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1 Introduction

The purpose of this paper is to complement our work on real linear operators
by studying the R–linear eigenvalue problem in Cn in detail. For the back-
ground of the study, see [6]. See also [20] and [21] for an operator theoretic
approach motivated by applications to planar elasticity.

A real linear operator M acts on Cn according to

z 7→ M(z) = Mz + M#z, (1)

for a pair of matrices M,M# ∈ Cn×n called the linear and anti–linear parts
of M. The spectrum of M consists of those points λ ∈ C ' R2 for which
λI −M is not invertible giving rise to a bounded (possibly empty) real al-
gebraic plane curve of degree 2n. Belonging in this sense to the realm of real
algebraic geometry we have, as opposed to the standard eigenvalue computa-
tion corresponding to the special case of having M# = 0, a mildly nonlinear
and numerically very challenging eigenvalue problem. A point of departure
from the usual real algebro–geometric setting is that, for practical reasons,
it is not realistic to assume having the bivariate polynomial determining the
spectrum available. This is an analogy of the standard eigenvalue problem
where the characteristic polynomial is hardly ever available before the spec-
trum is. In our setting this is a more serious obstacle, e.g., due to the lack
of the fundamental theorem of algebra in the real analytic case.

In this paper we introduce classes of real linear operators that allow us
either to solve the eigenvalue problem numerically reliably or lead to sig-
nificant savings in computational complexity. We consider families of real
linear operators for which the structure of the spectrum can be regarded, at
least partially, as understood. For instance, polynomials in an anti–linear
operator belong to this category. To give another example, we introduce
real linear eigenvalue problems possessing various symmetry properties. The
members of the most interesting class thus obtained we call symmetric real
linear operators. We also suggest numerical methods for locating compon-
ents of the spectrum for systems of moderate size and outline techniques for
finding eigenvalues of large scale problems.

For computational purposes it seems natural to divide the problem into
three categories, after the possible structure of the problem has been iden-
tified. The first task is to find the whole spectrum when the dimension n
of the system is moderate. Some ideas to this end were proposed in [6]. In
the second category we are concerned with finding the component to which
a given eigenvalue of a real linear operator belongs. Alternatively, we look
for all the components of the spectrum intersecting a prescribed line. In this
paper we apply continuation techniques to this end. This latter setting is
particularly natural when dealing with the symmetric real linear eigenvalue
problem. The third task is to find a portion of the spectrum, possibly located
inside a prescribed region, when n is assumed to be large.

The paper is organized as follows. In section 2 we consider properties of
the spectrum. Since the spectral mapping theorem does not hold for real
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4 M. HUHTANEN AND J. VON PFALER

linear operators, we study under which circumstances it can be partially
reestablished. We present bounds on the degree of a given component of the
spectrum. In section 3 symmetry properties of the spectrum are considered.
We introduce the field of values of a real linear operator. Using this we
identify two extremes of real linear eigenvalue problems: in the first one we
can expect the spectrum to have many components while in the second one
very few (and small), if any. We also give an illustration of a structured eigen-
value problem with a real linear circulant operator. In section 4 we describe
our continuation techniques for computing eigenvalues and components of
the spectrum. Three numerical examples are presented.

2 Properties of the spectrum of an R–linear

operator in Cn

For an R–linear operator M(z) = Mz + M#z in Cn the spectrum σ(M)
consists of those complex numbers λ = α+iβ for which the matrix A(α, β) ≡
αI − βJ − A is not invertible. Here

A =

[
Re(M + M#) − Im(M − M#)
Im(M + M#) Re(M − M#)

]
∈ R2n×2n (2)

denotes the real form of M and J =
[

0 I
−I 0

]
. For a more detailed exposition,

see [6]. We call det A(α, β) the characteristic bivariate polynomial of M. It
is of degree 2n, its zero set is a real algebraic plane curve in R2 ' C giving
the spectrum of M, and it is monic in the following sense.

Proposition 1 For any A ∈ R2n×2n we have

det A(α, β) = (α2 + β2)n + lower order terms . (3)

Proof. Expanding det A(α, β) along the first row we can infer that only
those terms in the expansion which are the product of the entries involving
the variables α or β each can give rise to monomials of degree 2n. These
terms correspond to paths running from the first row down to the last row,
by visiting every column exactly once, through entries involving variables α
or β. These are located on the diagonals in the 2-by-2 block structure of
A(α, β). Only on the north-eastern diagonal −β appears while elsewhere
we have either either +α or +β. Each time −β term is encountered we
have a unique transposition. Hence, all the monomials of degree 2n have the
coefficient +1.

It remains to count the arising monomials. The case α2n is clear so let us
consider the coefficient of α2(n−1)β2. To this end we need those terms in the
expansion of det A(α, β) whose jth factor is −β − aj,n+j for 1 ≤ j ≤ n. This
enforces the (n− j + 1)th factor to be β − an+j,j . Since j can be chosen in n
different ways, we obtain

(
n

1

)
. The other binomial coefficients follow by the

same reasoning. ¤
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This proposition is of interest since the leading term of det A(α, β) can
be used to bound the number of connected components of the spectrum of
M. For recent bounds, see [22]. Recall that Harnack’s theorem is clas-
sical for bounding the number of components of a real nonsingular projective
plane curve; see, e.g., [2, Chapter 11.6]. For an elementary introduction and
references, see [16].

In view of (3), a natural classification problem is to characterize those
bounded algebraic plane curves that can appear as the spectrum of an R–
linear operator. For n = 1 it is readily verified that we can only have a circle
due to the fact that then the part consisting of the lower order terms in (3)
is a linear bivariate polynomial (and any such a polynomial can appear by
choosing an appropriate R–linear operator).

In what follows we will occasionally present bounds on the degree of a
component of the spectrum, or find regions of the complex plane where the
spectrum is located. This kind of results are of use due to the following
consequence of Poincaré’s formula [3].

Theorem 2 Suppose Γ is an algebraic plane curve of degree at most k
and D is a disk of radius r. Then the length of Γ ∩ D is at most 2πkr.

Since the eigenvalue problem considered is real algebraic, complex ana-
lytic techniques are seldom applicable. This is best illustrated by the fact
that the spectrum of a real linear operator can be empty. Therefore most of
the classical tools for C–linear operators, i.e., for matrices, have to be ques-
tioned and reformulated, if possible. To start with, for a real linear operator
M we do not have a spectral mapping theorem so that to find the eigenvalues
of a polynomial p in M, the spectrum may need to be computed each time
anew. Being enormously elaborate, any results where σ(M) can somehow
be benefited from are of use. To give an example, in case M is similar to an
upper (lower) triangular R–linear operator under a C–linear similarity trans-
formation, we can determine the spectrum of p(M) in terms of σ(M); see
[6]. (The spectrum is preserved in a C–linear similarity transformation; in
an R–linear similarity transformation the real eigenvalues are preserved [6].)

