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1 Introduction

Let Ω be a domain in Rn, t1 < t2 and 1 < p < ∞. We define a positive weak
supersolution (subsolution) of the equation

div(|Du|p−2Du) =
∂(up−1)

∂t
(1)

as a function in the local parabolic Sobolev space Lp
loc(t1, t2; W

1,p
loc (Ω)) satis-

fying the equation

∫ t2

t1

∫

Ω

(|Du|p−2Du · Dη − up−1 ∂η

∂t
) dxdt ≥ (≤) 0 (2)

for all η ∈ C∞
0 (Ω × (t1, t2)), η ≥ 0. A weak solution of equation (1) is both

supersolution and subsolution.

As far as we know, equation (1) occured the first time in [Tru68], where the
Harnack inequality for a weak solution was proved. The proof was given
via parabolic BMO. The article generalized Moser’s famous article [Mo64].
The main result in [Mo64] was the parabolic version of the well-known John-
Nirenberg Lemma. Twenty years later, in [FaGa], the proof of this Main
Lemma was further simplified. The approach via BMO, however, is techni-
cally involved. Consequently, we prefer to give a simple proof using Moser’s
techniques in [Mo71]. In the article he used ideas of Bombieri [Bomb], [BoGi].
Some generalizations to Moser’s article were also made in chapter 5 of [SaCo].

We show that the parabolic Harnack inequality holds for a weak solution of
(1). For any fixed 0 < σ ≤ 1, τ ∈ R and for a ball B(z, r) ⊂ Rn, r > 0, we
define

σU+ = B(z, σr) × (τ +
1

2
rp −

1

2
(σr)p, τ +

1

2
rp +

1

2
(σr)p),

σU− = B(z, σr) × (τ −
1

2
rp −

1

2
(σr)p, τ −

1

2
rp +

1

2
(σr)p)

and

Q = B(z, r) × (τ − rp, τ + rp).

Our result is the following theorem.

Theorem 1.1. Let u ≥ ρ > 0 be a weak solution of equation (1) in Q and
let 0 < σ < 1. Then we have

ess sup
σU−

u ≤ C ess inf
σU+

u, (3)

where the constant C depends only on n, p and σ.
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It has come to our attention that a similar question has been studied in a
recent work by Gianazza and Vespri [GiVe] using a different method.

A well-known result is that the Hölder continuity of the solution in the
parabolic case is a consequence of the Harnack inequality [Mo64] as p = 2.
In general, due to the nonlinearity of the term (up−1)t, the same proof is not
valid for equation (1). This leaves the role of the Harnack inequality open in
the proof of solution’s Hölder continuity.

The method used here also covers more general equations

∂(up−1)

∂t
− divA(x, u,Du) = 0,

where the function A is only assumed to be measurable and satisfy the struc-
tural conditions (see e.g. [DiBe], [DBUV], [WZYL])

A(x, u,Du) · Du ≥ C0|Du|p,

|A(x, u,Du)| ≤ C1|Du|p−1,

where C0 and C1 are positive constants. We can use similar argumentation
as in [Tru68] to show Caccioppoli type estimates in section 2.1. After that
our method does not use any information about the equation. Therefore, for
expository purposes, we only consider equation (1).

I would like to express my gratitude to Juha Kinnunen for his encouragement
and valuable suggestions. I also wish to express my thanks to U. Gianazza
and V. Vespri for their helpful interest.

1.1 Preliminary results

In the appendix we show some consequences of the definition of a superso-
lution (subsolution). Especially, we show that it is possible to substitute a
test function depending on u in (2). The result is

0 ≤ (≥) (p − 1)

∫ τ2

τ1

∫

Ω

|Du|pup−2f ′′(up−1)η dxdτ (4)

+

∫ τ2

τ1

∫

Ω

|Du|p−2Du · Dηf ′(up−1) dxdτ

+

[
∫

Ω

f(up−1)η dx

]τ2

τ=τ1

−

∫ τ2

τ1

∫

Ω

f(up−1)
∂η

∂τ
dxdτ

for almost every τ1, τ2, t1 < τ1 < τ2 < t2, where f ∈ C2(0,∞), f ′ ≥ 0 and f ′

is bounded on the range of up−1.

We start with an elementary lemma.
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Lemma 1.1. Suppose that u ≥ ρ > 0 is a supersolution. Then v = u−1 is a
subsolution.

Proof. Let η ∈ C∞
0 (Ω × (t1, t2)), η ≥ 0, and τ1, τ2 be such that η(x, τ1) =

η(x, τ2) = 0 for every x ∈ Ω. By substituting the function f(s) = −s−1 in
(4) we have

0 ≤ −2(p − 1)

∫ τ2

τ1

∫

Ω

|Du|pu1−2pη dxdτ

+

∫ τ2

τ1

∫

Ω

|Du|p−2Du · Dη u2(1−p) dxdτ +

∫ τ2

τ1

∫

Ω

u1−p ∂η

∂τ
dxdτ

≤ −

∫ τ2

τ1

∫

Ω

|Dv|p−2Dv · Dη − vp−1 ∂η

∂τ
dxdτ.

and the result follows by letting τ1 → t1 and τ2 → t2. ¤

Next, we formulate two well known results. The first lemma is a straight-
forward consequence of standard Sobolev’s inequality and the proof can be
found from [DiBe].

