[

X
Y1

Y0

]

with Sr :=
[

[A&B]r
[C&D]r

]

;

here Sr is the reduced operator node with output space Y1, the domains
satisfy V = D(S) = D(Sr), and D01 ∈ L(U ; Y0) is nonzero if and only if Y0 is

5I.e. a conservative system node with Ker B = {0} and Ker C∗ = {0}.
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nontrivial. Since B = Br, C = [ Cr
0 ], and C∗ =

[

C∗
r 0

]

, we conclude (using
Proposition 7) that A + A∗

−1 = −C∗
r Cr on X1, together with A−1 + A∗ =

−BrB
∗
r and [C&D]r

[

I
B∗

r

]

= 0 on Xd
1 .

It follows from [13, Theorem 4.4] that Sr is a tory node, and it is thus time-

flow invertible with S←
r = Sd

r =
[

[A&B]dr
[C&D]dr

]

; see Proposition 5. In particular,
[

I 0
[C&D]r

]

: V → V d
r = D(Sd

r ) is a bijection with the inverse
[

I 0
[C&D]dr

]

, and

[ I 0
C&D ] =

[ I 0
[C&D]r
0 D01

]

. Because also S is time-flow invertible, we get

V ← =
[ I 0

[C&D]r
0 D01

]

V =

[

[ I 0
0 I ]

[ 0 D01 ]
[

I 0
[C&D]r

]−1

]

V d
r =

[

[ I 0
0 I ]

D01 [C&D]dr

]

V d
r (3.3)

and
[

I 0
C&D

]−1

=

[

I 0 0

[C&D]dr 0

] ∣

∣

∣

∣

V ←.

But now we obtain S← =
[

[A&B]dr 0

[C&D]dr 0

]

on all of V ← by (3.1). Because both

Sd and S← are operator nodes, it follows that V ← =
[

V d
r

Y0

]

which contradicts

(3.3) unless D01 = 0. This completes the proof.

4 Construction of the time-flow inverse

In this section, we show that the time-flow invertibility of an operator node
S = [ A&B

C&D ] (in the sense of Definition 2) almost follows if it is known that
S is of boundary control type (see Definition 1). Indeed, only one extra
assumption is needed on the “time-flow-inverted” main operator A←.

In this section, we make it a standing assumption that S is an operator
node of boundary control type. We further assume that S and Γ = (L,G,K)
are related to each other as in Theorems 1 and 2. In particular, the operators
L, G and K are given by Proposition 4. The spaces Z and V = D(S) are
described (unambiguously) by (2.5), (2.9), and claim (iii) of Proposition 3.
Our approach leads – step by step – to the construction of the time-flow
inverse S← in Theorem 4.

Let us first define a Banach space V ← which is finally going to be the
domain of S← in spe. Motivated by Definition 2, we set plainly

V ← :=

[

I 0
C&D

]

V ⊂
[

X
Y

]

. (4.1)

A Banach space norm for V ← is defined by

‖ [ x
y ] ‖V ← := ‖ [ x

u ] ‖V where [ x
y ] = [ I 0

C&D ] [ x
u ] . (4.2)

With this choice of norm, the operator [ I 0
C&D ] : V → V ← becomes an isometry

with an isometric inverse.
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Not surprisingly, in the boundary control context we have the relations

V =

[

I
G

]

Z and V ← =

[

I
K

]

Z (4.3)

Hence G and K are expected to play dual roles with respect to the time-flow
inversion, and (4.1) can be replaced by V ← := [ I

K ] Z. Indeed, the latter
equality in (4.3) follows from the former by using the identity

[

I 0
C&D

] [

I
G

]

=

[

I
K

]

on all of Z. (4.4)

It is also instructive to note that (under the assumptions of Proposition 4)
[

I
G

]

Ker K = Ker C&D and

[

I
G

]

X1 =

[

X1

{0}

]

.

Note that in the boundary control case BU ∩X = {0}, the upper component
of [ x

u ] ∈ V = [ I
G ] Z determines the lower. Conversely, the lower component

determines the upper only modulo the space X1 = Ker G.
The symmetry in equalities (4.3) becomes even more pronounced once we

discover that the solution space Z remains unchanged under the time-flow
inversion; see (2.9) for the motivation of (4.5):

Proposition 8. Make the same assumptions and use the same notations as
in Proposition 4. Define V ← by (4.1). Then Z← = Z where

Z← := {x ∈ X : ∃y ∈ Y such that [ x
y ] ∈ V ←} . (4.5)

Proof. By the definition of V ←, we have Z← ⊂ Z. Conversely, if x ∈ Z, then
[ x
Gx ] ∈ V and [ x

Kx ] = [ I 0
C&D ] [ x

Gx ] ∈ V ← by (4.4). Hence x ∈ Z←.

Also the space V ← is seen to have some of its expected properties:

Proposition 9. Assume that S = [ A&B
C&D ] is an operator node of boundary

control type with Ran C&D = Y . Define Z by (2.9) and V ← by (4.1). Then
the following holds:

(i) For all y ∈ Y there exists x ∈ Z(= Z←) such that [ x
y ] ∈ V ←.

(ii) The inclusion V ← ⊂ [ Z
Y ] is bounded.

(iii) Ker K = {x ∈ X : [ x
0 ] ∈ V ←}.

Proof. Denote V = D(S) and fix y ∈ Y . Then for any x ∈ Z the equality
[

x
y

]

=

[

I 0
C&D

] [

x1

u

]

for

[

x1

u

]

∈ V

is equivalent to

x = x1 and y = C&D

[

x
u

]

for

[

x
u

]

∈ V.
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Because Ran C&D = Y , then there exists such a [ x
u ] ∈ V with x ∈ Z. To

prove claim (ii), we first estimate the norm of [ x
y ] = [ I 0

C&D ] [ x
u ]:

‖ [ x
y ] ‖[X

Y ] ≤ (‖x‖X + ‖y‖Y ) ≤
(

‖x‖X + ‖C&D‖L(V ;Y )‖ [ x
u ] ‖V

)

≤ max
(

1, ‖C&D‖L(V ;Y )

)

· (‖x‖X + ‖x‖X + ‖u‖U + ‖A−1x + Bu‖X)

≤ 2 max
(

1, ‖C&D‖L(V ;Y )

)

· (‖x‖X + ‖u‖U + ‖A−1x + Bu‖X)

≤ 6 max
(

1, ‖C&D‖L(V ;Y )

)

· ‖ [ x
u ] ‖V .

Now, the boundedness of the inclusion V ← ⊂ [ X
Y ] follows from (4.2). By

definition, we have V ← ⊂ [ Z
Y ]. As in the beginning of the proof of Proposition

3, we see that also the inclusion V ← ⊂ [ Z
Y ] is bounded and (ii) follows.

To verify the last claim (iii), recall that V ← = [ 1 0
C&D ] V and V = [ I

G ] Z.
We have x ∈ X with [ x

0 ] ∈ V ← if and only if [ x
0 ] = [ 1 0

C&D ] [ z
Gz ] for some z ∈ Z

if and only if for some z ∈ Z

x = z and 0 = C&D

[

I
G

]

z = Kz

if and only if x ∈ Ker K.

To get ahead, we must assume that Ker K is dense6 in X.

Proposition 10. Assume that S = [ A&B
C&D ] is an operator node of boundary

control type with Ran C&D = Y . Define V ← by (4.1), and assume that
Ker K is dense in X. Then V ← is dense in [ X

Y ].

Proof. Let [ x
y ] ∈ [ X

Y ] be arbitrary. As Ran C&D = Y , there exists [ z
v ] ∈

V = D(S) such that y = C&D [ z
v ]. Because Ker K is dense in X, there is

a sequence {xj}j≥0 ⊂ Ker K such that xj → x − z ∈ X in the norm of X.
Now,

C&D

[

z + xj

v + Gxj

]

= C&D

[

z
v

]

+ C&D

[

I
G

]

xj = y + Kxj = y.

Using this gives

V ← 3
[

I 0
C&D

] [

z + xj

v + Gxj

]

=

[

z + xj

y

]

→
[

x
y

]

in the norm of [ X
Y ] since z + xj → x in the norm of X.