Remark 1 By a polynomial p in an R–linear operator M in Cn we mean
p(M) =

∑k

j=0 αjM
j for αj ∈ C with 0 ≤ j ≤ k. Note that factoring p

and computing the corresponding real linear operator by performing repeated
compositions (after fixing an order for the zeros) differs from p(M) in general.
Moreover, polynomials in M is vector space over C but not an algebra unless
M is, e.g., C–linear. (To get an algebra, we should, expressing it in terms of
the real form A of M, take the algebra generated by A and J over R.)

For the spectral mapping theorem the simplest option is to take a linear
polynomial in M. By a pre–multiplication we mean M ◦ (µI) for µ ∈ C
while the post–multiplication is defined as µI ◦M = µM. It is clear how the
spectrum behaves in translations and post–multiplications. It is less obvious
that this is also so in pre–multiplications:
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Proposition 3 The spectrum of M◦ (µI) equals µσ(M).

Proof. The case µ = 0 is clear so let µ 6= 0. Then we have M(µz) =
µ(Mz + µ

µ
M#z), i.e., the pre-multiplication can be expressed as a post–

multiplication. But z 7→ Mz + µ

µ
M#z is similar to M under the C–linear

similarity transformation z 7→ µz. The claim follows since for the post–
multiplication the claim is true. ¤

Second degree polynomials suffice to give an example such that p(σ(M))
can not be the spectrum of p(M). For instance, with n = 1 let M(z) = 2z+z
so that σ(M) is the unit circle centered at 2. Take p(z) = z2. Then p(σ(M))
is not a circle, which it should in order to be the spectrum of a real linear
operator acting on C.

Take a polynomial p. It is not true in general that |p(λ)| ≤ ||p(M)||
for every λ ∈ σ(M), which is true for C–linear operators (used, e.g., in [19,
Chapter 2.10]). To see this, consider M(z) = −i

2
z + i

2
z acting on C. This

is a nilpotent operator, i.e., we have M2 = 0, while its spectrum equals the
circle of radius 1

2
centered at −i

2
.

Regardless of these discouraging observations, the real eigenvalues behave
expectedly in the following sense.

Theorem 4 Let λ be an eigenvalue of M and p a polynomial. If λ ∈ R, or
the kernel of λI−M contains a C–linear subspace, then p(λ) is an eigenvalue
of p(M).

Proof. If λ ∈ R an eigenvalue and z is the corresponding eigenvector of
M, then forming p(M)z gives us

∑k

j=0 αjλ
jz by the fact that M is real

linear. The second part of the claim follows by choosing z from the C–linear
subspace corresponding to the eigenvalue λ ∈ C. ¤

This implies, in particular, that with the images of the real elements
of σ(M) we can use path following techniques to locate the corresponding
components of σ(p(M)); see section 4.

Corollary 5 Let N be a polynomial in M. If σ(M)∩R 6= ∅, then σ(N ) 6=
∅.

If M is invertible, then one readily verifies that M−1 is a polynomial in
M by, e.g., considering its real form. Hence for this curious polynomial the
spectrum can be deduced by knowing σ(M) since for an eigenpair (λ, z) of
M we obviously have M−1(λz) = 1

λ
λz. Consequently, we have the following:

Proposition 6 If M : Cn → Cn is invertible, then 1/σ(M) is the spec-
trum of M−1 and hence a real algebraic plane curve of degree 2n at most.

Aside from forming polynomials in a matrix, its natural counterpart is to
consider polynomials in an anti–linear operator. For an anti–linear operator

z 7→ M#z (4)
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the eigenvalue problem can be solved, at least for problems of moderate
size, by finding the real non–negative eigenvalues of the matrix M#M# [10,
Proposition 4.6.6]. For numerical stability it is preferable to determine the
spectrum by finding the real eigenvalues of the real form of (4).

Assume thus that N (z) = Nz + N#z is a polynomial in the anti–linear
operator (4). Then we have

N = s(M#M#) and N# = M#q(M#M#) (5)

for polynomials s(µ) =
∑k

j=0 αjµ
j and q(µ) =

∑l

j=0 βjµ
j. Conversely, if

N and N# are of this form, then N is a polynomial in (4). Even though
polynomials in an anti–linear operator do not remain anti–linear, we have an
analogy of the C–linear case:

Proposition 7 Let M be an anti–linear operator in Cn. Then polynomi-
als in M is an algebra over C of dimension 2n, generically.

Proof. It is clear that linear combinations of polynomials in M are again
polynomials in M. For a product, let Nj(z) = sj(M#M#)z+M#qj(M#M#)z,
with j = 1, 2, be two polynomials in M. Then, after rearranging the linear
and the anti–linear parts, we readily find that N1 ◦ N2 is of the same form.
Generically M#M# is nonderogatory, in which case the dimension of the
algebra is 2n. ¤

A necessary condition for having a polynomial in an anti–linear operator
is given by:

Proposition 8 Let N (z) = Nz + N#z be a polynomial in an anti–linear
operator. Then N commutes with N#N#.

Proof. Assume N is a polynomial in (4). Hence we have N = s(M#M#) and
N# = M#q(M#M#) for polynomials s and q. The claim follows after noticing
that the matrix N#N# is a polynomial in M#M# and thus commutes with
N . ¤

In particular, if N commutes with N#N# which is nonderogatory, then
N is a polynomial in the anti–linear operator z 7→ N#z by the fact that N
is necessarily a polynomial in the matrix N#N# [11, Theorem 4.4.17].

For the eigenvalues of (4) we have a spectral mapping theorem as follows,
where we employ the notation introduced in (5).

Proposition 9 Let λ be an eigenvalue of (4). If N (z) = s(M#M#)z +
M#q(M#M#)z, then s(|λ|2) + λq(|λ|2) is an eigenvalue of N .

Proof. If M#M# has positive real eigenvalues, then the spectrum of (4) is
non–empty consisting of circles centered at the origin [11, Chapter 4.6]. Take
a point λ = reiθ belonging to such a circle and let z ∈ Cn be a corresponding
eigenvector. Then N (z) = γz with

γ =
k∑

j=0

αj |λ|
2j +

l∑

j=1

βjλ |λ|2j =

max{k,l}∑

j=0

(α̂j(r)+β̂j(r)λ) = A(r)+B(r)λ, (6)
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where the coefficients α̂j and β̂j have an obvious relation with αj and βj

depending only on r. ¤

The coefficients A,B in (6) depend only on r so that, when θ ∈ [0, 2π)
varies, we obtain a circle centered at A(r). This circle reduces to a point in
case B(r) = 0. Hence the spectrum of p(M) can be very small compared
with σ(M), and vice versa.