Lemma 1.2. Suppose that u ∈ Lp((t1, t2); W
1,p
0 (Ω)), where κ > 1 Then there

exists a constant C = C(n, p, κ) such that

∫ t2

t1

∫

Ω

|u|κp dxdt ≤ C

∫ t2

t1

∫

Ω

|Du|p dxdt ·

(

ess sup
t1<t<t2

∫

Ω

|u|(κ−1)n dx

)
p
n

.

Following [SaCo], we call the next result as an Abstract Lemma. The original
idea is due to Bombieri [Bomb].

Lemma 1.3. Fix 0 < δ < 1. Let γ, C be positive constants and 0 < α0 ≤ ∞.
Let f be a positive measurable function on U1 = U which satisfies the reverse
Hölder type of inequality

‖f‖α0,Uσ′ ≤

(

C

(σ − σ′)γ
µ(U)−1

)1/α−1/α0

‖f‖α,Uσ
,

where Uσ′ ⊂ Uσ ⊂ Rn for all σ, σ′, α such that 0 < δ ≤ σ′ < σ ≤ 1 and
0 < α ≤ min{1, α0/2}. Assume further that f satisfies

µ({x ∈ U | log f > λ}) ≤ Cµ(U)λ−1

for all λ > 0. Then
‖f‖α0,Uδ

≤ Aµ(U)1/α0

where A depends only on δ, γ, C and the lower bound on α0.

Remark The assumption that log f belongs to weak L1(U), can be relaxed.
It is sufficient to assume that log f belongs to weak Lη(U) with any positive
η. One can check this easily (Moser’s proof in [Mo71]). Actually, in the
proof, the only thing where we use the term λ−1 is that log(λ)/λ tends to
zero as λ tends to infinity. Naturally, this is also true for log(λ)/λη.
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2 Estimates for super- and subsolutions

2.1 Caccioppoli estimates

Results stated in following three lemmata are essentially consequences of the
inequality (4) proved in the appendix for a supersolution (subsolution).

Lemma 2.1. Suppose that u ≥ ρ > 0 is a supersolution and let 0 < ε < p−1.
Then there exists a constant C = C(ε, p) such that

∫ t2

t1

∫

Ω

|Du|pu−ε−1ϕp dxdt + ess sup
t1<t<t2

∫

Ω

up−1−εϕp dx

≤ C

∫ t2

t1

∫

Ω

up−ε−1|Dϕ|p dxdt + C

∫ t2

t1

∫

Ω

up−ε−1ϕp−1

∣

∣

∣

∣

∂ϕ

∂t

∣

∣

∣

∣

dxdt

holds for every ϕ ∈ C∞
0 (Ω × (t1, t2)) with ϕ ≥ 0.

Proof. We choose the function f so that

f(up−1) =
p − 1

p − 1 − ε
up−1−ε, f ′(up−1) = u−ε, f ′′(up−1) = −

ε

p − 1
u1−p−ε

and η = ϕp, where ϕ ∈ C∞
0 (Ω × (t1, t2)) and ϕ ≥ 0. Substitution of f and η

in (4) gives

0 ≤ −ε

∫ τ2

τ1

∫

Ω

|Du|pu−ε−1ϕp dxdt

+p

∫ τ2

τ1

∫

Ω

|Du|p−1ϕp−1|Dϕ| u−ε dxdt

+
p(p − 1)

p − ε − 1

∫ τ2

τ1

∫

Ω

up−ε−1

∣

∣

∣

∣

∂ϕ

∂t

∣

∣

∣

∣

ϕp−1 dxdt

+
p − 1

p − ε − 1

[
∫

Ω

up−ε−1ϕp dx

]τ2

t=τ1

= −εI1 + pI2 +
p(p − 1)

p − ε − 1
I3 +

p − 1

p − ε − 1
I4.

Young’s inequality yields

I2 =

∫ τ2

τ1

∫

Ω

(

|Du|ϕu− ε+1
p

)p−1 (

|Dϕ|u−ε+(ε+1) p−1

p

)

dxdt

≤ γI1 + c(γ)

∫ τ2

τ1

∫

Ω

|Dϕ|pu−εp+(ε+1)(p−1) dxdt

= γI1 + c(γ)

∫ τ2

τ1

∫

Ω

|Dϕ|pup−ε−1 dxdt,

where γ > 0. Thus, we have

I1 −
2p(p − 1)

ε(p − ε − 1)
I3 ≤

2p c(ε/2p)

ε

∫ τ2

τ1

∫

Ω

|Dϕ|pup−ε−1 dxdt +
2(p − 1)

ε(p − ε − 1)
I4,
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where we have chosen γ = ε/2p. Furthermore, by choosing τ2 < t2 and
τ1 > t1 such that