Under the assumptions of Proposition 10, the linear mapping

S← :=

[

−A−1 −B
0 I

] [

1 0
C&D

]−1

: V ← ⊂
[

X
Y

]

→
[

X
U

]

(4.6)

is densely defined. We next establish that S← is an operator node, so as
to verify that S is time-flow invertible in the sense of Definition 2. For this
purpose, we need to define some new objects:

6If S was already known to be time-flow invertible, this would be a necessary condition
for S← to be of boundary control type; see (4.3) together with Proposition 8. So, we do
not regret making this assumption at all.
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Definition 3. Assume that S = [ A&B
C&D ] is an operator node of boundary

control type with Ran C&D = Y , and let the boundary control node Γ =
(L,G,K) be given by Theorem 2. Assume that Ker K is dense in X.

(i) The mapping A← : Ker K → X is defined by A← := −L|Ker K.

(ii) The mapping C← : Ker K → Y is defined by C← := G|Ker K.

Definition 4. Make the same assumptions and use the same notations as
in Definition 3. Assume, in addition, that ρ(A←) ∩ C+ 6= ∅ with D(A←) =
Ker K.

(i) Denote by X←
−1 the completion7 of X in norm ‖x‖Xd

−1
:= ‖(α−A←)−1x‖

for α ∈ ρ(A←) ∩ C+.

(ii) Define B← : Y → X←
−1 by setting for all x ∈ Z

B←Kx := −Lx − A←
−1x, (4.7)

where A←
−1 ∈ L(X; X←

−1) is the Yosida extension of A←.

The linear mapping B← in part (ii) of Definition 4 is well-defined. Note
that Lx ∈ X ⊂ X←

−1 in (4.7) because L ∈ L(Z; X) by Proposition 4. Hence
the right hand side of (4.7) defines a unique element of X←

−1. The B← mapping
is also uniquely defined: if y = Kx1 = Kx2, then x1 − x2 ∈ Ker K; but both
−L and A←

−1 are extensions of A← defined on Ker K. The operator B← is
defined on all of Y , since Ran K = Ran C&D = Y by Proposition 4.

Proposition 11. Assume that S = [ A&B
C&D ] is an operator node of boundary

control type with Ran C&D = Y . Define V ← by (4.1) and the operators A←,
B← by Definition 3. Assume that Ker K is dense in X and ρ(A←)∩C+ 6= ∅.
Then the following holds:

(i) B← ∈ L(Y ; X←
−1) and Ker B← = {0}.

(ii) The space V ← satisfies

V ← =
{

[ x
y ] ∈ [ X

Y ] : A←
−1x + B←y ∈ X

}

(4.8)

and the norm (4.2) for V ← is equivalent to

‖ [ x
y ] ‖2

V ← := ‖x‖2
X + ‖y‖2

Y + ‖A←
−1x + B←y‖2

X . (4.9)

(iii) The operator [A&B]← :=
[

A←
−1 B←]

|V ← is closed from [ X
Y ] to X,

with domain D([A&B]←) = V ←.

7See the discussion following Proposition 1.
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Proof. We show that B←yj → 0 in X←
−1 for all sequences yj → 0 in Y . As

K ∈ L(Z; Y ) and Ran K = Y by claim (ii) Proposition 4, there exists a
sequence {xj}j≥0 ⊂ Z ª Ker K (orthogonality taken in the sense of (2.2))
and yj = Kxj. Because K| (Z ª Ker K) has a bounded inverse Y → Z ª
Ker K, it follows that xj → 0 in Z and in the weaker norm of X, too. As
A←

−1 ∈ L(X; X←
−1), it follows that A←

−1xj → 0 in X←
−1. As L ∈ L(Z; X),

it follows that Lxj → 0 in X and hence in X←
−1, too. By equation (4.7),

B←Kxj = B←yj → 0 in X←
−1.

We prove next that Ker B← = {0}. Assume that B←y = 0 for some
y = Kx, x ∈ Z. Then A←

−1x = −Lx ∈ X by (4.7). It follows that x ∈
D(A←) = Ker K and y = Kx = 0. Thus claim (i) holds.

Claim (ii) is treated next. Let [ x
y ] ∈ V ← be arbitrary, and note that x ∈ Z

and y = Kx by (4.3). Rewriting (4.7) we get A←
−1x + B←y = −Lx ∈ X,

since L ∈ L(Z; X). To prove the converse inclusion in (4.8), assume that
[ x

y ] ∈ [ X
Y ] satisfies A←

−1x + B←y ∈ X. As Ran K = Y by Proposition 4, we
have y = Kz for some z ∈ Z. Now

X 3 A←
−1x + B←y =

(

A←
−1 + B←K

)

z + A←
−1(x − z) (4.10)

= −Lz + A←
−1(x − z),

where we have used (4.7) again. Because −Lz ∈ X, equation (4.10) implies
A←

−1(x − z) ∈ X, and thus x − z ∈ D(A←) = Ker K. We conclude that
y = Kz = Kx and so [ x

y ] = [ x
Kx ] ∈ [ I

K ] Z = V ← follows.
It is clear that V ← with norm (4.9) is a Banach space, and V ← ⊂ [ X

Y ]
with a bounded (even dense) inclusion. Recall that V ← with norm (4.2) is a
Banach space, and also then the inclusion V ← ⊂ [ X

Y ] is bounded, by claim
(ii) of Proposition 9. Hence, these two differently normed versions of V ←

are compatible Banach spaces (in the sense of interpolation theory) and their
norms are accordingly equivalent.

To prove claim (iii), note that
[

A←
−1 B←]

∈ L([ X
Y ] ; X←

−1) by claim (i)
and the fact that A←

−1 ∈ L(X; X←
−1). Now, [A&B]← is closed, as it is the

restriction of bounded
[

A←
−1 B←]

to its natural domain V ←, when the range
is restricted to a subset of X.

Now comes the main result of this section;

Theorem 4. Assume that S = [ A&B
C&D ] is an operator node of boundary control

type with Ran C&D = Y , and let the boundary control node Γ = (L,G,K)
be given by Theorem 2. Define V ← := [ I

K ] Z and S← by (4.6). Assume that
−L|Ker K is a densely defined operator on X, with ρ(−L|Ker K)∩C+ 6= ∅.

Define the operators A←, B←, and C← by Definition 3. Then the follow-
ing holds:

(i) S← : D(S←) ⊂ [ X
Y ] → [ X

U ] is an operator node with D(S←) = V ←.

The main operator of S← is A← with domain D(A←) = Ker K. The op-
erator B← is the input operator of S←, and the combined feedthrough/output
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operator [C&D]← of S← satisfies

[C&D]←
[

x
y

]

= Gx for all

[

x
y

]

∈ V ←. (4.11)

(ii) The operator node S is time-flow invertible, and its time-flow inverse
equals S←.

Proof. The operator B← lies in L(Y ; X←
−1) by claim (i) of Proposition 11.

The operator [A&B]← :=
[

A←
−1 B←]

|V ← is closed and densely defined with
D([A&B]←) = V ← by Propositions 10 and 11. Define [C&D]← : V ← → U by
(4.11), and note that it is well defined by Proposition 9. Let us now estimate

‖[C&D]← [ x
y ] ‖U ≤ ‖G‖L(Z;U)‖ [ x

y ] ‖[ Z
Y ] ≤ ‖G‖L(Z;U) · C‖ [ x

y ] ‖V ,

since the inclusion V ← ⊂ [ Z
Y ] is bounded by constant C, see Proposition 9.

We conclude that S ′ :=
[

[A&B]←

[C&D]←

]

is an operator node with D(S ′) = V ←.

We proceed to show that S← = S ′. For all [ x
Kx ] ∈ [ I

K ] Z = V ← (in other
words, for all x ∈ Z) we have

[

[A&B]←

[C&D]←

] [

x
Kx

]

=

[(

A←
−1 + B←K

)

x
Gx

]

=

[

− (A−1 + BG) x
Gx

]

=

[

−A−1 −B
0 I

] [

x
Gx

]

=

[

−A−1 −B
0 I

] [

1 0
C&D

]−1 [

x
Kx

]

,

where the second equality follows from (4.7). By Definition 2, S← =
[

[A&B]←

[C&D]←

]

,

and the proof is complete.

Corollary 1. Make the same assumptions as in Theorem 4. Then the
time-flow inverse S← is an operator node of boundary control type satisfying
Ran [C&D]← = U .

Proof. Recall that Ker B← = {0} by claim (i) of Proposition 11. It follows
directly from (4.11) that Ran [C&D]← = U , as Ran G = U by claim (i) of
Proposition 4.