Unfortunately a polynomial in an anti–linear operator can have additional
eigenvalues to those given by Proposition 9.

Example 1 Assume the spectrum of z 7→ M#z is empty (this is so if, for
instance, M# = [ 0 −1

1 0 ]) while the polynomial is such that N# = 0. Clearly
then σ(N ) 6= ∅.

A straightforward way to determine these additional eigenvalues of a poly-
nomial in (4) is to employ the canonical form of Youla [23]. For canonical
forms of anti–linear operators, see [9]. That is, we have M# = QY QT with
a unitary matrix Q such that Y =

[
4 B
0 Ω

]
with an upper triangular matrix

4 of size (n − 2k)-by-(n − 2k), and Ω is a 2k-by-2k upper block triangular
matrix with 2-by-2 diagonal blocks. These blocks can be arranged to have
further structure [23] but for us this suffices. This is due to the fact that we

have Q∗ ◦N ◦ (Qz) = Ỹ z + Ỹ#z with an analogous block structure. Hence, to
determine the spectrum of N we need to solve a real linear 2-by-2 eigenvalue
problem k times. To this end we only compute the corresponding blocks of
Ỹ and Ỹ#; no other entries need to be found. In particular, we have:

Proposition 10 The spectrum of a polynomial in an anti–linear operator
is the union of real algebraic plane curves of degree 4 at most.

Although the computation of the Youla decomposition is beyond the scope
of this paper, let us make a few remarks concerning it. If M# = Q1R1 is the
QR–factorization of M#, then R1Q1 is unitarily congruent to M#. Repeating
this, we obtain a “congruent QR–iteration” such that with Z1 = M# we
compute

for k = 1, 2, ..., K
Zk = QkRk

Zk+1 = RkQk

end

for approximating Y while Q1 · · ·QK−1QK ≈ Q. With this plain iteration
the convergence is not fast enough but this idea might be used as a starting
point for devising a more efficient algorithm. Based on preliminary exper-
imenting, analogously to the standard QR–iteration, it seems advisable to
run the iteration with M̂# = Q∗

0M#Q0, where Q0 is unitary such that M̂# is
a Hessenberg matrix. For finding such a Q0, see [6].

Remark 2 Any normal matrix is a polynomial in a Hermitian matrix; see,
e.g., [12]. Pushing this point of view farther, any Hermitian matrix is a
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polynomial in an anti–linear operator (4) with M#

T = M#. Collecting poly-
nomials in this manner can be regarded as too narrow a generalization of
normality since the existence of 2-by-2 blocks in the Youla decomposition is
an intrinsic property of anti–linearity. Accepting this, it seems natural to al-
low congruence normal matrices here. Recall that M# is congruence normal
if M#M# is normal. A more tangible equivalent characterization can be given
in terms of the canonical form of Youla of M# [7]. See also [9, Section 2.]. In
summary, collect those M(z) = Mz + M#z for which M is normal and M#

is congruent normal such that M and M#M# commute. This class provides
a candidate for the concept of normality among R–linear operators in Cn.
For example, any R–linear operator with circulant parts belongs to this class
(see Example 2 and (7) below). By using [9, (2.7) and (2.8)] together with
Lemma 11 below, the spectrum of such an operator consists of circles.

In view of Theorem 4, to an eigenvalue λ of M there is always related an
R–linear invariant subspace of M arising from the solution set of M(z)−λz =
0, say, of dimension r. Let m be the dimension of the largest C–linear
subspace it contains. The resulting multiplicity index (r/2,m) is of interest
(see [6]) since the spectral mapping theorem holds for this eigenvalue in case
m > 0.

Example 2 Let M,M# ∈ Cn×n be circulant matrices both. Then M has at
least one or two eigenvectors with real components according as n is odd or
even (since the matrices M and M# have such eigenvectors simultaneously).
Hence, for the correspoding eigenvalue of M the spectral mapping holds.

With circulant matrices we actually have a complete understanding of the
spectrum. To this end, denote by Fn ∈ Cn×n the Fourier matrix (see, e.g.,
[4, p.32]). Assume M = FnDF ∗

n and M# = FnD#F ∗
n are circulant matrices

both. Then we have N (z) = F ∗
nM(Fnz) = Dz + D#Γz with a diagonal D

and

Γ = F ∗
nFn = F 2∗

n =

[
1 0 ··· 0
0 0 ··· 1
· · · ·
0 0 ··· 0
0 1 ··· 0

]
, so that D#Γ =




d
#
1,1 0 ··· 0

0 0 ··· d
#
2,2

· · · ·
0 0 ··· 0
0 d

#
n,n ··· 0


 . (7)

Clearly, span {e1} is a C–linear invariant subspace of N , and so are
span {ej, en+2−j}, for 2 ≤ j ≤ n (if n is even, then one of these latter
subspaces is one dimensional as well). Namely, ignoring the first row and
column of D and D#Γ, the linear part is diagonal while the anti–linear part
is anti–diagonal, i.e., nonzero entries appear only on the diagonal joining the
left lower corner with the right upper one. It is easy to find a closed form
solution to the spectrum for R–linear operators of this type since it suffices
to consider 2-by-2 eigenvalue problems with the following structure (the case
d3 = 0 is obvious).
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Lemma 11 For d1, d2, d3, d4 ∈ C, with d3 6= 0, the spectrum of the prob-
lem [

d1 0
0 d2

]
[ z1
z2 ] +

[
0 d3

d4 0

] [
z1

z2

]
= λ [ z1

z2 ]

is
{
λ ∈ C : (λ − d1)(λ − d2) = d3d4

}
.

Hence, in the prescribed circulant case the spectrum can be computed
fast and fairly reliably since only a single (well–known) unitary similarity
transformation needs to be performed. In particular, analogously to circulant
matrices, we have a closed form solution of the spectrum.

A closed form solution of the spectrum is readily computable also when
the linear part is anti–diagonal and the anti–linear part is diagonal.

Remark 3 In (7) we employed the fact that N is diagonal and N# is a PD–
matrix [4, Section 5.3], i.e., a product of a diagonal matrix and a permutation.
With this structure, more generally, a closed form solution for the spectrum
can be found, after reordering the basis together with backward substituting
and conjugating the equations in the problem Nz + N#z = λz.

Lemma 11 illustrates well what sort of difficulties one can encounter when
solving real linear eigenvalue problems in finite precision by using the charac-
teristic bivariate polynomial det A(α, β) only. Assuming d1 = d2 and d3 = d4,
we clearly have a circle. However, a tiny perturbation in either d3 or d4 that
yields a non–real d3d4 leads to an unsolvable equation and vanishing of the
spectrum. In view of this, for continuity we have:

Proposition 12 The spectrum function M 7→ σ(M) is upper semicon-
tinuous, that is, for every open set U containing σ(M) there exists δ > 0
such that ||M−N|| < δ implies σ(N ) ⊂ U.

