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1 Introduction

Let T ∈ L(X); a bounded linear operator on a (complex) Banach space X.
It was R. K. Ritt who first studied the Ritt resolvent condition

‖(λ − T )−1‖ ≤
C

|λ − 1|
(1)

for |λ| > 1. R. K. Ritt himself proved that if T satisfies (1) for |λ| > 1, then
limn→∞ ‖T n/n‖ = 0, see [13]. Clearly (1) implies that σ(T ) ⊂ D ∪ 1, but in
fact even σ(T ) ⊂ Kc

δ ∩ (D ∪ {1}) for some δ > 0, where

Kδ := {λ = 1 + reiθ : r > 0 and |θ| <
π

2
+ δ}; (2)

see O. Nevanlinna [10, Theorem 4.5.4] and Yu. Lyubich [6].
The following result was given by Y. Katznelson and L. Tzafriri in 1986:

for power bounded operators T in the sense that supn≥1 ‖T
n‖ < ∞, we have

σ(T ) ⊂ D ∪ {1} if and only if limn→∞ ‖(I − T )T n‖ = 0, see [5]. Related to
this, J. Zemánek asked in 1992 whether (1) implies limn→∞ ‖(I − T )T n‖ = 0,
too. This was answered in positive by O. Nevanlinna, and he also noted that
if (1) hold in the larger set Kδ ∪Dc for some δ > 0, then T is power bounded,
see [10, Theorem 4.5.4], [11] and [16].

It was then observed independently in 1998 by B. Nagy and J. Zemánek
[9], O. Nevanlinna, and Yu. Lyubich [6] that if (1) holds for all |λ| > 1, then
(1), indeed, holds for all λ ∈ Kδ ∪ Dc for some δ > 0 (with another possibly
larger constant C̃ in place for C). Hence, if T satisfies (1) for all |λ| > 1, then
T is power bounded. The upper bound supn≥1 ‖T

n‖ ≤ (eC2)/2 was given
by N. Borovykh, D. Drissi and M. N. Spijker, see [1]. A tighter estimate
supn≥1 ‖T

n‖ ≤ C2 was shown by O. El-Fallah and T. Ransford in [2].
Much of these developments culminate in the following fundamental re-

sult connecting power boundedness, the Ritt resolvent condition and the
tauberian condition (3):

Proposition 1. The following are equivalent:

(i) T satisfies (1) for all |λ| > 1,

(ii) σ(T ) ⊂ D∪ {1} and T satisfies (1) for all λ ∈ Kδ for some δ > 0, and

(iii) T is power bounded, and it satisfies the tauberian condition

sup
n≥1

(n + 1)‖(I − T )T n‖ ≤ M (3)

for some M < ∞.

Indeed, the equivalence (i) ⇔ (ii) has already been discussed above. That
(ii) ⇒ (iii) is given in [10, Theorem 4.5.4], and we shall compute an estimate
for M in (3) in Theorem 4. That (iii) implies (i) was reported in [11, Theorem
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2.1]. The proof relies on the theory of analytic semigroups, and it follows
closely [12, Theorem 5.2]1.

We further note that J. Esterle has pointed out in [3] that

lim inf
n→∞

(n + 1)‖(I − T )T n‖ ≥
1

96

for a power-bounded T satisfying σ(T ) = {1}; see also [8] (and references
therein) for the determination of the optimal lower bound 1/e instead of
1/96. Hence the stronger version limn→∞(n+1)(I−T )T n = 0 of the tauberian
condition (3) cannot generally hold for T satisfying (1) for all |λ| > 1.

We shall show in this paper that the conditions of Proposition 1 can be
combined in a different way. Indeed, we shall prove the following tauberian
theorem and discuss some of its consequences:

Theorem 1. If T ∈ L(X) satisfies the the Ritt condition (1) for all λ > 1
and tauberian condition (3), then T is power bounded.