If z̃ ∈ B←Y ∩X, z̃ 6= 0, then z̃ = B←ỹ for some ỹ 6= 0. Suppose [ x
y ] ∈ V ←.

Then we have both A←
−1x + B←y ∈ X and A←

−1x + B←(y + ỹ) ∈ X, implying
that both [ x

y ] ∈ V ← and [ x
y+ỹ ] ∈ V ←. It now follows that the space V ←

cannot be of graph form [ I
K ] Z for any linear mapping K : Z → U . This

contradiction proves that B←Y ∩ X = {0}.
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5 Duals of conservative boundary control

systems

In contrast to the previous section, the operators A←, ăB←, and C← are
no longer defined a priori by Definition 3. Instead, now they denote the

main, input, and output operators of the time-flow inverse S← =
[

[A&B]←

[C&D]←

]

of S; existence of S← is assumed a priori. The next proposition is a partial
converse result to Theorem 4, and it will be needed in the proof of Theorem
5 and Lemma 2.

Proposition 12. Assume that S = [ A&B
C&D ] is a time-flow invertible operator

node of boundary control type, with Ran C&D = Y . Let the associated
boundary control node Γ = (L,G,K) be given by Theorem 2. Denote by A←

the main operator and by C← the output operator of time-flow inverse S←.
Then D(A←) = Ker K, A← = −L|Ker K, and C← = G|Ker K.

Proof. By the standard theory of operator nodes, we have D(S←) = V ←

and D(A←) = {x ∈ X : [ x
0 ] ∈ V ←} where V ← is defined by (4.8). By the

time-flow invertibility of S, we have [ I 0
C&D ] V = V ←, and the operator [ I 0

C&D ]
is a bounded bijection from V := D(S) onto V ←. Recalling the reasoning
leading to (4.3), we have V = [ I

G ] Z and V ← = [ I
K ] Z. Now [ x

0 ] ∈ V ← if and
only if x ∈ Z and Kx = 0 if and only if x ∈ Ker K. Hence D(A←) = Ker K.
To complete the proof, we compute by using (3.1)

[

A←x
C←x

]

= S←
[

x
0

]

=

[

−A−1 −B
0 I

] [

1 0
C&D

]−1 [

x
0

]

(5.1)

=

[

−A−1 −B
0 I

] [

x
Gx

]

=

[

−Lx
Gx

]

for any x ∈ D(A←), where we have once again used the fact that [ x
0 ] =

[ x
Kx ] ∈ V ← implying [ I 0

C&D ]
−1

[ x
Kx ] = [ x

Gx ] ∈ V .

Dual systems of tory boundary control systems are boundary control sys-
tems themselves:

Theorem 5. Assume that S = [ A&B
C&D ] is a tory operator node of boundary

control type, with Ran C&D = Y . Let the associated boundary control node
Γ = (L,G,K) be given by Theorem 2. By Sd denote the dual node of S,
with main operator A∗ ∈ L(Xd

1 ; X). Then the dual system Sd is of boundary
control type, and its solution space satisfies Zd = Z.

Proof. By Proposition 5, S is time-flow invertible, S← = Sd, A← = A∗, and
D(A←) = Xd

1 ; here A∗ is a generator of a C0-semigroup of contractions on
X. By Proposition 12, we have D(A←) = Ker K and −L|Ker K = A←.
Because now −L|Ker K = A∗, we conclude that Ker K = Xd

1 is dense in X
and ρ(−L|Ker K)∩C+ 6= ∅. Now the claim follows from Corollary 1 because
all of the assumptions of Theorem 4 are satisfied.
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6 Time-flow invertibility and conservativity

of boundary control nodes

We are now ready to apply all the previous results to conservative boundary
control systems. First comes an adaptation of Theorem 3 to the boundary
control context.

Lemma 2. Assume S = [ A&B
C&D ] is an operator node of boundary control

type with Ran C&D = Y , and let the associated boundary control node Γ =
(L,G,K) be given by Theorem 2. Then S is tory if and only if

(i) the primal Liapunov equation A + A∗
−1 = −C∗C holds on X1,

(ii) we have Gx = B∗x for all x ∈ Xd
1 := D(A∗), and

(iii) the identity −L|Ker K = A∗ holds (with equal domains).

Proof. We start from the more interesting “sufficiency” part. It is clear that
condition (i) of Theorem 3 always holds for boundary control systems. Con-
ditions (ii) and (iv) of Theorem 3 are same as condition (i) and (iii) of this
lemma. By condition (iii), we have Xd

1 = Ker K ⊂ Z. By condition (ii) we
have [ I

B∗ ] x = [ I
G ] x ⊂ [ I

G ] Z = V for all x ∈ Xd
1 , and hence C&D [ I

B∗ ] x ∈ Y
is well defined; see claim (iii) of Proposition 3. Now, by the definition of op-
erator K (see claim (ii) of Proposition 4), we obtain C&D [ I

B∗ ] x = Kx = 0
for all x ∈ Xd

1 . This is condition (iii) of Theorem 3, namely the dual cross-
term equation. Time-flow invertibility of S follows from condition (iii) and
Theorem 4 since −L|Ker K = A∗ and ρ(A) ∩ C+ 6= ∅.

To prove the “necessity” part, assume that S is tory. Such S is time-flow
invertible by Proposition 5, S← = Sd, and all the conditions of Theorem 3
hold; including conditions (i) and (iii) of this lemma hold, too.

By [13, Theorem 4.4], the dual Liapunov equation holds in the form

[

A−1 B
]

[

I
B∗

]

x = −A∗x ∈ X for all x ∈ Xd
1 = Ker K,

and hence [ I
B∗ ] Ker K ⊂ V = D(S). But because S satisfies the conditions

Proposition 4, we have V = [ I
G ] Z. Now the inclusion [ I

B∗ ] Ker K ⊂ [ I
G ] Z

implies condition (ii) of this lemma.

We have actually proved above that condition (ii) of Lemma 2 can be
replaced by the inclusion [ I

B∗ ] Ker K ⊂ V .
It is now time to turn attention to boundary control nodes Γ = (L,G,K).

We show first that doubly boundary control nodes can, indeed, be time-flow
inverted as expectedly.

Theorem 6. Let Γ = (L,G,K) be a doubly boundary control node, and
assume that S = [ A&B

C&D ] is the associated operator node given by Theorem 1.
Then S is time-flow invertible, Ran C&D = Y , and the time-flow inverse
S← is of boundary control type. Moreover, S← is the operator node associated
to Γ← := (−L,K,G) in the sense of Theorem 2
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In other words, it is right to call Γ← the time-flow inverse of Γ.

Proof. Because Γ← = (−L,K,G) is a boundary control node, Ker K is dense
in X and Y = Ran K. Since Γ is a boundary control node, it follows now
that Ran C&D = Y , see Proposition 4. Applying Proposition 1 to Γ← shows
that ρ(−L|Ker K) ∩ C+ 6= ∅. Thus S is time-flow invertible by Theorem 4.

By Corollary 1, S← is of boundary control type, and so it corresponds
to some boundary control node Γ′ := (L′, G′, K ′). Clearly Γ′ has a common
solution space Z with S and S←, see Proposition 8. Moreover, V ← = D(S←)
satisfies (4.3), and hence G′ = K. By using the symmetry (S←)← = S, also
G = K ′ follows.

Denoting by A←, A←
−1 the main operator of S← and its Yosida extension,

we have A←
−1|Z + B←K = −L on all of Z; see Theorem 4 and equation

(4.7). Applying claim (iii) of Proposition 4 to S←, we conclude that L′ =
A←

−1|Z + B←K. Hence L′ = −L, and the proof is complete.

Now come the main results of this paper.

Theorem 7. Let Γ = (L,G,K) be a doubly boundary control node, and
assume that S = [ A&B

C&D ] is the associated operator node given in Theorem 1.
Then S is conservative (hence, tory) if and only if

(i) 2Re 〈x, Lx〉X = −‖Kx‖2
Y for all x ∈ Ker G,

(ii) 〈z, Lx〉X + 〈Lz, x〉X = 〈Gz,Gx〉U for all z ∈ Z and x ∈ Ker K.