Proof. We proceed by contradiction by assuming there exists a sequence Nj

converging to M with λj ∈ σ(Nj) contained in the complement of U . Since
the spectra are uniformly bounded, we can assume that λj converges to λ.
Clearly M− λI is invertible. Since the set of invertible R–linear operators
in Cn×n is open (identified with the set of invertible matrices in R2n×2n), we
have a contradiction. ¤

Aside from associating an index to a single eigenvalue of a real linear
operator M(z) = Mz + M#z, we are interested in families of eigenvalues
of M (see Theorem 2). More precisely, to classify components (or subsets)
of the spectrum, a C–linear subspace V ⊂ Cn is said to be invariant for
M if M(V ) ⊂ V . This is readily seen to hold if and only if M(V ) ⊂ V
and M#(V ) ⊂ V [6]. For an invariant subspace V of M let us denote the
restriction of M to V by M|V .

Definition 13 Γ ⊂ C is a geometric component of σ(M) if Γ = σ(M|V )
for a C–linear invariant subspace V of M.
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If M has a C–linear invariant subspace of dimension k, then its spectrum
has a real algebraic subvariety of degree 2k at most. For small k one can
actually consider computing the characteristic bivariate polynomial of M|V

after first finding of order k2 of its eigenvalues accurately. The algorithms of
[15] can be used thereon.

Denote by deg (M) the degree of the minimal polynomial of M ∈ Cn×n.

Proposition 14 Any λ ∈ σ(M) is contained in a geometric component
of σ(M) of degree 2 deg (M)(rank (M#) + 1) at most.

Proof. Let z be an eigenvector corresponding to an eigenvalue λ of M.
According to the proof of [6, Proposition 3.7], z belongs to an invariant
subspace of M of dimension deg (M)(rank (M#) + 1) at most. Hence, λ
belongs to the spectrum of M restricted to this subspace. ¤

Recall that we always have deg (M) ≤ rank (M) + 1.
Any square matrix is consimilar to a real matrix [9]. Finding this trans-

formation is of interest since by the same technique we have:

Proposition 15 Let SM#S
−1

= R# ∈ Rn×n for an invertible S ∈ Cn×n.
Then any λ ∈ σ(M) is contained in a geometric component of σ(M) of
degree

4 deg (R#)(rank (M) + 1)

at most.

Proof. We can consider S ◦M ◦ S−1(z) = Nz + R#z. For this, let z be an
eigenvector corresponding to λ. Then z1 = N (z) = n1 + R#z with n1 in the
range of N . Also N (z1) = n2 + R#(n̂2 + R#z) with n2 and n̂2 in the range of
N and N, respectively. Continuing this inductively, we get vectors that are
linear combinations of vectors belonging the block Krylov subspaces

K(R#; N), K(R#; N), K(R#; z) and K(R#; z).

Since the dimension of the span of these subspaces is 2 deg (R#)(rank (M)+1)
at most, the claim follows. ¤

Let us emphasize that the degree of a matrix can change in a consimilarity
transformation even from n to 1.

In what follows, note that the linear and anti–linear parts of N = S ◦
M ◦ S−1 can commute while those of M do not.

Theorem 16 Assume N = S ◦M◦ S−1 for an invertible S ∈ Cn×n such
that N = µI + κR with R ∈ Rn×n and µ, κ ∈ C. If NN# = N#N , then
any λ ∈ σ(M) is contained in a geometric component of σ(M) of degree
2 deg (M) at most.

Proof. Since the spectrum is preserved in a C–linear similarity trans-
formation, we can consider N . Because the spectral mapping theorem holds
for the transformation 1

κ
◦ (N − µI), we can assume µ = 0 and κ = 1, i.e.,
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that N is real. The degree of a component of the spectrum clearly does not
change in this latter transformation either.

Consider λ ∈ σ(N ) and assume z is a corresponding eigenvector. Set

Kj(N ; z) = span {z,Nz, . . . , N j−1z}. (8)

We prove by induction that N (Kj(N ; z)) ⊂ Kj+1(N ; z) for j ≥ 1.
First we have N ((ρ + iψ)z) = (ρ − iψ)λz + i 2ψNz ∈ span {z,Nz} for

any ρ, ψ ∈ R. Hence, assume the claim is true with j. Take p(N)z for a
polynomial of degree j − 1 at most. Denote by p the polynomial obtained by
conjugating the coefficients of p. By the fact that N and N# commute,
we have N (p(N)z) = Np(N)z + p(N)N#z. The first term is clearly in
Kj+1(N ; z). The second one is also since N#z = λz − Nz. Consequently,
λ belongs to the spectrum of N restricted to Kn(N ; z) which is of dimension
deg (N) = deg (M) at most. ¤

As a special case, this yields the fact that the spectrum consists of circles
for M whose linear part is a multiple of the identity; see [6]. Actually, as
the proof demonstrates, the degree of the geometric component is less than
anticipated in case the dimension of the subspace (8) is less than deg (M) for
j = n.

By the same technique we have:

Theorem 17 Assume N = S ◦ M ◦ S−1 for an invertible S ∈ Cn×n

such that N = µI + κR and N# = µ#I + κ#R#, with R, R# ∈ Rn×n and
µ, κ, µ#, κ# ∈ C. If NN# = N#N , then any λ ∈ σ(M) is contained in a
geometric component of σ(M) of degree 4 deg (N#) at most.

Proof. Since the spectrum is preserved in a C–linear similarity transforma-
tion, we can again consider N .

Let z be an eigenvector corresponding to λ. Then N ((ρ + iψ)z) = (ρ +
iψ)λz−i 2ψN#z ∈ span {z,N#z} for any ρ, ψ ∈ R. Similarly we have N ((ρ+
iψ)N#z) ∈ span {N#z,N#z,N#

2z} by using the commutativity of N and
N#, and N (z) = λz together with the fact that N = µI + κR and N# =
µ#I + κ#R#, where R, R# ∈ Rn×n. By continuing this inductively, we can
deduce that

V = spanj,k≥0 {N#

jz,N#

kz} (9)

is an invariant subspace of N containing z. Hence N|V has λ as its eigenvalue
and because the dimension of V is at most 2 deg (N#), we have the claim. ¤

For a sharper bound, the degree is determined by the dimension of (9).
If the dimension n is large and the spectrum of M has a geometric com-

ponent of moderate degree, then an attractive option is to employ iterative
methods to locate it. Real linear operators characterized by the preceding
results are ideal in this respect although it is not clear how the iteration
should be realized in practice.