We also estimate supn≥1 ‖(n + 1)(I − T )T n‖ for operators satisfying (1)
for all |λ| > 1. Most of the results of this paper (in particular, the main
result Theorem 2) were proved in 2002 in [15].

2 Equivalent conditions

under the tauberian condition

Let us remind the results of the classical tauberian theorem in the scalar
case. Let {an} be a complex sequence and sn = a0 + a1 + ... + an for n ≥ 0.
A. Tauber proved in 1897 that if

(i) limn→∞(n + 1)an = 0, and

(ii) limr→1− f(r) = s, where f(r) =
∑∞

0 anr
n for 0 < r < 1,

then limn→∞ sn = s. It was J. E. Littlewood who later in 1910 showed that
the tauberian condition (i) can in fact be replaced by the weaker tauberian
condition supn n|an| < ∞. As it is mentioned in [14, Chapter 9], the proof
with this modification becomes considerable harder.

If we take an = (I − T )T n, we see that the weaker tauberian condition is
exactly (3). Now the corresponding partial sums are simply sn = I − T n+1.
In this paper, we are not interested in the limit behaviour of {sn}, but only
in the boundedness of this sequence under the weaker tauberian condition
(3). This will save us from the extra complications that would be required
if we had to take advantage of Littlewood’s variant of the classical tauberian
theorem instead.

1However, the restrictive assumption 0 ∈ ρ(A) must be first removed from [12, Theorem
5.2] by a more careful analysis.
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Theorem 2. Assume that T ∈ L(X) satisfies tauberian condition (3), and

‖(λ − 1)(λ − T )−1‖ ≤ C (4)

for all λ > 1. Then T is power bounded with the estimates

‖T n‖ ≤ 2 + C‖T‖ + 2M and

lim sup
n→∞

‖T n‖ ≤ 2 + C‖T‖ + (1 + 1/e) M.

Proof. Define

sn :=
n−1
∑

j=0

(I − T )T j = 1 − T n,

f(r) :=
∞

∑

j=0

(I − T )T jrj = (I − T )(1 − rT )−1, and

fn(r) :=
n−1
∑

j=0

(I − T )T jrj.

Then for all r ∈ (0, 1) and n ≥ 0, we have

‖sn‖ ≤ ‖sn − fn(r)‖ + ‖fn(r) − f(r)‖ + ‖f(r)‖. (5)

Condition (4) implies sup0≤r<1 ‖f(r)‖ ≤ 1 + C‖T‖, and the last term of the
right hand side is bounded by C1 := 1+C‖T‖. For the second term, we have

‖fn(r) − f(r)‖ = ‖
∑

j≥n

(I − T )T jrj‖ ≤
∑

j≥n

M

j + 1
rj

=
M

n + 1

∑

j≥n

n + 1

j + 1
rj ≤

M

n + 1
rn(1 − r)−1

by (3). From now on, we choose rn := 1 − 1/n in (5). Then

M

n + 1
rn
n (1 − rn)−1 =

M

n + 1

(

1 −
1

n

)n

n

{

→ M/e as n → ∞;

≤ M for all n ≥ 1.

So the second term in (5) is bounded with this choice of r = rn.
The first term of the right side of inequality (5) (when choosing r = rn)

we have

sn − fn(rn) =
n−1
∑

j=0

(I − T )T j(1 − rj
n).

By the mean value theorem, there exists rj
0 ∈ [rn, 1) for any j > 0, such that

we can estimate

1 − rj
n = jrj−1

0 (1 − rn) ≤ j(1 − rn) =
j

n
.
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This together with (3) yields

‖sn − fn(rn)‖ ≤
n−1
∑

j=0

j

n
‖(I − T )T j‖

≤
n−1
∑

j=0

j

n

M

j + 1
≤ M

1

n

n−1
∑

j=0

1 = M.

So ‖sn‖ is uniformly bounded, which is equivalent to the power boundedness
of T . This completes the proof.