Proof. Since Γ is is a doubly boundary control node, the time-flow inverse
S← exists by Theorem 6, and it is of boundary control type. For the usual
spaces and operators involving S and S←, we have the identities X1 = Ker G,
A = L|Ker G, C = K|Ker G, X←

1 = Ker K, A← = −L|Ker K, and C← =
G|Ker K. Then (i) is same as 2Re 〈x,Ax〉X = −‖Cx‖2

Y for all x ∈ X1, which
is (by polarisation) equivalent to condition (i) of Lemma 2. Condition (ii) of
Lemma 2 holds if and only if

−〈z, A∗x〉X + 〈Lz, x〉X = 〈Gz,Gx〉U for all z ∈ Z and x ∈ D(A∗), (6.1)

since Ran G = U and BGz = −A−1z + Lz. This together with condition
(iii) of Lemma 2 imply condition (ii).

Because X1 is dense in X, condition (iii) of Lemma 2 holds if and only if
X←

1 = D(A∗) and 〈z, A←x〉X = 〈z, A∗x〉X for all z ∈ X1, x ∈ D(A∗) if and
only if

〈z, Lx〉X + 〈Lz, x〉X = 0 for all z ∈ Ker G and x ∈ Ker K. (6.2)

Clearly (ii) implies (6.2), and hence it implies condition (iii) of Lemma 2,
too. Finally note that (ii) together with condition (iii) of Lemma 2 imply
(6.1) and thus condition (ii) of Lemma 2.
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Note that condition (ii) of Theorem 7 implies 2Re 〈x,−Lx〉X = −‖Gx‖2
U

for all x ∈ Ker G, which is equivalent to the (primal) Liapunov equation of
the time-flow inverse S←.

There is another variant of Theorem 7 whose formulation is more sym-
metric but slightly weaker.

Theorem 8. Let Γ = (L,G,K) be a doubly boundary control node, and
assume that S = [ A&B

C&D ] is the associated operator node given in Theorem
1. Then S is conservative (hence, tory) if and only if the Green–Lagrange
identity

2Re 〈z0, Lz0〉X = ‖Gz0‖2
U − ‖Kz0‖2

Y (6.3)

holds for all z0 ∈ Z.

Proof. By polarisation identity, (6.3) implies for all z1, z2 ∈ Z the identity
〈z1, Lz2〉X + 〈Lz1, z2〉X = 〈Gz1, Gz2〉U − 〈Kz1, Kz2〉U . It is trivial that both
the conditions (i) and (ii) of Theorem 7 follow from this.

Conversely, assume that S is conservative. Let z0 ∈ Z be arbitrary and
u ∈ C2([0,∞); U) such that Gz0 = u(0). By Lemma 1, there exists a solution
z(·) ∈ C([0,∞); Z) ∩ C1([0,∞); X) of (1.1) that satisfies z(0) = z0 and
d
dt
‖z(t)‖2

X = ‖u(t)‖2
U − ‖y(t)‖2

Y . Differentiating and using (1.1) gives

〈z(t), Lz(t)〉X + 〈Lz(t), z(t)〉X = 〈Gz(t), Gz(t)〉U − 〈Kz(t), Kz(t)〉Y
for all t > 0. Since all the operators L, G and K are bounded from space Z
and z(·) ∈ C([0,∞); Z), we may take the limit as t → 0+. Now (6.3) follows
because z0 ∈ Z was arbitrary.

7 Five examples

We review the five easiest, well-known PDE examples of conservative bound-
ary control systems, and check how our techniques work for them.

7.1 Delay line

We consider the delay line system S on state space X = L2(0, 1). The Lax-
Phillips group of the system is the unitary right (forward) shift on L2(R), and
hence S is a conservative system with a nilpotent semigroup. The system S
is given in PDE form as follows:











zt(t, ξ) = −zξ(t, ξ) for all t ≥ 0 and ξ ∈ (0, 1),

z(t, 0) = u(t) and z(t, 1) = y(t) for all t ≥ 0,

u(0, ξ) = u0(ξ) for all ξ ∈ (0, 1);

The system theory of such equations has been treated e.g. in [2], [11] in a
more general setting. The input (output) end of the delay line is at ξ = 0
(ξ = 1, respectively). Hence L = − d

dξ
, Gz = z(0) and Kz = z(1), and the
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solution space is Z = H1(0, 1). It is easy to check that Γ := (L,G,K) is a
doubly boundary control node.

Let us check that Γ satisfies the conditions of Theorem 7. Verifying (i)
amounts to computing the integral

2Re

1
∫

0

x(ξ) (−x′(ξ)) dξ = −
1

∫

0

d

dξ
|x(ξ)|2 dξ = −|x(1)|2

since x(0) = 0 in Ker G. To prove (ii), integrate partially

1
∫

0

z(ξ) (−x′(ξ)) dξ +

1
∫

0

z′(ξ) (−x(ξ)) dξ

= −z(1)x(1) + z(0)x(0) = z(0)x(0)

since now x(1) = 0 in Ker K.

7.2 Vibrating string

Consider the system S described by the wave equation on interval [0, 1] with
endpoint control and observation:































ztt(t, ξ) = zξξ(t, ξ) for ξ ∈ (0, 1) and t ≥ 0,

−zt(t, 1) − zξ(t, 1) =
√

2 u(t) for t ≥ 0,√
2 y(t) = −zt(t, 1) + zξ(t, 1) for t ≥ 0,

z(t, 0) = 0 for t ≥ 0, and

z(0, ξ) = z0(ξ), zt(0, ξ) = w0(ξ) for ξ ∈ (0, 1).

(7.1)

Equations (7.1) can be cast into form of (1.1) by using the rule

ztt = zξξ =̂
d

dt

[

z
w

]

=

[

0 −1

− d2

dξ2 0

] [

z
w

]

.

Henceforth let L :=
[

0 −1

− d2

dξ2
0

]

: Z → X, together with

Z :=
(

H1
{0}(0, 1) ∩ H2(0, 1)

)

× H1
{0}(0, 1), X := H1

{0}(0, 1) × L2(0, 1)

where H1
{0}(0, 1) :=

{

z ∈ H1
{0}(0, 1) : z(0) = 0

}

.

It follows directly that Z = {z ∈ X : Lz ∈ X} and X = LZ. The Hilbert
spaces X and Z are equipped with their direct sum inner products for now
but another norm for X will be given in Proposition 7.2. Then Z ⊂ X with
a bounded inclusion and L ∈ L(Z; X).

The (restriction of the distribution) derivative of z ∈ H 1(0, 1) is denoted
by z′ ∈ L2(0, 1)8. The operators G : Z → C and K : Z → C are defined by

G [ z0
w0 ] :=

1√
2

(w0(1) − z′
0(1)) and K [ z0

w0 ] :=
1√
2

(w0(1) + z′
0(1)) .

8But the time derivative is always denoted by subindex t.
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Clearly Ker G = {[ z0
w0 ] ∈ Z : w0(1) = z′

0(1)}. Since point evaluations (also
on the boundary point 1) are continuous in H 1(0, 1), it follows that G,K ∈
L(Z; C). By approximating the components of z0 ∈ X by C2-functions, it
follows that Ker G is dense in X.

It is easy to see that Ker L =
{[

cφ
0

]

: c ∈ C
}

where φ(ξ) = ξ for ξ ∈
(0, 1). We show next that the conditions (c) and (d) of Definition 1 hold
for α = 0. Trivially Ker L ∩ Ker G = {0}. Also LKer G = X, as for any
x ∈ X there exists [ z0

w0 ] ∈ Z so that L
[

z0+cφ
w0

]

= x for all c ∈ C. Choosing
c = w0(1) − z′

0(1), we see that
[

z0+cφ
w0

]

∈ Ker G. We have now:

Proposition 13. Let the operators L, G, K and spaces Z, X be defined as
earlier in this subsection.

(i) The triple Γ = (L,G,K) is a boundary control node in the sense of
Definition 1. The domain space V = [ I

G ] Z for the associated operator
node is given by

V =

{[

z0
w0

1√
2
(w0(1)−z′0(1))

]

: z0 ∈ H1
{0}(0, 1) ∩ H2(0, 1) and w0 ∈ H1

{0}(0, 1)

}

.

(ii) For any u ∈ C2([0,∞)) and [ z0 w0 u(0) ]T ∈ V , there exists a unique
classical solution

z(·) ∈ C([0,∞); H2(0, 1))∩C1([0,∞); H1
{0}(0, 1))∩C2([0,∞); L2(0,∞))

of (7.1) satisfying the initial conditions z(0) = z0 and zt(0) = w0.