The above theorem also shows that the effect of an anti–translation M# =
κI to the spectrum of a standard C–linear eigenvalue problem Mz = λz is
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not too severe in case M is a translation and a rotation of a real matrix.
Actually, if M is a general complex matrix and λ ∈ σ(M) is such that the
intersection of the null spaces of λI −M and λI −M is nontrivial, then the
spectrum of M(z) = Mz+κz contains a circle of radius |κ| centered at λ (use
[6, Proposition 2.10]). Hence, if M is real, then under an anti–translation all
its real eigenvalues extend to be circles.

Let M be invertible. Plainly, V is an invariant subspace over C for M
if and only V is an invariant subspace over C for M−1. Consequently, if
any of the above conditions hold for M−1 instead, then we can make the
same conclusion regarding M, and vice versa. Let us illustrate this with the
following:

Example 3 Consider the inverse of M(z) = Mz + M#z with M = cI, for
a nonzero c ∈ C and M# of rank k. Then we have M−1(z) = Nz + N#z
with N# of rank k and N = 1

c
I + F , where F is of rank k as well [6]. Hence

Proposition 14 gives a pessimistic bound when used with M−1.

3 The symmetric and other structured R–

linear eigenvalue problems in Cn

In what follows we will consider various cases where we have symmetries in
the location of the spectrum of a real linear operator. This type of results
are of interest, for example, for reducing computational complexity of finding
eigenvalues numerically.

Analogously to the C–linear case, the spectrum is symmetrically located
with respect to the real axis when we are dealing with real matrices.

Proposition 18 Assume N = S ◦M◦S−1 for an invertible S ∈ Cn×n. If
N,N# ∈ Rn×n, then σ(M) is symmetrically located relative to the real axis.

Proof. Since N and N# are real, we have by conjugating

Nz + N#z = λz ⇐⇒ Nz + N#z = λz,

so that the claim follows by the fact that σ(M) = σ(N ). ¤

Similarly, if N and N# are pure imaginary, then

λ ∈ σ(M) ⇐⇒ −λ ∈ σ(M).

Example 4 For a curious case of symmetry relative to the real axis, let
M ∈ Cn×n be Hermitian and consider the “real part” of the C–linear map
z 7→ Mz, i.e., M(z) = 1

2
Mz + 1

2
Mz. Then σ(M) is symmetrically located

with respect to the real axis. To see this, the real condition for an eigenpair
gives A [ x

y ] = α [ x
y ]−βJ [ x

y ]. The assumptions force the (2, 1)-block and (2, 2)-
block of A to be zero matrices. This implies y = −β

α
x, so that (A11−

β

α
A12)x =

(α + β2

α
)x, where A11 and A12 are the (1, 1)-block and (1, 2)-block of A,

respectively. Now A11 is symmetric while A12 is skew–symmetric. Therefore
α + β2

α
is also an eigenvalue of (A11 −

β

α
A12)

T = A11 + β

α
A12, which yields the

claimed symmetry of the spectrum.
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The above proposition involved a C–linear similarity transformation since
the spectrum is preserved under it. In an anti–linear similarity transforma-
tion the spectrum is reflected across the real axis as follows.

Proposition 19 Let N = S ◦ M ◦ S−1 with an invertible S(z) = S#z.
Then σ(N ) = σ(M).

Proof. We have S−1(z) = S#

−1
z. Hence

S ◦M ◦ S−1(z) = S#

−1
MS#z + S#

−1
M#S#z

so that N is similar to z 7→ Mz + M#z under the C–linear similarity trans-
formation z 7→ S#z. ¤

In what follows we will drop the C–linear similarity transformation to
simplify the statements. Hence, all the results concerning the location of
the spectrum hold more generally for N = S ◦ M ◦ S−1 with an invertible
S ∈ Cn×n.

Let M be normal with the property that there exists a function p : C → C
with

p(z, z) = z − αz − β, where α, β ∈ C, (10)

annihilating M (z corresponds to taking the adjoint). Such normal matrices
are denoted by N1 since their so–called minimal polyanalytic polynomial is
of degree one; see [13, 14]. Equivalently, their spectrum is located on a line.

Example 5 If M = eiθH + µI for a Hermitian matrix H, θ ∈ [0, 2π) and
µ ∈ C, then M ∈ N1 with α = ei2θ and β = µ − ei2µµ.

Using this notation, we have a very “scarce” spectrum in the following
case.

Proposition 20 Assume M ∈ N1 and M#

T = −M#. Then σ(M) is
finite and located on the line y = sin θ

cos θ
x + Re µ.

Proof. For any µ1, µ2 ∈ C the eigenvalues of µ1M + µ2I are obtained from
the eigenvalues of M under the transformation z 7→ µ1z + µ2 and vice versa.
Hence, we can assume that M is skew–Hermitian and M#

T = −M#. The
claim follows from the fact that then the spectrum of M is located in the
imaginary axis because the real form of M is skew–symmetric. It must be
finite since the imaginary axis does not contain any other algebraic curves as
a proper subset (it must be proper because the spectrum is bounded). ¤

In the proof we used the fact that if the spectrum belongs to an un-
bounded component of a real algebraic plane curve, then it must be finite.
Knowing finiteness of the spectrum a priori is important for computational
purposes since algorithms for solving R–linear eigenvalue problems in Cn can
be expected to have serious difficulties in finding zero dimensional or tiny
one dimensional components of the spectrum. In particular, a real linear ei-
genvalue problem with the structure of Proposition 20 can be solved reliably
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since the curve on which the eigenvalues are located is known in advance.
For R–linear operators of this type we typically have less than 2n eigenvalues
(see Corollary 28 below).

According to Proposition 20, if M is Hermitian and M#

T = −M#, then
the spectrum is located on the real axis. This structure can be regarded as
an extension of the standard Hermitian one. Namely then z∗M#z = 0 for
any z ∈ Cn, so that the quadratic form

z 7→ z∗M(z) = z∗Mz + z∗M#z

coincides with the Hermitian quadratic form z 7→ z∗Mz attaining thereby
only real values. (See also Corollary 27 below.)

Assume M(z) = Mz+M#z such that M ∈ N1 while M#

T = M# instead.
In particular, if M is Hermitian (skew–Hermitian), then the real form of M
is symmetric (Hamiltonian). First, the arising structure is preserved not
only in translations and anti–translations of M but also in pre– and post–
multiplications by a scalar. Moreover, we have:

Proposition 21 Assume M ∈ N1 and M#

T = M#. Then σ(M) is
nonempty and symmetrically located relative to the line y = sin θ

cos θ
x + Im µ.