If the tauberian condition (3) holds for T , then a number of conditions
will be equivalent. The following theorem is analogous to [11, Theorem 2.1],
except that now (3) is a standing assumption instead of power boundedness.

Theorem 3. Assume that T ∈ L(X) satisfies the tauberian condition (3).
Then the following are equivalent:

(i) T is power bounded,

(ii) T satisfies Kreiss resolvent condition for some constant CK

‖(λ − T )−1‖ ≤
CK

|λ| − 1

for |λ| > 1,

(iii) there exists 0 < η ≤ 1 ≤ C < ∞ such that T satisfies the Ritt resolvent
condition (1) for all real λ ∈ (1, 1 + η),

(iv) there exists 0 < η ≤ 1 ≤ C < ∞ such that T satisfies the second order
Ritt condition

‖(λ − 1)2(λ − T )−2T‖ ≤ C,

for all real λ ∈ (1, 1 + η),

(v) there exists 0 < δ ≤ 1 ≤ C < ∞ such that T satisfies the Ritt resolvent
condition (1) for all λ ∈ K ′

δ := {λ = 1 + reiθ|r > 0, |θ| < π
2

+ δ}, and

(vi) A := T − I generates an uniformly bounded, norm continuous, analytic
semigroup t 7→ eAt of linear operators.

Proof. It is shown by estimating the von Neumann series that (i) ⇒ (ii).
It is trivial that (ii) ⇒ (iii), and (iii) ⇒ (i) by Theorem 2, noting that the
resolvent condition is only used near point 1 in the proof.

It is trivial that (iii) implies (iv). Conversely, noting that because σ(T ) ⊂
D by the tauberian condition (3), we obtain for all |r| < 1

(I − rT )−1 =
∑

j≥0

(j + 1)(I − T )T jrj + (1 − r)(I − rT )−2T.
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From this we conclude, by using (3) in the estimation, that

‖(1 − r)(I − rT )−1‖ ≤ (1 − r) · M
∑

j≥0

rj + ‖(1 − r)2(I − rT )−2T‖

= M + ‖(1 − r)2(I − rT )−2T‖

for all 0 ≤ r < 1. Replacing r = 1/λ shows now that (iv) ⇒ (iii).
Claims (i) and (v) are equivalent by Proposition 1 and the extension

result that can be found e.g. in [9]. By the classical theorem of E. Hille
and K. Yoshida, claim (v) is equivalent (apart from the analyticity of the
semigroup) to the existence of CHY < ∞ such that for each integer k ≥ 1

‖(λ − T )−k‖ ≤
CHY

(λ − 1)k
for all λ > 1. (6)

Setting k = 1 gives (iii). Conversely, (i) ⇒ (vi) (apart from the analyticity)
by the estimate

‖etT‖ ≤
∑

j≥0

‖T j‖tj

j!
≤ sup

j≥0
‖T j‖ · et

for all t ≥ 0. Moreover, it is not difficult to see that ‖AetA‖ ≤ Mt−1 (1 − e−t)
where A := T − I, if (3) holds. This implies that etA is analytic, by a slight
generalization of [12, Theorem 5.2].

The implication (i) ⇒ (ii) (with explicit constants) was first given by
Z. Yuan by using a Cauchy integration argument, see [15]. We remark that
the tauberian condition (3) implies ‖T n‖ = O(ln n), and by [4, Theorem
3.3], [7], the growth can really be there for an operator in a Banach space.
Condition (3) “almost” implies condition (iii) of Theorem 3, too. Indeed, as
(1 − r)(I − rT )−1 = I − r(I − T )(I − rT )−1 for all |r| < 1, we obtain the
estimate

‖(1 − r)(I − rT )−1‖ ≤ 1 + M
∑

j≥0

|r|j+1

j + 1
= 1 + M ln

1

1 − |r|

for all 0 ≤ |r| < 1. Setting r = 1/λ for λ > 1 gives now

‖(λ − 1)(λ − T )−1‖ ≤ 1 + M ln
λ

λ − 1
.