The requirement [ z0 w0 u(0) ]T ∈ V is known as a compatibility condition
in PDE literature.

Proof. Only (ii) has not been proved yet. If we show that L|Ker G is a
dissipative operator (which will be omitted now, as it follows from Proposition
13 anyway), then there exists a unique solution

[

z(·)
−zt(·)

]

∈ C([0,∞); Z) ∩ C1([0,∞); X)

for (1.1) by Lemma 1. Then z(·) solves (7.1) (in the sense of distributions),
and it has the other required properties, too.

Let us treat the energy balance questions next. From equations (7.1) we
see that zt(t, 1) = 1√

2
(u(t) + y(t)) and zξ(t, 1) = 1√

2
(u(t) − y(t)). By partial

integration, we get (at least formally) for solutions of (7.1)

d

dt

1
∫

0

|zξ(t, ξ)|2 dξ = 2Re zt(t, 1)zξ(t, 1) −
d

dt

1
∫

0

|zt(t, ξ)|2 dξ.
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Thus d
dt

E(z; t) = |u(t)|2 − |y(t)|2 where the energy functional is defined by

E(z; t) :=

1
∫

0

(

|zξ(t, ξ)|2 + |zt(t, ξ)|2
)

dξ = ‖z′(t)‖2
L2(0,1) + ‖zt(t)‖2

L2(0,1).

This energy functional is associated to a norm on the state space X, which
makes S an energy preserving system:

Proposition 14. The expression

‖ [ z0
w0 ] ‖2

X := ‖z′
0‖2

L2(0,1) + ‖w0‖2
L2(0,1) (7.2)

defines a Hilbert space norm for X such that E(z; t) = ‖
[

z(t)
zt(t)

]

‖2
X for all all

solutions z(·) of (7.1) satisfying the conditions of Proposition 13.

Proof. Equation (7.2) defines clearly a norm on X, and we have

‖ [ z0
w0 ] ‖2

X < ‖z0‖2
L2(0,1) + ‖ [ z0

w0 ] ‖2
X = ‖ [ z0

w0 ] ‖2
H1

{0}(0,1)×L2(0,1).

The elementary form of the Poincaré inequality ‖z0‖L2(0,1) ≤ ‖z′0‖L2(0,1) is
easy to show for z0 ∈ H1

{0}(0, 1), and it implies the converse inequality

‖ [ z0
w0 ] ‖2

H1
{0}(0,1)×L2(0,1)

≤ 2‖ [ z0
w0 ] ‖2

X . The rest is clear from Proposition 13.

Proposition 15. Let the operators L, G, K and spaces Z, X be defined
as earlier in this subsection. Use the energy norm (7.2) for X. Then Γ =
(L,G,K) describes a conservative system, associated to wave equation (7.1).

Proof. It is a matter of changing a few signs in the earlier computations of
this subsection to verify that Γ← = (−L,K,G) is a boundary control node.
For an arbitrary [ z0

w0 ] ∈ Ker G, integrate partially to obtain

− 2Re 〈[ z0
w0 ] , L [ z0

w0 ]〉X = 2Re
〈

[ z0
w0 ] ,

[ w0

z′′0

]〉

X

= 〈z′′
0 , w0〉L2(0,1) + 〈z′

0, w
′
0〉L2(0,1) + 〈w0, z

′′
0 〉L2(0,1) + 〈w′

0, z
′
0〉L2(0,1)

= 2Re
(

z′0(1)w0(1) − z′
0(0)w0(0)

)

= 2|w0(1)|2 = |K [ z0
w0 ] |2,

where the second to last equality follows from w0(0) = 0 (since [ z0
w0 ] ∈ Z),

and w0(1) = z′
0(1) (since [ z0

w0 ] ∈ Ker G). Hence condition (i) of Theorem 7
follows.

To establish condition (ii), let [ z1
w1 ] ∈ Z and [ z2

w2 ] ∈ Ker K. Then w1(0) =
w2(0) = 0, z′

2(1) = −w2(1), and G [ z2
w2 ] =

√
2 w2(1). By partial integration

and using the boundary conditions, we get

〈[ z1
w1 ] , L [ z2

w2 ]〉X + 〈L [ z1
w1 ] , [ z2

w2 ]〉X
= −〈z′

1, w
′
2〉L2(0,1) − 〈z′′

1 , w2〉L2(0,1) − 〈w′
1, z

′
2〉L2(0,1) − 〈w′′

1 , z2〉L2(0,1)

= z′
1(1)w2(1) + w1(1)z

′
2(1) =

(

z′1(1) − w1(1)
)

w2(1) = G [ z1
w1 ]G [ z2

w2 ] .

This completes the proof.
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7.3 Telegraph equation

A slight generalisation of the vibrating string is given by the telegraph equa-
tion for parameter k ∈ R:































ztt(t, ξ) = k2z(t, ξ) − zξξ(t, ξ) for ξ ∈ (0, 1) and t ≥ 0,

−zt(t, 1) − zξ(t, 1) =
√

2 u(t) for t ≥ 0,√
2 y(t) = −zt(t, 1) + zξ(t, 1) for t ≥ 0,

z(t, 0) = 0 for t ≥ 0, and

z(0, ξ) = z0(ξ), zt(0, ξ) = w0(ξ) for ξ ∈ (0, 1).

(7.3)

The analysis of this example is analogous to that in Subsection 7.2, and
only some differences are indicated. The operator L is this time given by

L :=
[

0 −1

k2− d2

dξ2
0

]

. The spaces Z and X, together with the operators G and

K are same as for the vibrating string. With these definitions, the triple
Γ = (L,G,K) appears to be a doubly boundary control node. If the energy
norm is defined by

‖ [ z0
w0 ] ‖2

X := ‖z′
0‖2

L2(0,1) + k2‖z0‖2
L2(0,1) + ‖w0‖2

L2(0,1),

node Γ is seen to describe a conservative system, by almost same computa-
tions as in the proof of Proposition 15.

7.4 Reflecting mirror

This example is very much like the vibrating string, and for that reason we
discuss in detail only the new aspects that emerge. We shall review the more
complicated structure of Sobolev spaces and the elliptic regularity theory. A
more general version has been treated in terms of “thin air” systems in [24,
Section 7]; a construction that bears some resemblance to feedback techniques
appearing in [23]. Our approach resembles the techniques of [9].

Suppose Ω ⊂ Rn, n ≥ 2, is an open bounded set with C2-boundary ∂Ω.
We assume that ∂Ω is the union of two sets Γ0 and Γ1 with Γ0 ∩ Γ1 = ∅ 9.
System S is described by the exterior problem































ztt(t, ξ) = ∆z(t, ξ) for ξ ∈ Ω and t ≥ 0,

−zt(t, ξ) − ∂z
∂ν

(t, ξ) =
√

2 u(t, ξ) for ξ ∈ Γ1 and t ≥ 0,√
2 y(t, ξ) = −zt(t, ξ) + ∂z

∂ν
(t, ξ) for ξ ∈ Γ1 and t ≥ 0,

z(t, ξ) = 0 for ξ ∈ Γ0 and t ≥ 0, and

z(0, ξ) = z0(ξ), zt(0, ξ) = w0(ξ) for ξ ∈ Ω.

(7.4)

We obtain equations of form (1.1) by using the rule

ztt = ∆z =̂
d

dt

[

z
w

]

=

[

0 −1
−∆ 0

] [

z
w

]

.

9The sets Γ1 and Γ0 are allowed to have zero distance in [24]. This is possible because
stronger background results from [14] are used there.
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In analogy with the vibrating string, let L :=
[

0 −1
−∆ 0

]

: Z → X with

Z := Z0 × H1
Γ0

(Ω) and X := H1
Γ0

(Ω) × L2(Ω)

where Z0 :=
{

z ∈ H1
Γ0

(Ω) ∩ H3/2(Ω) : ∆z ∈ L2(Ω)
}

.

The norm for Z0 is given by

‖z0‖2
Z0

:= ‖z0‖2
H1(Ω) + ‖z0‖2

H3/2(Ω) + ‖∆z0‖2
L2(Ω).