∫

Ω

up−1−ε(x, τ1)ϕ
p(x, τ1) dx ≥

1

2
ess sup
t1<t<t2

∫

Ω

up−1−εϕp dx

and ϕ(x, τ2) = 0 for every x ∈ Ω, we obtain

ess sup
t1<t<t2

∫

Ω

up−1−εϕp dx

≤C

∫ t2

τ1

∫

Ω

|Dϕ|pup−ε−1 dxdtx + C

∫ t2

τ1

∫

Ω

up−1−ε

∣

∣

∣

∣

∂ϕ

∂t

∣

∣

∣

∣

ϕp−1 dxdt

≤C

∫ t2

t1

∫

Ω

|Dϕ|pup−ε−1 dxdt + C

∫ t2

t1

∫

Ω

up−1−ε

∣

∣

∣

∣

∂ϕ

∂t

∣

∣

∣

∣

ϕp−1 dxdt

for the parabolic term. The result follows now easily with the constant C
depending on ε and p and having singularities at ε = 0 and ε = p − 1. ¤

Next, we want to show a corresponding result for a subsolution. Observe that
in the following lemma we may have quantities which are a priori not nec-
essarily finite. Nevertheless, we can make our calculations with (12) instead
of (4). After we have control of the quantities, we obtain results by letting
k tend to infinity by the dominated convergence theorem. In fact, this also
justifies formal calculations in the proof of Lemma 2.5.

Lemma 2.2. Suppose that u ≥ ρ > 0 is a subsolution and let ε > 0. Then
there exists a constant C = C(ε, p), which is such that

∫ t2

t1

∫

Ω

|Du|puε−1ϕp dxdt + ess sup
t1<t<t2

∫

Ω

up−1+εϕp dx

≤ C

∫ t2

t1

∫

Ω

up−1+ε|Dϕ|p dxdt + C

∫ t2

t1

∫

Ω

up−1+εϕp−1

∣

∣

∣

∣

∂ϕ

∂t

∣

∣

∣

∣

dxdt

for every ϕ ∈ C∞
0 (Ω × (t1, t2)) with ϕ ≥ 0.

Proof. This time we choose the function f so that

f(up−1) =
p − 1

p − 1 + ε
up−1+ε, f ′(up−1) = uε, f ′′(up−1) =

ε

p − 1
uε−p+1

and τ1 and τ2 such that
∫

Ω

up−1−ε(x, τ2)ϕ
p(x, τ2) dx ≥

1

2
ess sup
t1<t<t2

∫

Ω

up−1−εϕp dx

holds. The assertion follows as in the proof of Lemma 2.1 and the constant
C has a singularity point at ε = 0. ¤

Finally, we show a Caccioppoli type estimate for the logarithm of a superso-
lution.
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Lemma 2.3. Suppose that u ≥ ρ > 0 is a supersolution. Then there exists
a constant C = C(p) such that

∫ t2

t1

∫

Ω

|D(log u)|pϕp dxdt + ess sup
t1<t<t2

∫

Ω

| log u|ϕp dx

≤ C

∫ t2

t1

∫

Ω

|Dϕ|p dxdt + C

∫ t2

t1

∫

Ω

| log u|ϕp−1

∣

∣

∣

∣

∂ϕ

∂t

∣

∣

∣

∣

dxdt

for every ϕ ∈ C∞
0 (Ω × (0, T )) with ϕ ≥ 0.

Proof. We choose the function f(s) = log s and η = ϕp, where ϕ ∈ C∞
0 (Ω ×

(t1, t2)) and ϕ ≥ 0. By denoting v = log u we have from (4) that

0 ≤ −(p − 1)

∫ τ2

τ1

∫

Ω

|Dv|pϕp dxdt

+p

∫ τ2

τ1

∫

Ω

|Dv|p−1|Dϕ| ϕp−1 dxdt

+

∫ τ2

τ1

∫

Ω

vϕp dxdt

−p

∫ τ2

τ1

∫

Ω

vϕp−1 ∂ϕ

∂t
dxdt

where t1 < τ1 < τ2 < t2. Young’s inequality for the second term yields

∫ τ2

τ1

∫

Ω

(|Dv|ϕ)p−1|Dϕ| dxdt

≤
p − 1

2p

∫ τ2

τ1

∫

Ω

|Dv|pϕp dxdt + c(p)

∫ τ2

τ1

∫

Ω

|Dϕ|p dxdt,

where c = c(p) is a constant depending only on p. Consequently, we have

∫ τ2

τ1

∫

Ω

|Dv|pϕp dxdt −

[
∫

Ω

vϕp dx

]τ2

t=τ1

≤ C1(p)

∫ τ2

τ1

∫

Ω

|Dϕ|p dxdt − C2(p)

∫ τ2

τ1

∫

Ω

vϕp−1∂ϕ

∂t
dxdt. (5)

The claim follows now in the standard way as in the proof of Lemma 2.1. ¤

Remark. In (5), the test function ϕ does not need to have a compact support
in time. We will use this fact in the future.