Proof. After scaling and a translation, we can assume that M is Hermitian
and M#

T = M#. If A denotes the corresponding real form, then AT = A
holds. Hence A has real eigenvalues and thereby σ(M) 6= ∅. Moreover, since
(βJ + A)T = −βJ + A, the eigenvalues of M appear in pairs α ± iβ. ¤

This provides another natural way of extending the standard Hermitian
eigenproblem once we set:

Definition 22 For M(z) = Mz + M#z let M̃(z) = M ∗z + M#

T z

For this operation σ(M̃) = σ(M) holds [6].

We call a real linear operator symmetric if M̃ = M. Then the spectrum
is not only symmetrically located with respect to the real axis but it is ne-
cessarily nonempty. We have at least one real eigenvalue, and 2n generically,
due to the fact that the real form A ∈ R2n×2n of M is a symmetric matrix.
These particular eigenvalues yield natural starting points to locate the cor-
responding components of the spectrum with path following techniques; see
section 4. Having as many as 2n real eigenvalues can be regarded as quite
exceptional among real linear operators in Cn. For comparison, the expected
number of real eigenvalues of a random matrix A ∈ R2n×2n with independent
standard normal entries is

√
4n/π as n → ∞; see [5].

Example 6 Since a symmetric R–linear operator in Cn has 2n real eigen-
values generically, the operator M : C2 7→ C2 of Lemma 11 is non–generic in
the symmetric case by having at most 2 real eigenvalues. Also a tiny struc-
ture preserving perturbation changes the spectrum from a circle of radius
|d3| centered at d1 (have d1 = d2 and d3 = d4 6= 0) to two distinct points
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on the real axis (have d1 6= d2). Generically we can expect a pair of connec-
ted eigenvalues to remain connected in small perturbations by regarding the
spectrum as a level curve of a bivariate polynomial.

Based on the diagonal case and on numerical experimenting with n of
moderate size, initially we expected all the components of σ(M) to intersect
the real axis in the symmetric case. Eventually we found a numerical example
showing that this is not true. However, since the spectrum of a symmetric
real operator in Cn is particularly “rich” in components (see Example 10),
having at least n of them generically, their respective positioning can be used
with Bézout’s theorem to exclude regions where non–intersecting components
can not appear. A simple example of this is:

Proposition 23 Let M : Cn → Cn be symmetric such that σ(M) has
n distinct components crossing the real axis. Assume that these components
can be ordered such that the jth component encloses j − 1 components, for
j = n, . . . , 2. Then σ(M) does not have any other components.

Proof. Take a point on the real axis that is enclosed by the first component.
Then any straight line intersects the n components in 2n points. Hence by
Bézout’s theorem the line cannot intersect any other components of σ(M).
¤

More generally, we can exclude sectors of the complex plane as soon as we
manage to intersect 2n eigenvalues with a pencil of straight lines. Although
beyond the scope of this paper, a fast construction of these pencils is an
interesting problem in computational geometry.

For a more linear algebraic scheme to exclude sets of the complex plane
where eigenvalues can not be located, set

Cl(M,M#) =
{
λ ∈ C : |ml,l − λ| = |m#

l,l|
}

for an R–linear operator M(z) = Mz + M#z. Then define

Cl(M,M#) =

{
λ ∈ C : dist

(
λ,Cl(M,M#)

)
≤

n∑

j=1,j 6=l

(|ml,j| + |m#

l,j|)

}
(11)

for 1 ≤ l ≤ n. With these“Geršgorin’s annuli”we can guarantee the following:

Theorem 24 Let M be real linear in Cn. Then σ(M) ⊂ ∪n
j=1Cj(M,M#).

Proof. Let z = (z1, z2, . . . , zn) ∈ Cn be an eigenvector corresponding to λ.
Take a unitary diagonal matrix S ∈ Cn×n such that all the entries of w = Sz
are real and consider N = S◦M◦S−1. First, each entry of N and N# has the
same modulus as those of M and M#, respectively. Moreover, the diagonal
entries of M and N equal. Assume |wl| = max1≤j≤n |wj| and consider the
lth row of λw − N (w) = 0. Since w ∈ Rn, this yields |λ − ml,l − n#

l,l| ≤∑n

j=1,j 6=l(|ml,j|+|m#

l,j|) after dividing by |wl| and using the triangle inequality
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as in the proof of Geršgorin’s theorem. (For Geršgorin’s theorem, see, e.g.,
[11, Chapter 6].) ¤

For a symmetric M it can be worthwhile to perform a C–linear similarity
transformation, e.g., to diagonalize the linear part of M to exclude regions
where components can not occur before executing algorithms for finding the
spectrum. This is due to the fact that a single diagonalization of a Hermitian
matrix is inexpensive compared with the total cost of finding the spectrum
of a real linear operator. Moreover, the theorem is sharp in case M gets
diagonalized.

Another linear algebraic idea to identify regions where the eigenvalues
appear is the field of values of M defined via its corresponding quadratic
form as

F (M) = {λ ∈ C |λ = z∗M(z), with ||z|| = 1} .

Clearly, we obtain a compact set such that σ(M) ⊂ F (M). Considering,
for example, a symmetric M we see that F (M) differs from the field of
values of its real form. A number of other basic properties are immediate,
such as F (M + N ) ⊂ F (M) + F (N ) holds for any real linear operators
M and N . Also we have F (µM) = µF (M) for µ ∈ C. To approximate
the field of values from a subspace, if U ∈ Cn×m has orthonormal columns,
then for MU = U∗ ◦M ◦ U acting on the span of the columns of U we have
F (MU) ⊂ F (M) with equality in case m = n. However, F (M) need not be
convex even if M is symmetric. To see this, consider M(z) = 1

2
z + 1

2
z acting

on C. Therefore we do not have, at the moment, an efficient method to
compute this set. Regardless of this, F (M) provides a useful tool for making
preliminary remarks on the spectrum before numerical computations.

With the field of values we can generalize Proposition 20 as follows, where
we decompose M# into its symmetric and skew–symmetric parts, that is,
S# = 1

2
(M# + M#

T ) and T# = 1
2
(M# − M#

T ).

Theorem 25 Let M(z) = Mz + S#z + T#z with S#

T = S# and T#

T =

−T#. Then F (M) = F (M̂), where M̂(z) = Mz + S#z.

Proof. This follows by the fact that we have z∗T#z = 0 for every z ∈ Cn.