For space X, we use the energy norm

‖ [ z0
w0 ] ‖2

X := ‖|∇z0|‖2
L2(Ω) + ‖w0‖2

L2(Ω). (7.5)

As is well known, it follows from Poincaré inequality ‖z0‖L2(Ω) ≤ K‖|∇z0|‖L2(Ω)

for z0 ∈ H1
Γ0

(Ω) that this norm is equivalent to the direct sum norm of X,
see e.g. [9, p. 168]. Thus Z ⊂ X with a bounded inclusion and L ∈ L(Z; X).

Let us review the properties of Sobolev spaces and the trace mappings.
The spaces Hs(Ω) := W 2

2 (Ω) for s = 1, 3/2, 2, and the boundary spaces
H1/2(∂Ω), H1/2(Γ0), and H1/2(Γ1) are defined as usual, see [5, Definition
1.3.2.1]. Note that (by extending functions by zero on the other component)
L2(∂Ω) = L2(Γ0) ⊕ L2(Γ1). Because Γ0 ∩ Γ1 = ∅, we have (by locality)
H1/2(∂Ω) = H1/2(Γ0)⊕H1/2(Γ1), too. By [5, Theorem 1.5.1.3] the (Dirichlet)
trace operator γ maps

H1(Ω) 3 g
γ7→ g|∂Ω ∈ H1/2(∂Ω) ⊂ L2(∂Ω),

and thus γ ∈ L(H1(Ω); L2(∂Ω)). Now, let π be the orthogonal projection
of L2(∂Ω) onto L2(Γ1); the latter regarded as a subspace of L2(∂Ω) in a
natural way. With a slight misuse of notation, we write πg = g|Γ1 and
(I − π)g = g|Γ0. Since now (I − π)γ ∈ L(H1(Ω); L2(∂Ω)), the space

H1
Γ0

(Ω) := Ker (I − π)γ =
{

g ∈ H1(Ω) : g|Γ0 = 0
}

is a closed subspace of H1(Ω). So γ0 := πγ|H1
Γ0

(Ω) ∈ L(H1
Γ0

(Ω); L2(Γ1)) and
we abbreviate γ0g = g|Γ1.

In the same manner, Z0 is a closed subspace of H3/2(Ω) since Z0 ⊂
H1(Ω) ⊂ H3/2(Ω) with continuous inclusions. By [5, Theorem 1.5.1.2],
the (Neumann) trace operator γ ∂

∂ν
∈ L(H3/2(Ω); L2(∂Ω)) for Ω has a C2-

boundary. Now γ1 := πγ ∂
∂ν
|Z0 ∈ L(Z0; L

2(Γ1)), and we write γ1g = ∂g
∂ν
|Γ1.

Defining U = Y := L2(Γ1), we get G ∈ L(Z; U) and K ∈ L(Z; Y ) where

G [ z0
w0 ] :=

1√
2

(

−∂z0

∂ν
|Γ1 + w0|Γ1

)

and K [ z0
w0 ] :=

1√
2

(

∂z0

∂ν
|Γ1 + w0|Γ1

)

.

We shall require some facts from the elliptic regularity theory. Following
[23, p. 444], we denote the Neumann mapping Ñ by

h = Ñg ⇔











∆h = 0 in Ω,

h|Γ0 = 0 in Γ0,
∂h
∂ν
|Γ1 = g in Γ1,

(7.6)
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where h ∈ H1
Γ0

(Ω) is the unique variational solution. By the elliptic regularity

theory, Ñ ∈ L(L2(Γ1); H
3/2(Ω)) ∩ L(H1/2(Γ1); H

2(Ω)). Moreover, if z0 ∈
H1

Γ0
(Ω) is the unique variational solution of

∆h = f ∈ L2(Ω), h|Γ0 = 0,
∂z0

∂ν
|Γ1 = 0,

then h ∈ H2(Ω), see [9, Section 4]. Hence, the unique variational solution of

∆h = f ∈ L2(Ω), h|Γ0 = 0,
∂h

∂ν
|Γ1 = g

belongs to H3/2(Ω) (H2(Ω)) if g ∈ L2(Γ1) (H1/2(Γ1), respectively).
It is worth mentioning that the space Z0 is given in another equivalent

form [24, Section 7]:

Proposition 16. Under the standing assumptions on Γ1 and Γ2, the space
Z0 satisfies

Z0 = {z0 ∈ H1
Γ0

(Ω) : ∆z0 ∈ L2(Ω) and
∂z0

∂ν
|Γ1 ∈ L2(Γ1)}.

Proof. If z0 ∈ H3/2(Ω), then ∂z0

∂ν
|Γ1 ∈ L2(Γ1) by [5, Theorem 1.5.1.2]. Con-

versely, if z0 ∈ H1(Ω) is the variational solution of

∆z0 = f ∈ L2(Ω), z0|Γ0 = 0,
∂z0

∂ν
|Γ1 = g ∈ L2(Γ1),

then z0 ∈ H3/2(Ω) by what has been said above about elliptic regularity.

There is another consequence of elliptic regularity that depends on the
assumption that Γ0 ∩ Γ1 = ∅:

Proposition 17. Under the standing assumptions on Γ1 and Γ2, we have

Ker G =

{

[ z0
w0 ] ∈

(

H1
Γ0

(Ω) ∩ H2(Ω)
)

× H1
Γ0

(Ω) :
∂z0

∂ν
|Γ1 = w0|Γ1

}

.

Proof. If [ z0
w0 ] ∈ Ker G, then w0 ∈ H1(Ω) and hence w0|Γ1 ∈ H1/2(Γ1). But

then z0 is the variational solution of

∆z0 = f ∈ L2(Ω), z0|Γ0 = 0,
∂z0

∂ν
|Γ1 = w0|Γ1 ∈ H1/2(Γ1),

and so z0 ∈ H2(Ω) by elliptic regularity.

Note that Z0 ⊂ H2(Ω) never holds because this would contradict the fact
that γ1Z0 = L2(Γ1), as given in the proof of the following:

Proposition 18. Let the operators L, G, K and spaces Z, X be defined as
above. Then Γ = (L,G,K) is a doubly boundary control node.
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Proof. Since Ñ ∈ L(L2(Γ1); H
3/2(Ω)), we have ÑL2(Γ1) ⊂ Z0. Furthermore,

for any g ∈ L2(Γ1) we have γ1Ñg = g. Thus γ1Z0 = L2(Γ1), and condition
(a) of Definition 1 is satisfied. It is not difficult to see, using Proposition
17, that Ker G is dense in X = H1

Γ0
(Ω) × L2(Ω): let ε > 0, [ z0

w0 ] ∈ X

and choose [ z̃
w̃ ] ∈

(

H1
Γ0

(Ω) ∩ C∞(Ω)
)

× H1
Γ0

(Ω) with ‖ [ z0
w0 ] − [ z̃

w̃ ] ‖X < ε.
It is possible to construct ŵ ∈ H1

Γ0
(Ω) satisfying ‖ŵ‖L2(Ω) < ε and ŵ|Γ1 =

w̃|Γ1 − ∂z̃
∂ν
|Γ1; indeed, such ŵ could be made to vanish in almost all of Ω

except for points very close to Γ1 by using a suitable smooth“mollifier”. Now
[

z̃0

w̃0

]

:= [ z̃
w̃ ] − [ 0

ŵ ] ∈ Ker G and ‖ [ z0
w0 ] −

[

z̃0

w̃0

]

‖X < 2ε.

Now, let [ z1
w1 ] ∈ X be arbitrary. By Proposition 17, [ z1

w1 ] = L [ z0
w0 ] =

[ −w0

−∆z0

]

for [ z0
w0 ] ∈ Ker G if and only if w0 = −z1 and the variational solution

z0 ∈ H1
Γ0

(Ω) of the problem

∆z0 = −w1, z0|Γ0 = 0,
∂z0

∂ν
|Γ1 = −z1|Γ1,

satisfies z0 ∈ H2(Ω). Since w1 ∈ L2(Ω) and z1|Γ1 ∈ H1/2(Γ1), this follows
from the same elliptic regularity result as Proposition 17.

Finally, [ z0
w0 ] ∈ Ker L ∩ Ker G if and only if w0 = 0 together with z0 ∈

H2(Ω), ∆z0 = 0, z0|Γ0 = 0 and ∂z0

∂ν
|Γ1 = w0|Γ1 = 0 if and only if w0 = 0 and

z0 = Ñ0 = 0 in (7.6). Conditions of Definition 1 are satisfied with α = 0, and
thus Γ = (L,G,K) is a boundary control node. That also Γ← = (−L,K,G)
is such a node, is proved by a similar argument.