2.2 Reverse Hölder inequality for a supersolution

For any 0 < σ ≤ 1, τ ∈ R, η ≥ 1/2 and B(z, r) ⊂ Rn define

σQ = σQ(z, r, τ, η) = Q(z, σr, τ, η) = B(z, σr) × (τ − η(σr)p, τ + η(σr)p).
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In the following lemma the goal is to achieve a constant which is independent
of s. In the standard approach from Moser [Mo64] we only need to iterate
finite many times so we do not need to control the asymptotic behaviour of
the constant. In our approach the number of iterations can be indefinably
large and we have to make a certain geometrically convergent partition of
the cylinder Q in order to achieve an uniform bound for the constant.

We will use the notation
∫

Ω

fdxdt =
1

|Ω|

∫

Ω

fdxdt.

Lemma 2.4. Suppose that u ≥ ρ > 0 is a supersolution in Q. Fix 0 < δ < 1.
Then there exists positive constants C = C(n, p, q, δ, η) and γ = γ(n, p) such
that

(
∫

σ′Q

uqdxdt

)
1
q

≤

(

C

(σ − σ′)−γ

)
1
s
(
∫

σQ

usdxdt

)
1
s

for all 0 < δ ≤ σ′ < σ ≤ 1 and for all 0 < s < q < (p − 1)(1 + p
n
).

Proof. The starting point for the proof is the successive use of Sobolev’s
inequality and Caccioppoli’s estimate for supersolutions. Without loosing
the generality, we can assume that η = 1. We choose a function v = ϕuα/p.
Sobolev’s inequality stated in Lemma 1.2 for this function gives

∫

Q

vκp dxdt ≤ C

∫

Q

|D(ϕuα/p)|p dxdt ·

(

ess sup
t1<t<t2

∫

B

(ϕuα/p)p dx

)
p
n

≤ C

(
∫

Q

|D(ϕuα/p)|p dxdt + ess sup
t1<t<t2

∫

B

ϕpuα dx

)κ

= (I1 + I2)
κ,

where we have denoted

κ = 1 +
p

n
, α = p − 1 − ε, 0 < ε < p − 1, t1 = τ − rp, t2 = τ + rp.

Furthermore, a simple calculation yields that

I1 ≤ C

∫

Q

uα|Dϕ|p dxdt + Cαp

∫

Q

uα−p|Du|pϕp dxdt

= I3 + I4.

This together with Caccioppoli’s estimate 2.1 for the terms I2 and I4 gives

∫

Q

|ϕuα/p|κp dxdt ≤ C

(
∫

Q

uα|Dϕ|p dxdt +

∫

Q

uαϕp−1

∣

∣

∣

∣

∂ϕ

∂t

∣

∣

∣

∣

dxdt

)κ

.

Thus, we obtain
(

∫

Q

ϕκpuκα dxdt

)
1

κα
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≤ C
p
α

(
∫

Q

uα|Dϕ|p dxdt +

∫

Q

uαϕp−1

∣

∣

∣

∣

∂ϕ

∂t

∣

∣

∣

∣

dxdt

)
1
α

. (6)

The following step in the proof is to iterate the inequality above. We fix σ
and σ′. We divide the interval (σ′, σ) into k parts so that

σ0 = σ, σk = σ′, σj = σj−1 − c(k)
σ − σ′

κj
, j = 1, . . . , k.

Observe, that the constant c(k) is uniformly bounded on k. More precisely,
we have

κ − 1

κ
≤ c(k) ≤ 1

for every k. We have chosen such a partition because, as a result of the
iteration, we need to have a constant independent of k. Next, we choose test
functions which have following properties

spt (ϕj) ⊂ σj−1Q,

0 ≤ ϕj ≤ 1 in σj−1Q, ϕj = 1 in σjQ,

|Dϕj| ≤ C
κj

r(σ − σ′)
,

∣

∣

∣

∣

∂ϕj

∂t

∣

∣

∣

∣

≤ C

(

κj

r(σ − σ′)

)p

in σjQ.

Substituting test functions in (6) we get inequalities

(

∫

σjQ

uκα dxdt

)
1

κα

≤

(

Cκj

r(σ − σ′)

)

p
α

(

∫

σj−1Q

uα dxdt

)
1
α

for j = 1, . . . , k. We can write inequalities above equivalently

(

∫

σjQ

uκα dxdt

)
1

κα

≤

(

Cκj

(σ − σ′)

)

p
α

dj(r)

(

∫

σj−1Q

uα dxdt

)
1
α

, (7)

where

dj(r) =
(σj−1r)

p+n
α

(σjr)
p+n
κα

r−
p
α =

(

σj−1

σ
1/κ
j

)
p+n

α

since

−p + p + n −
p + n

1 + p
n

= 0.

Observe that (7) holds only when 0 < α < p − 1. This condition yields the
upper bound on q.