Consequently, all the points of F (M) are given by the part M̂. ¤

Recall that for a matrix M ∈ Cn×n the field of values is a point if and
only if M = λI for λ ∈ C. For real linear operators with the smallest possible
field of values we have:

Corollary 26 For M(z) = Mz + M#z we have F (M) = {λ} if and only
if M = λI and M#

T = −M#

Proof. After performing a translation of M by λI, we can assume that
λ = 0. Hence, since the converse is clear, assume F (M) = {0}. Then we
have z∗Mz = −z∗M#z for any z ∈ Cn. Therefore with eiθz, for θ ∈ R, we
obtain z∗Mz = −e−i2θz∗M#z. This forces z∗Mz = −z∗M#z = 0. Since this
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is true for any z ∈ Cn, it follows that M = 0. To see that M#

T = −M#, take
two standard basis vectors ej and ek. Then

0 = (ej − ek)
∗M#(ej − ek) = −e∗jM#ek − e∗kM#ej = −e∗jM#ek − e∗kM#ej,

from which the claim follows. ¤

Similarly we have:

Corollary 27 F (M) ⊂ R if and only if M ∗ = M and S# = 0.

Proof. We can ignore the effect of z 7→ T#z to the field of values.
Take z ∈ Cn, so that with eiθz we obtain real z∗Mz − e−i2θz∗S#z for

any θ ∈ R. Hence the field of values of M must be real and therefore M is
Hermitian. Also, since S# is unitarily consimilar to a diagonal matrix, this
forces S# to equal zero. ¤

Hence the part z 7→ T#z does not contribute to the field of values. In
particular, perturbing M with such an anti–linear operator can not move
eigenvalues beyond F (M). If this part is dominating in the following sense,
we do not have any eigenvalues.

Corollary 28 If
∣∣∣∣T#

−1
∣∣∣∣

∣∣∣
∣∣∣M̂

∣∣∣
∣∣∣ < 1, then σ(M) = ∅.

Proof. Assume M(z) = λz with z ∈ Cn of unit length. By the fact that z
and T#z are orthogonal, we have by the Pythagorean theorem

|λ|2 =
∣∣∣
∣∣∣M̂(z)

∣∣∣
∣∣∣
2

− ||T#z||2 ≤
∣∣∣
∣∣∣M̂

∣∣∣
∣∣∣
2

−

(
1∣∣∣∣T#

−1
∣∣∣∣

)2

,

from which the claim follows. ¤

Example 7 Consider the isometry M(z) = M#z with M# = [ 0 −1
1 0 ]. (A real

linear operator M : Cn → Cn is an isometry if ||M(z)|| = ||z|| for every
z ∈ Cn. Equivalently, the real form of M is an orthogonal matrix.) By
Corollary 28, the spectrum of M is empty.

Remark 4 Based on numerical experimenting, there is a significant differ-
ence between the number and the size of the components of the spectrum
depending on whether S# or T# dominates in the splitting M# = S# + T#.
Corollary 28 suggests that if T# = 0, then the spectrum of M is nonempty
(which is true if, e.g., M ∗ = M additionally). More generally, we conjecture
that if M# is condiagonalizable, then σ(M) 6= ∅. For condiagonalizability,
see [10, Theorem 4.6.11].

We have an analogy of the Bendixson–Hirsch theorem as follows, where
H and K denote the Hermitian and skew–Hermitian parts of M , that is,
H = 1

2
(M + M ∗) and K = 1

2i
(M − M ∗).
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Corollary 29 For M set H(z) = Hz + S#z and K(z) = Kz + iS#z, and
denote the corresponding real forms by A0 and Ai. Then

min{λ ∈ σ(A0)} ≤ min
λ∈F (M)

Re λ and max
λ∈F (M)

Re λ ≤ max{λ ∈ σ(A0)},

and

min{λ ∈ σ(Ai)} ≤ min
λ∈F (M)

Im λ and max
λ∈F (M)

Im λ ≤ max{λ ∈ σ(Ai)}.

Proof. We can consider M̂ since z 7→ T#z does not contribute to the field
of values. We prove the claim for the first pair of inequalities since the proof
is analogous for the second pair by the fact that F (µM) = µF (M) for any
µ ∈ C.

Because the field of values of z 7→ Kz is imaginary, all the real parts of
F (M̂) are among the real parts of the field of values of H. Since the real
form A0 of H is a symmetric matrix, the smallest and the largest real part
of F (H) are given by the extreme eigenvalues of A0. In fact, let λ1 and λ2n

be the smallest and largest real eigenvalues of H. Without loss of generality,
assume λ2n ≥ 0. The norm of H is thus λ2n and therefore we have

Re z∗H(z) ≤ ||H(z)|| = λ2n (12)

for any z ∈ Cn of unit length. Similar arguments apply to the smallest real
part. ¤

Note that H and K are symmetric both. In particular, if M is symmetric
to start with, then we have

max
λ∈σ(M)

Im λ = − min
λ∈σ(M)

Im λ ≤ ||M#|| ,

which is of use in the numerical computation of the spectrum.

Remark 5 From (12) we obtain max||z||=1 Re z∗H(z) = max||z||=1 z∗H(z) =
λ2n by choosing z to be an eigenvector corresponding to λ2n. Hence, analog-
ously to the C–linear case, we can approximate the convex hull of F (M) by
finding the largest (real) eigenvalue of z 7→ Hθz + eiθS#z while θ ∈ [0, 2π)
varies. Here Hθ denotes the Hermitian part of eiθM. For approximating the
field of values of a matrix, see, e.g., [11, p.33].

Example 8 Consider an anti–linear operator M(z) = M#z in Cn, with
n ≥ 2. For finding F (M) it suffices to consider z 7→ S#z. Since S#

is symmetric, it can be unitarily condiagonalized, i.e., we have U ∗S#U =
D# = diag(d1, . . . , dn) ∈ Rn×n for a unitary matrix U . Since F (M) is
unitarily invariant, we can consider z 7→ z∗D#z =

∑n

j=1 r2
j e

−i2θjdj, where

z = (r1e
iθ1 , . . . , rneiθn) is of unit length. Hence, F (M) equals the disk of

radius ||S#|| centered at the origin.
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The Kronecker product defined as follows yields another real linear struc-
ture of interest. Like the standard Kronecker product for matrix equations
[11, Chapter 4.3], it can be employed in representing R–linear operator equa-
tions.

Definition 30 Let A and B denote the real forms of M : Cj → Cj and
N : Ck → Ck. The Kronecker product M⊗̂N is the complex form of A⊗B.

Note that since A ⊗ B ∈ R4jk×4jk, M⊗̂N acts on C2jk.

Remark 6 If M and N are both C–linear, then it is easy to see that M⊗̂N
is C–linear as well. Since then σ(A) = σ(M) ∪ σ(M) and σ(B) = σ(N ) ∪
σ(N ), by the basic properties of the Kronecker product [10], it is immediate
what is the spectrum of M⊗̂N .