Lemma 3. Let the operators L, G, K and spaces Z, X be defined as earlier
in this subsection. Use the energy norm (7.5) for X.

(i) The boundary control node Γ = (L,G,K) associated to wave equation
(7.4) describes a (tory) conservative system S = [ A&B

C&D ] through Theo-
rem 1.

(ii) The transfer function G(·) of S is inner from both sides and ana-
lytic in an open set containing C+. The semigroups of S and the
dual system Sd are strongly stable in the reducing subspace Xcnu :=
(

Ker (Cd)∗ ∩ Ker C
)⊥

, where C (Cd) denotes the observability map of S
(Sd, respectively).

(iii) Assume, in addition, that Ω is connected. Then S is exactly controllable
and observable in infinite time, and the semigroups of S and Sd are
strongly (asymptotically) stable.

Proof. For an arbitrary [ z0
w0 ] ∈ Ker G, the Green’s formula [5, Lemma 1.5.3.8]
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implies

− 2Re 〈[ z0
w0 ] , L [ z0

w0 ]〉X = 2Re 〈[ z0
w0 ] , [ w0

∆z0
]〉X

= 2Re



〈∆z0, w0〉L2(Ω) +

∫

Ω

∇z0 · ∇w0 dΩ





= 2Re





∫

Γ0∪Γ1

∂z0

∂ν
w0 dω



 = 2‖w0|Γ1‖2
L2(Γ1)

because ∂z0

∂ν
|Γ1 = w0|Γ1. Clearly K [ z0

w0 ] =
√

2w0|Γ1 for all [ z0
w0 ] ∈ Ker G, and

condition (i) of Theorem 7 holds. Similarly,

〈[ z0
w0 ] , L [ x0

y0 ]〉X + 〈L [ z0
w0 ] , [ x0

y0 ]〉X = −
∫

Γ1

∂z0

∂ν
y0 dω −

∫

Γ1

w0
∂x0

∂ν
dω (7.7)

for any [ z0
w0 ] ∈ Z and [ x0

y0 ] ∈ Ker K. On the other hand,

〈G [ z0
w0 ] , G [ x0

y0 ]〉L2(Γ1) (7.8)

= − 1√
2

〈

∂z0

∂ν
|Γ1, G [ x0

y0 ]

〉

L2(Γ1)

+
1√
2
〈w0|Γ1, G [ x0

y0 ]〉L2(Γ1) .

Since G [ x0
y0 ] =

√
2y0|Γ1 = −

√
2∂x0

∂ν
|Γ1 for any [ x0

y0 ] ∈ Ker K, condition (ii) of
Theorem 7 follows from (7.7) and (7.8).

Let us prove claim (ii) by using the theory of conservative systems and
the classical Sz.-Nagy – Foiaş model for contractions. By Xu ⊂ X denote
the largest reducing subspace of the semigroup S(t) of S (generated by A =
L|Ker G), such that S(t)|Xu is a unitary group. By a continuous time ana-

logue of [12, Proposition A.2], we have X⊥
u =

(

Ker (Cd)∗ ∩ Ker C
)⊥

= Xcnu.
By reducing the unobservable and uncontrollable subspace Xu away from the
state space X of S, we obtain another simple conservative system S ′ whose
transfer transfer function is same G(·) as that of S. The c.n.u. semigroup of
S ′ is S(t)|Xcnu with generator Acnu = L| (Ker G ∩ Xcnu).

Because the inclusion Ker G ⊂ X is compact, the resolvent of the gen-
erator A is compact with σ(A) = σp(A). Because the same holds for Acnu,
the intersection σ(Acnu) ∩ iR can have only ±i∞ as limit points. It follows
then that G(α)∗G(α) = I for almost all α ∈ iR by [13, Lemma 3.2(v)] or
[21, Corollary 7.3]. Since all this holds also for the dual system Sd = S← by
symmetry, we conclude that the H∞-function G(·) is inner from both sides.

Since S ′ is a tory system, the Sz.-Nagy – Foiaş characteristic function of
Acnu satisfies θ(·) = V1G(·)V2 where V1 and V2 identify unitarily the input
and output spaces U and Y with the defect spaces of Acnu. Then θ(·) is inner
from both sides, and the Sz.-Nagy – Foiaş operator model [22, formula (a)
on p. 279] for S(t)|Xcnu reduces to the more simple Hankel range form [22,
formula (a’) on p. 279]. From this it follows easily that S(t)|Xcnu is strongly

32



stable10 on Xcnu, σ(Acnu) ∩ iR = ∅ by the compact resolvent, and thus G(·)
is analytic outside σ(Acnu) ⊂ C−.

It remains to prove claim (iii). Suppose we had shown that dim Xu = 0.
Then the semigroups of S and Sd are strongly stable, and that S itself is
a simple conservative system. As G(·) is inner from both sides, its Hankel
operator has closed range, and the canonical (simple conservative) Hankel
range realization of G(·) is exactly controllable in infinite time. The same
holds for S by the well-known state space isomorphism theorem for simple
conservative systems, see e.g. [19, Chapter 11]. By considering the dual
system Sd, the exact observability of S in infinite time follows.

We proceed to show that σp(A) ∩ iR = ∅ which clearly implies dim Xu =
0. We already know that 0 /∈ σ(A) from the proof of Proposition 18. If
(ir − L) [ z0

w0 ] = 0 for r ∈ R \ {0}, then w0 = −irz0 ∈ H2(Ω), (r2 + ∆)z0 = 0,
z0|Γ0 = 0, ∂z0

∂ν
|Γ1 = −irz0|Γ1. But then Green’s formula implies

− r2‖z0‖L2(Ω) = 〈∆z0, z0〉L2(Ω) = −‖|∇z0|‖L2(Ω) +

∫

Γ0∪Γ1

∂z0

∂ν
z0 dω

= −‖|∇z0|‖2
L2(Ω) + ir‖z0‖2

L2(Γ1).

We conclude that z0 solves the Helmholtz equation

(r2 + ∆)z0 = 0 on Ω, z0|∂Ω = 0,
∂z0

∂ν
|Γ1 = 0; (7.9)

compare this with [23, proof of Lemma 2.1(iii)]. Conversely, any solution
z0 ∈ H2(Ω) of (7.9) satisfies (ir − L) [ z0

−irz0
] = 0. Note that any solution of

∆z0 = −r2z0, z0|∂Ω = 0 in H1(Ω) satisfies z0 ∈ ∩s>0H
s(Ω) ⊂ C∞

0 (Ω) as can
be seen by using the elliptic regularity result iteratively, see e.g. [10].

To complete the proof, we shall show that (7.9) implies11 z0 = 0. Extend
the set Ω to a larger open set Ω′ by “glueing” an additional set Ω′′ (with a
nonempty interior) to the Γ1-part of ∂Ω. This extension can be carried out
so that Ω′ is connected, it has a C2-boundary, ∂Ω′ = Γ0 ∩ Γ′

1, Γ0 ∩ Γ′
1 = ∅,

and Γ′
1 ⊂ Γ1 ∪ ∂Ω′′. Suppose that z0 ∈ H1

0 (Ω) ∩ H2(Ω) satisfies (7.9), and
define the extended functions

u(ξ) :=

{

z0(ξ) for ξ ∈ Ω,

0 for ξ ∈ Ω′ \ Ω,
uj(ξ) :=

{

∂z0

∂ξj
(ξ) for ξ ∈ Ω,

0 for ξ ∈ Ω′ \ Ω,

and g(ξ) :=

{

∆z0(ξ) for ξ ∈ Ω,

0 for ξ ∈ Ω′ \ Ω

10By the Sz.-Nagy – Foiaş operator model [22, formula (a) on p. 279], S(t)|Xcnu is seen
to be weakly stable. This together with the compact resolvent property implies the strong
stability; the argument appearing in [23].

11Note that this implication does not hold, if Ω has a component Ω0 such that ∂Ω0∩Γ1 =
∅. Indeed, the spectrum of the “Dirichlet Laplacian” on a bounded connected set Ω0 is
always nonempty, see e.g. [3].
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where ξ = (ξ1, ξ2, . . . , ξn). Then for any test function φ ∈ D(Ω′) we have

∫

Ω′

φuj dΩ =

∫

Ω

φ
∂z0

∂ξj

dΩ = −
∫

Ω

∂φ

∂ξj

z0 dΩ = −
∫

Ω′

∂φ

∂ξj

u dΩ

where the middle equality holds by [5, Theorem 1.5.3.1] because z0|∂Ω = 0.
It follows that each partial (distributional) derivative of u satisfies ∂u

∂ξj
= uj.