For the iteration, we fix q and s, q > s, and choose k such that sκk−1 ≤

10



q ≤ sκk. Let ρ0 such that ρ0 ≤ s and q = κkρ0. Denote ρj = κjρ0 for
j = 0, . . . , k. Then we have

(
∫

σ′Q

uq dxdt

)
1
q

≤

(

Cκk

σ − σ′

)

p
ρk−1 σ

(p+n)/ρk−1

k−1

σ
(p+n)/ρk

k

(

∫

σk−1Q

uρk−1 dxdt

)
1

ρk−1

≤
...

≤

(

cprod(k)

(σ − σ′)γ∗

σp+n

σ′(p+n)/κk

)
1

ρ0

(
∫

σQ

uρ0 dxdt

)
1

ρ0

where

cprod(k) = Cγ∗

k−1
∏

j=0

(

κj+1
)pκ−j

, γ∗ = p
k−1
∑

j=0

κ−j =
pκ

κ − 1
(1 − κ−k) ≤ p + n.

The constant C depends on q since in Lemma 2.1 the constant had a singu-
larity point at ε = 0. Obviously cprod(k) is uniformly bounded on k. From
Hölder’s inequality we obtain

(
∫

σ′Q

uq dxdt

)
1
q

≤

(

C

(σ − σ′)p+n

)
1

ρ0

(
∫

σQ

us dxdt

)
1
s

.

Furthermore, since sκk−1 ≤ ρ0κ
k, we have ρ0 ≥ s/κ and consequently

(
∫

σ′Q

uq dxdt

)
1
q

≤

(

C

(σ − σ′)γ

)
1
s
(
∫

σQ

us dxdt

)
1
s

,

where γ = (p + n)2/n. ¤

It follows from the result that one of the assumptions made in Lemma 1.3 is
fulfilled for the supersolution. We state this as a corollary.

Corollary 2.1. In addition to assumptions of the previous lemma, require
that 0 < s < min(1, q/2). Then we have constants C = C(n, p, q, δ, η) and
γ = γ(n, p) such that

(
∫

σ′Q

uqdxdt

)
1
q

≤

(

C

(σ − σ′)γ
µ(Q)−1

)
1
s
− 1

q
(

∫

σQ

usdxdt

)
1
s

for all 0 < δ ≤ σ′ < σ ≤ 1 and for all 0 < s < q < (p − 1)(1 + p
n
),

0 < s < min(1, q/2).

Proof. We obtain easily the right power for the measure of Q. Because σ/σ ′

is bounded and
1

s
−

1

q
≥

1

2s
,

the result follows with γ = (p + n)4/n2. ¤
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2.3 Estimate for the essential supremum of a subsolu-

tion

Lemma 2.5. Suppose that u ≥ ρ > 0 is a subsolution in Q. Then there
exists a positive constant C = C(n, p, s, σ, η) such that

ess sup
σ′Q

u ≤

(

C

(σ − σ′)p+n

)
1
s
(
∫

σQ

usdxdt

)
1
s

for all 0 < σ′ < σ ≤ 1 and for all s > p − 1.

Proof. As in the proof of Lemma 2.4 we obtain from the Sobolev’s inequality
and from Lemma 2.2 that

(
∫

Q

ϕχpuχα dxdt

)
1

χα

≤ (Cα)
p
α

(
∫

Q

uα|Dϕ|p dxdt +

∫

Q

uαϕp−1

∣

∣

∣

∣

∂ϕ

∂t

∣

∣

∣

∣

dxdt

)
1
α

, (8)

where
χ = 1 +

p

n
, α = p − 1 + ε, ε > 0.

As we can see, this time α can be as large as we want. In particular, α must
be larger than p − 1. This yields the condition for the starting index in the
iteration as well as the condition in lemma’s assumptions. We also observe
that the constant C in Lemma 2.2 has a singularity point at ε = 0 so the
constant C in (8) depends on the lower bound on s.

Let the choices of the test function and σj be as in the proof of Lemma
2.4 with an obvious exception that σk → σ′ as k tends to infinity. Moreover,
we fix s > p− 1 and choose ρ0 = s and ρj = ρ0χ

j, j = 0, 1, . . . . From (8) we
have

(

σ
1/κ
j

σj−1

)

p+n
α (

Cα

(σ − σ′)

)−
p
α

(

∫

σjQ

uχα dxdt

)
1

χα

≤

(

∫

σj−1Q

uα dxdt

)
1
α

.

Consequently, Moser’s iteration yields

(
∫

σQ

us dxdt

)
1
s

≥

(

σ
1/κ
1

σ0

)
p+n

α (

C

(σ − σ′)
ρ0

)−
p

ρ0

(
∫

σ1Q

uρ1 dxdt

)
1

ρ1

≥
...

≥
cprod

σ(p+n)/s
(σ − σ′)γ ess sup

σ′Q
u,

where

γ = p

∞
∑

j=0

χ−j = p + n, cprod =
∞
∏

j=0

(Cρj)
−

p
ρj .
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It is easy to see that the constant cprod is finite. ¤

The exponent s in the previous lemma may be replaced by any exponent
t with 0 < t < s.

Corollary 2.2. The statement of Lemma 2.5 holds true for 0 < s < ∞.