Hence ‖(λ − T )−1‖ = O ((λ − 1) ln (λ − 1)) as λ → 1+. Again, the logarith-
mic term can really be present on the right hand side, see [7].

Finally, the tauberian condition (3) “almost” implies condition (vi) of
Theorem 3. Indeed, as ‖AetA‖ ≤ Mt−1 (1 − e−t) where A := T − I, and the
function t 7→ t−1 (1 − e−t) is decreasing for t ≥ 0, it follows that

‖etA‖ ≤ 1 +

∫ t

0

‖AetA‖ dt ≤ 1 + M + M(1 − e−1) ln t for all t ≥ 1.
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3 An upper bound for ‖(n + 1)(I − T )T n‖

Assume that T ∈ L(X) satisfies the Ritt resolvent condition (1) for all |λ| >
1. Then supn≥1 ‖T

n‖ ≤ C2, as shown in [2] as a particular case of a much
more general result. The earlier upper bound supn≥1 ‖T

n‖ ≤ (eC2)/2 was
given in [1]. We proceed to give a common upper bound for the operators
n(I − T )T n appearing in the tauberian condition (3).

Theorem 4. Assume that T ∈ L(X) satisfies (1) for all |λ| > 1. Then

sup
n≥1

(n + 1)‖(I − T )T n‖ ≤ 2 sup
n≥2

‖T n‖ + eC3. (7)

Proof. Recall that we have by the Cauchy interal

(I − T )T n =
1

2πi

∫

Γ

λn(1 − λ)(λ − T )−1dλ,

where Γ is an arbitrary positively oriented circle |λ| = r > 1. By partially
integrating twice, we obtain

(I − T )T n =
1

πi(n + 1)(n + 2)

∫

Γ

λn+2(1 − λ)(λ − T )−3dλ

+
1

n + 1
·

2

πi(n + 2)(n + 3)

∫

Γ

λn+3(λ − T )−3dλ.

By partially integrating twice the Cauchy integral representation, we get

T n+1 =
1

πi(n + 2)(n + 3)

∫

Γ

λn+3(λ − T )−3dλ.

So we have for all n ≥ 1

(n + 1)(I − T )T n − 2T n+1 =
1

πi(n + 2)

∫

Γ

λn+2(1 − λ)(λ − T )−3dλ.

By the Ritt resolvent condition (1) we get ‖(1− λ)(λ− T )−3‖ ≤ C3|1− λ|−2

and hence for all r > 1

‖(n + 1)(I − T )T n − 2T n+1‖ ≤
rn+2C3J

(n + 2)π
, (8)

where after computations

J =

∫ π

−π

rdt

|reit − 1|2
=

2πr

r2 − 1
.

Inserting the above expression for J into (8), we get

‖(n + 1)(I − T )T n − 2T n+1‖ ≤ 2C3F (n, r), (9)
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where F (n, r) := rn+3

(n+2)(r2−1)
for all r > 1 and n ≥ 1. Moreover,

min
r>1

F (n, r) = F

(

n,

√

1 +
2

n + 1

)

=
n + 3

2(n + 2)

(

1 +
2

n + 1

)
n+1

2

and after rather long computations that we omit here, we get finally

supn≥1 F
(

n,
√

1 + 2/(n + 1)
)

= e/2. These together with (9) prove the

claim.

By letting |λ| → ∞, it is easy to see that necessarily C ≥ 1 in (1).
Using this together with the bounds supn≥1 ‖T

n‖ ≤ C2 and (7) gives a more
simple upper bound sup(n+1)≥1 (n + 1)‖(I − T )T n‖ ≤ (2 + e)C3. In fact,
the proof of Theorem 4 shows that the boundedness of sequences {T n} and
{(n + 1)(I − T )T n} is equivalent, whenever T satisfies only the “third order”
Ritt condition

sup
|λ|>1

‖(1 − λ)3(λ − T )−3‖ < ∞.
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