Since u, uj ∈ L2(Ω′), we conclude that u ∈ H1(Ω′). Because Γ′
1 ⊂ Γ1 ∪ ∂Ω′′,

we get u|∂Ω′ = 0 and ∂u
∂ν
|Γ′

1 = 0, too.

Since z0 ∈ H2(Ω), we have g ∈ L2(Ω). Again, for any φ ∈ D(Ω′) we get

∫

Ω′

φg dΩ =

∫

Ω

φ∆z0 dΩ =

∫

Γ0∪Γ1

φ
∂z0

∂ν
dω −

∫

Ω

∇φ · ∇z0 dΩ

= −
∫

∂Ω

∂φ

∂ν
z0 dω +

∫

Ω

∆φ · z0 dΩ =

∫

Ω′

∆φ · u dΩ

where both boundary terms vanish since φ|Γ0 = 0, ∂z0

∂ν
|Γ1 = 0, and z0|∂Ω = 0.

We conclude that ∆u = g ∈ L2(Ω′) in the sense of distributions.

Since u ∈ H1(Ω′) and ∆u ∈ L2(Ω′), the (generalised) Green’s formula [5,
Theorem 1.5.3.11] can be used as follows: for any φ ∈ D(Ω′)

∫

Ω′

φ∆u dΩ =

∫

Γ0∪Γ′
1

φ
∂u

∂ν
dω −

∫

Ω′

∇φ · ∇u dΩ = −
∫

Ω

∇φ · ∇z0 dΩ

= −
∫

Γ0∪Γ1

φ
∂z0

∂ν
dω +

∫

Ω

φ∆z0 dΩ = −r2

∫

Ω

φz0 dΩ = −r2

∫

Ω′

φu dΩ.

Indeed, the second equality follows from the facts that φ|Γ0 = 0, ∂u
∂ν
|Γ′

1 = 0,
and that ∇u(ξ) = 0 vanishes in the interior of Ω′ \ Ω; the second to the last
equality holds since φ|Γ0 = 0 and z0 solves (7.9). We have now proved that
u ∈ H1

0 (Ω′) is a (distributional) solution for the extended domain Helmholtz
problem

(r2 + ∆)u = 0, u|∂Ω′ = 0,
∂u

∂ν
|Γ′

1 = 0.

As noted earlier after (7.9), it follows that u ∈ C∞
0 (Ω′). By using e.g. [3,

Theorem 3.5] locally, we see that u is real analytic in Ω′. By construction, u
vanishes in the nonempty interior of the set Ω′′ ⊂ Ω′. Since Ω′ is connected,
u vanishes in all of Ω′. Hence (7.9) has only the trivial solution in H1

0 (Ω) for
all r ∈ R, and the proof is complete.

The exponential stability of the system S in Lemma 3 has been proved
in [9, 23] under an additional geometric condition on Ω.
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7.5 Kirchhoff beam

We next consider the system S associated to the Kirchhoff beam on interval
[0, 1]. The beam is clamped at the end ξ = 0, and we apply endpoint control
and observation at the other end ξ = 1. The system is described by the
following PDE:



































ztt(t, ξ) = −zξξξξ(t, ξ) for ξ ∈ (0, 1) and t ≥ 0,
[

zξt(t,1)+zξξ(t,1)

zt(t,1)−zξξξ(t,1)

]

=
√

2
[

u1(t)
u2(t)

]

for t ≥ 0,
√

2
[

y1(t)
y2(t)

]

=
[

zξt(t,1)−zξξ(t,1)

zt(t,1)+zξξξ(t,1)

]

for t ≥ 0,

z(t, 0) = zξ(t, 0) = 0 for t ≥ 0, and

z(0, ξ) = z0(ξ), zt(0, ξ) = w0(ξ) for ξ ∈ (0, 1).

(7.10)

Again, we obtain equations of form (1.1) by using the rule

ztt = −zξξξξ =̂
d

dt

[

z
w

]

=

[

0 1

− d4

dξ4 0

] [

z
w

]

.

Consequently, we define L :=
[

0 1

− d4

dξ4
0

]

: Z → X together with

Z :=
(

H2
{0}(0, 1) ∩ H4(0, 1)

)

× H2
{0}(0, 1) and X := H2

{0}(0, 1) × L2(0, 1),

where H2
{0}(0, 1) :=

{

z ∈ H1
{0}(0, 1) ∩ H2(0, 1) : z′(0) = 0

}

. The input and

output operators are clearly given by

G [ z0
w0 ] :=

1√
2

[

w′
0(1)+z′′0 (1)

w0(1)−z′′′0 (1)

]

and K [ z0
w0 ] :=

1√
2

[

w′
0(1)−z′′0 (1)

w0(1)+z′′′0 (1)

]

.

We leave it for an interested reader to carry out the similar arguments as in
Subsection 7.2 for the wave equation, to verify that Γ := (L,G,K), indeed,
is a doubly boundary control node. For space X, we shall from now use the
following norm

‖ [ z0
w0 ] ‖2

X := ‖z′′
0‖2

L2(0,1) + ‖w0‖2
L2(0,1). (7.11)

Analogously to Proposition 14, this norm is equivalent to the natural carte-
sian product norm of X.

Proposition 19. Let the operators L, G, K and spaces Z, X be defined as
as earlier in this subsection. Use the Hilbert space norm (7.11) for X. Then
Γ = (L,G,K) is a conservative system, associated to the beam equation
(7.10).

Proof. As we said, showing that Γ is a doubly boundary control node will be
left as an exercise to an interesting reader. Let [ z0

w0 ] ∈ Ker G; i.e. w0(0) =
w′

0(0) = 0, w′
0(1) = −z′′

0 (1) and w0(1) = z′′′
0 (1). Then

− 2Re 〈[ z0
w0 ] , L [ z0

w0 ]〉X = 2Re
〈

[ z0
w0 ] ,

[

−w0

z′′′′0

]〉

X

= 〈z′′′′
0 , w0〉L2(0,1) − 〈z′′

0 , w
′′
0〉L2(0,1) + 〈w0, z

′′′′
0 〉L2(0,1) − 〈w′′

0 , z
′′
0 〉L2(0,1)

= 2Re
(

z′′′0 (1)w0(1) − z′′
0 (1)w′

0(1)
)

= 2
(

|w0(1)|2 + |z′′
0 (1)|2

)

= |K [ z0
w0 ] |2,
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where the last equality follows since [ z0
w0 ] ∈ Ker G. So condition (i) of

Theorem 7 is satisfied.
Now, let [ z1

w1 ] ∈ Z and [ z2
w2 ] ∈ Ker K. Then z1(0) = z′

1(0) = w1(0) =
w′

1(0) = 0, z2(0) = z′
2(0) = w2(0) = w′

2(0) = 0, w′
2(1) = z′′

2 (1), and w2(1) =
−z′′′2 (1). Using these gives by partial integration

〈[ z1
w1 ] , L [ z2

w2 ]〉X + 〈L [ z1
w1 ] , [ z2

w2 ]〉X
= −〈z′′′′

1 , w2〉L2(0,1) + 〈z′′
1 , w

′′
2〉L2(0,1) − 〈w1, z

′′′′
2 〉L2(0,1) + 〈w′′

1 , z
′′
2 〉L2(0,1)

= −z′′′
1 (1)w2(1) + z′′

1 (1)w′
2(1) − w1(1)z

′′′
2 (1) + w′

1(1)z
′′
2 (1)

=
(

w′
1(1) + z′′

1 (1)
)

w′
2(1) +

(

w1(1) − z′′′
1 (1)

)

w2(1)

= 〈G [ z1
w1 ] , G [ z2

w2 ]〉C2 ,

since G [ z2
w2 ] =

√
2
[

w′
2(1)

w2(1)

]

for [ z2
w2 ] ∈ Ker K. Hence condition (ii) of Theorem

7 follows, and the proof is complete.
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[6] M. S. Brodskĭi. On operator colligations and their characteristic func-
tions. Soviet Mat. Dokl., 12:696–700, 1971.
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