Proof. Choose s = p and 0 < q < p. From lemma 2.5 we have

ess sup
σ′Q

u ≤

(

C

(σ − σ′)p+n

)
1
p
(
∫

σQ

updxdt

)
1
p

≤ ess sup
σQ

u
q
p

(

C

(σ − σ′)p+n

)
1
p
(
∫

σQ

up−qdxdt

)
1
p

≤ ε ess sup
σQ

u + c(ε)

(

C

(σ − σ′)p+n

)
1

p−q
(
∫

σQ

up−qdxdt

)
1

p−q

,

where we used Young’s inequality with ε > 0. By a standard argument (see
e.g. [Giaq] Lemma 5.1) we obtain the result. ¤

2.4 Logarithmic estimate for a supersolution

We already have reverse Hölder inequalities for both super- and subsolutions.
Next, we will show the condition for the logarithm in the assumptions of Ab-
stract Lemma (1.3).

Let 0 < σ ≤ 1, τ ∈ R, η > 0 and B(z, r) ⊂ Rn. We define

σQ+(η) = σQ+(z, r, τ, η) = B(z, σr) × (τ, τ + ηrp),

σQ−(η) = σQ−(z, r, τ, η) = B(z, σr) × (τ − ηrp, τ)

and Q as
σQ(η) = B(z, σr) × (τ − ηrp, τ + ηrp).

In the case p = 2 we know that if u is a solution, then log u is a subsolution.
However, for general p, log u is not a subsolution of equation (1). More
precisely, one can show that log u is a subsolution for p-parabolic equation.

Lemma 2.6. Suppose that u ≥ ρ > 0 is a supersolution in Q(η). Further-
more, suppose that ϕ ∈ C∞

0 (Q(η)) depends only on the spatial variable x in
Q(η ′) where 0 < η ′ < η. Moreover, ϕ is radially non-increasing and for
0 < σ < 1 we have

0 ≤ ϕp ≤
A

rn
, ϕp(σQ(η)) =

A

rn
, |Dϕ(x, t)|p ≤

A′

rn+p
,

∫

B(z,r)

ϕ(x, t)p dx = 1,

where (x, t) ∈ Q(η ′) and A = A(n, σ), A′ = A′(n, σ) are constants. Let

β =

∫

B(z,r)

ϕ(x)p log u(x, τ) dx.

13



Then there exist constants C = C(n, p, σ, η ′) and C ′ = C ′(n, p, η ′) such that

∣

∣{(x, t) ∈ σQ−(η ′) | log u > λ + β + C ′}
∣

∣ ≤
C

λp−1
|σQ−(η ′)|,

∣

∣{(x, t) ∈ σQ+(η ′) | log u < −λ + β − C ′}
∣

∣ ≤
C

λp−1
|σQ+(η ′)|.

for every λ > 0.

Proof. We can assume without loosing the generality that η ′ = 1. We
simplify the notation by denoting Q = Q(η ′) = Q(1) and also

v(x, t) = log u(x, t) − β, V (t) =

∫

B(z,r)

ϕ(x)pv(x, t) dx,

when we have V (τ) = 0. From (5) we obtain

∫ t2

t1

∫

B(z,r)

|Dv|pϕp dxdt−

[
∫

B(z,r)

vϕp dx

]t2

t=t1

≤ C(p)

∫ t2

t1

∫

B(z,r)

|Dϕ|p dxdt,

where τ − rp < t1 < t2 < τ + rp, since ϕ depends only on the spatial variable
in Q. Furthermore, modified Poincaré’s inequality (see [Lieb] p.113) yields

∫

B(z,r)

|Dv|pϕp dx ≥
C(n, p)

sup(ϕp) rn+p

∫

B(z,r)

|v − V (t)|pϕp dx

≥
C

rn+p

∫

σB(z,r)

|v − V (t)|p dx

where the constant C depends only on n and p. It follows that

C

rp+n

∫ t2

t1

∫

σB(z,r)

|v − V (t)|p dxdt + V (t1) − V (t2) ≤
C ′(n, p, σ)(t2 − t1)

rp
.

By denoting

w(x, t) = v(x, t) +
C ′(t − τ)

rp
, W (t) = V (t) +

C ′(t − τ)

rp
, W (τ) = 0,

we obtain

C

rn+p

∫ t2

t1

∫

σB(z,r)

|w − W (t)|p dxdt + W (t1) − W (t2) ≤ 0

whereby W (t2) ≥ W (t1) for all τ + rp ≥ t2 ≥ t1 ≥ τ − rp. Since W is a
monotonic function it is differentiable almost everywhere. As a consequence
we have

C

rn+p

∫

σB(z,r)

|w − W (t)|p dx − W ′(t) ≤ 0 (9)

for almost every t ∈ (t1, t2). Next, choose t1 = τ − rp, t2 = τ and let

E−
λ (t) = {(x, t) ∈ σQ− | w(x, t) > λ}.
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We find that
∫

σB

|w − W (t)|p dx ≥ |E−
λ (t)|(λ − W (t))p ≥ |E−

λ (t)|λp,

because W (t) ≤ W (τ) = 0 as τ > t > t − rp. Thus, we have

−
W ′(t)

(λ − W (t))p
+ C

|E−
λ (t)|

|Q−|
≤ 0

for almost every τ > t > t− rp. We integrate this over (τ − rp, τ) and obtain

|E−
λ |

|σQ−|
≤ C

[

(λ − W (t))−(p−1)
]τ

t=τ−rp ≤
C(n, p, σ)

λp−1
.

This yields

∣

∣{(x, t) ∈ σQ− | log u > λ + β + C ′}
∣

∣ ≤ |E−
λ | ≤

C

λp−1
|σQ−|.

Now, choose t1 = τ , t2 = τ + rp and let

E+
λ (t) = {(x, t) ∈ σQ+ | w(x, t) < −λ}.

Similarly to the case of Q− we conclude that
∫

σB(z,r)

|w − W (t)|p dx ≥ |E+
λ (t)|(λ + W (t))p ≥ |E−

λ (t)|λp,

because W (t) ≥ W (τ) = 0 as τ < t < t + rp. Thus, from (9), we have

−
W ′(t)

(λ + W (t))p
+ C

|E+
λ (t)|

|Q+|
≤ 0, τ < t < t + rp

for almost every τ < t < t + rp. An integration over (τ, τ + rp) gives

|E+
λ |

|σQ+|
≤ −C

[

(λ + W (t))−(p−1)
]τ+rp

t=τ
≤

C(n, p, σ)

λp−1
.

This yields

∣

∣{(x, t) ∈ σQ+ | log u < −λ + β − C ′ }
∣

∣ ≤ |E+
λ | ≤

C

λp−1
|σQ+|

and the claim follows. ¤

3 Harnack’s inequality

For any fixed 0 < σ ≤ 1, τ ∈ R and B(z, r) ⊂ Rn we define

σU+ = B(z, σr) × (τ +
1

2
rp −

1

2
(σr)p, τ +

1

2
rp +

1

2
(σr)p),

σU− = B(z, σr) × (τ −
1

2
rp −

1

2
(σr)p, τ −

1

2
rp +

1

2
(σr)p).

We define Q as
Q = B(z, r) × (τ − rp, τ + rp).

We have the weak Harnack inequality.
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Lemma 3.1. Let u ≥ ρ > 0 be a supersolution in Q and q be fixed with
0 < q < (p− 1)(1 + p

n
). Then there exists a constant C depending on n, p, δ

and q such that
(
∫

δU−

uqdxdt

)
1
q

≤ C ess inf
δU+

u,

where 0 < δ < 1.

Proof. We fix 0 < δ < 1. Let ϕ be as in the assumptions of Lemma 2.6.
Let β and C ′ be the corresponding constants depending on u. We define
v+ = u−1eβ−C′

and v− = u e−β−C′

. We apply Lemma 2.6 for the function u
and have

∣

∣

∣

∣

{(x, t) ∈
1 + δ

2
U+ | log(v+) > λ}

∣

∣

∣

∣

≤
C

λp−1

∣

∣

∣

∣

1 + δ

2
U+

∣

∣

∣

∣

,

∣

∣

∣

∣

{(x, t) ∈
1 + δ

2
U− | log(v−) > λ}

∣

∣

∣

∣

≤
C

λp−1

∣

∣

∣

∣

1 + δ

2
U−

∣

∣

∣

∣

,

with the constant β, which depends on u, and the constant C, which depends
only on n, p and δ. Here we have chosen η ′ = ((1+δ)/2)p in the assumptions
of Lemma 2.6. From Lemma 1.1 we obtain that v+ is a subsolution in Q.
Consequently, Lemma 2.5 yields

ess sup
σ′U+

v+ ≤
C

(σ − σ′)(p+n)/s

(
∫

σU+

|v+|sdxdt

)
1
s

for all δ ≤ σ′ < σ ≤ (1 + δ)/2 and for all s > 0 by Corollary 2.2. We use
Lemma 1.3 and obtain

ess sup
δU+

v+ ≤ C+(n, p, δ). (10)

Furthermore, we have from the corollary of Lemma 2.4 for v− that

(
∫

σ′U−

|v−|qdxdt

)
1
q

≤

(

C

(σ − σ′)γ
|U−|−1

)
1
s
− 1

q
(

∫

σU−

|v−|sdxdt

)
1
s

for every δ ≤ σ′ < σ ≤ (1 + δ)/2, 0 < s < q < (p − 1)(1 + p
n
) and 0 < s <

min(1, q/2). From Lemma 1.3 we again obtain

(
∫

δU−

|v−|qdxdt

)
1
q

≤ C− |U−|
1
q ,

where C− depends on n, p, δ and the lower bound on q. Multiplying this
with (10) gives

(
∫

δU−

|u|qdxdt

)
1
q

≤ C ess inf
δU+

u,

where C depends only on n, p, δ and the lower bound on q and the result
follows. ¤
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To proof Harnack’s inequality we simply collect the results of previous lem-
mata.

Proof of theorem 1.1. We apply Lemma 3.1 with δ = (1 + σ)/2. The
result follows now from Lemma 2.5. ¤

4 Appendix

To justify formal calculations in the text we show some elementary properties
which are consequences of the definition. These results are standard for the
case p = 2 and also for the parabolic p-Laplace equation ([DiBe],[WZYL]).

Let u be a solution (supersolution, subsolution). For u, it is equivalent to
write (2) as follows

∫ τ2

τ1

∫

Ω

|Du|p−2Du · Dη − up−1 ∂η

∂t
dxdt +

[
∫

Ω

up−1η dx

]τ2

t=τ1

≥ (≤) 0 (11)

for almost every τ1, τ2, t1 < τ1 < τ2 < t2. To show this we let jε be a standard
mollifier in one dimension and define

φε(t) =

∫ t−τ1

t−τ2

jε(s)ds.

It is noteworthy that φε(t) → 0, t /∈ (τ1, τ2), and φε(t) → 1, t ∈ (τ1, τ2),
as ε → 0. As a test function we choose ζ(x, t) = φε(t)η(x, t) where η ∈
C∞

0 (Ω × (t1, t2)) so that also ζ ∈ C∞
0 (Ω × (t1, t2)). We substitute the test

function in the left hand side of (2) and obtain
∫ t2

t1

∫

Ω

(

|Du|p−2Du · Dη − up−1 ∂η

∂t

)

φε dxdt +

[

jε ∗

∫

Ω

up−1η dx

]τ2

t=τ1

.

We let ε tend to zero, which yields the result. More precisely, we obtain the
pointwise convergence in Lebesgue points of

∫

Ω
up−1η dx.

Furthermore, we want to show that it is possible to substitute a test func-
tion to (2) which depends on u itself and show inequality (4). We observe
that by a density argument we can choose test functions from the space
W 1,p(t1, t2; W

1,p(Ω)). Let Steklov average of u be

uh(x, t) =
1

h

∫ t+h

t

u(x, s)ds.

We choose τ1 = τ > t1, τ2 = τ + h < t2 and an admissible test function
ζ(x, τ) = min{k, f ′(vh(x, τ))}η(x, τ), η ∈ C∞

0 (Ω × (t1, t2)), where k ∈ R+,
v = up−1 and f ∈ C2(R), f ′ ≥ 0, is to be defined later. We substitute η in
(11) and divide the result by h. This yields

∫

Ω

(|Du|p−2Du)h · Dζ dx +

∫

Ω

vhτζ dx ≥ (≤) 0.
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We denote Ωh,k(τ) = {x ∈ Ω : f ′(vh(x, τ)) < k}. If we take x0 ∈ Ωh,k(τ) we
may choose h small enough so that x0 ∈ Ωk(τ) = {x ∈ Ω : f ′(v(x, τ)) < k} in
every Lebesgue point of v in time. As a consequence, the charasteric function
of Ωh,k(τ) converges pointwise to the charasteric function of Ωk(τ) as h tends
to zero for almost every τ . By denoting Ωc

h,k(τ) = Ω\Ωh,k(τ) and integrating
from τ1 > t1 to τ2 < t2 we get

0 ≤ (≥)

∫ τ2

τ1

∫

Ω

(|Du|p−2Du)h · Dζ + vhτζ dxdτ

=

∫ τ2

τ1

∫

Ωh,k(τ)

(|Du|p−2Du)h · (Dv)hf
′′(vh)η dxdτ

+

∫ τ2

τ1

∫

Ωh,k(τ)

(|Du|p−2Du)h · Dηf ′(vh) dxdτ

+

[

∫

Ωh,k(τ)

f(vh)η dx

]τ2

τ=τ1

−

∫ τ2

τ1

∫

Ωh,k(τ)

f(vh)
∂η

∂τ
dxdτ

+ k

∫ τ2

τ1

∫

Ωc
h,k

(τ)

(|Du|p−2Du)h · Dη dxdτ

+ k

[

∫

Ωc
h,k

(τ)

vhη dx

]τ2

τ=τ1

− k

∫ τ2

τ1

∫

Ωc
h,k

(τ)

vh
∂η

∂τ
dxdτ

It follows by a standard result in [DiBe] and the dominated convergence
theorem that we can let h tend to zero and obtain

0 ≤ (≥)

∫ τ2

τ1

∫

Ω

|Du|p−2Du · D(min{f ′(v), k})η dxdτ (12)

+

∫ τ2

τ1

∫

Ω

|Du|p−2Du · Dη min{f ′(v), k} dxdτ

+

[
∫

Ω

Fk(v)η dx

]τ2

τ=τ1

−

∫ τ2

τ1

∫

Ω

Fk(v)
∂η

∂τ
dxdτ

for almost every t1 < τ1 < τ2 < t2, where

Fk(v) =

{

f(v), f ′(v) < k
kv, f ′(v) > k

.

If f ′ is bounded on the range of v, we obtain (4) easily.
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