With square matrices we have σ(A⊗B) = σ(B⊗A). However, in general
we have σ(M⊗̂N ) 6= σ(N⊗̂M) for R–linear operators. The obstacle here is
that (αM)⊗̂N 6= M⊗̂(αN ) in case α ∈ C is not real.

Theorem 31 Assume M and N are real linear operators in Cn and let
µ be a real eigenvalue of N . Then µσ(M) ⊂ σ(M⊗̂N ).

Proof. Consider the real forms A and B of M and N , respectively. Let λ =
α1 + iβ1 and µ = α2 + iβ2 be eigenvalues of M and N with the corresponding
eigenvectors v1 ∈ R2j and v2 ∈ R2k represented in the real form. Then
Av1 = α1v1 − β1Jv1 and Bv2 = α2v2 − β2Jv2, so that

A ⊗ B(v1 ⊗ v2) = Av1 ⊗ Bv2 = ((α1 − β1J)v1) ⊗ ((α2 − β2J)v2)

by the basic properties of the Kronecker product.
Now (α1 − β1J)v1 corresponds to multiplying the complex form of v1 by

λ. If µ ∈ R, then we have ((α1 − β1J)v1)⊗ (α2v2) = (α2(α1 − β1J)v1)⊗ v2 =
α2(α1 −β1J)(v1 ⊗ v2), where J is of conforming size. Hence λµ ∈ σ(M⊗̂N ).
¤

Corollary 32 Assume λ and µ are real eigenvalues of M and N , respect-
ively. Then λµ ∈ σ(M⊗̂N ) ∩ σ(N⊗̂M).

Remark 7 Analogously to the Kronecker product for matrices, our Kro-
necker product inherits the properties of its factors, like symmetry or iso-
metry.

By repeating the arguments of the proof of [10, Theorem 4.2.16], we also
have F (M)F (N ) ⊂ F (M⊗̂N ) for a pair of real linear operators M and N .

In connection with the symmetric R–linear eigenvalue problem it is nat-
ural to set:

Definition 33 M and N are congruent if N = F◦M◦F̃ for an invertible
real linear operator F(z) = Fz + F#z.



THE REAL LINEAR EIGENVALUE PROBLEM 21

If M is symmetric, then so is N = F ◦ M ◦ F̃ . Then M and N have
the same real inertia as well, i.e., the number of negative, positive and zero
eigenvalues, counting multiplicities, on the real axis. These claims follow
readily by considering the real forms of M and N .

Remark 8 Although the real inertia is preserved for a symmetric M, the
topology of the spectrum can change even in a C–linear congruence, i.e., when
F# = 0 for F . To see this, consider M of Lemma 11 with d1 = d2 ∈ R and

d3 = d4 6= 0 so that M̃ = M and σ(M) is a circle. Then F = diag (c1, c2)
with c1 6= c2 gives N with the spectrum consisting of two distinct points.

Example 9 With congruence the angular field of values of a real linear op-
erator M defined as

F ′(M) = {λ ∈ C |λ = z∗M(z), z 6= 0}

is natural. (For the angular field of values, see [10].) Then it is straightfor-

ward that we have F ′(M) = F ′(F ◦M ◦ F̃) whenever F is C–linear.

To end this section, we give an example of a Toeplitz–like structured R–
linear eigenvalue problem arising naturally as follows (see [20, 21]). Denote
by T the unit circle and let L2 ≡ L2(T) be the set of square integrable
functions defined on T. As a generalization of a (C–linear) Laurent operator,
two bounded measurable functions φ and ψ induce a real linear multiplication
operator on L2 via

L(f) = φf + ψf, (13)

for every f in L2. This gives rise to a real linear Toeplitz–Friedrichs operator
T as follows. Let P : L2 7→ H2 be the orthogonal projector onto the Hardy
space H2 ≡ H2(T). Define T on H2 via

T (f) = PL(f) = P (φf + ψf). (14)

Compressing this to span0≤j≤n−1{z
j}, by using the standard orthonormal set

{zj}n−1
j=0 of H2, we obtain a Toeplitz matrix M while M# is readily seen to be

a Hankel matrix. We will demonstrate how circulant matrices have a natural
analogue in this setting.

Let K ∈ Cn×n denote the backward identity [10], i.e., the permutation
matrix with ones on the diagonal joining the left lower corner with the right
upper corner. Consider M(z) = Mz + M#z with the property that M and
KM# are circulant matrices both. Hence M# is a Hankel matrix with the
corresponding“periodic” structure with respect to its anti–diagonals. We call
such an M a real linear circulant operator.

The arising structure is independent on the order of the multiplication by
K in the sense that M#K is circulant matrix if and only if M# belongs to
this category of periodic Hankel matrices. This guarantees that we preserve
a standard property of C–linear circulants as follows.
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Proposition 34 The set of real linear circulant operators is an algebra
over C.

Proof. It is clear that we have a vector space, so let us consider the product.
Recall that K2 = I. This implies that we have

M◦N (z) = (MN + M#N#)z + (MN# + M#N)z

such that M#N# = M#KKN# is the product of two circulant matrices, hence
a circulant matrix like the product MN . Similarly, MN# = (MN#K)K,
where MN#K is a circulant matrix, and M#N = K(KM#N), where KM#N
is a circulant matrix. ¤

Therefore, under sufficient assumptions on invertibility (which are gener-
ically satisfied)

M−1(z) = (M − M#M
−1

M#)−1z + (M# − MM#

−1M)−1z

has the same structure as M. Moreover, M−1 can be computed by using
the FFT techniques by inserting K in appropriate places, although a simpler
way to perform the inversion is by diagonalizing M as follows. Denote again
by Fn ∈ Cn×n the Fourier matrix.

Theorem 35 Let M be a real linear circulant operator in Cn. Then F ∗
n ◦

M ◦ Fn is diagonal.

Proof. Since it is clear that F ∗
nMFn is diagonal, let us consider

F ∗
nM#Fn = F ∗

nKKM#F ∗
n = F ∗

nKF ∗
nFnKM#F ∗

n .

By the fact that KM# is circulant, FnKM#F ∗
n is diagonal. The claim follows

since F ∗
nKF ∗

n turns out to be a (unitary) diagonal matrix as well. ¤

This also implies that the spectrum of a real linear circulant operator
consists of circles and is thereby readily computable in a closed form.

4 Computational techniques for finding eigen-

values of an R–linear operator

In this section we consider numerical methods for finding eigenvalues of a
real linear operator M in Cn. A method to generate a discrete approxim-
ation to the spectrum was proposed in [6] for the case of a fairly moderate
dimension n. A problem with this approach is that, it overlooks the one
dimensional topological structure of the spectrum. While we only compute
discrete points of the spectrum we have no way of telling how eigenvalues
actually are connected by the spectrum, in particular when two components
nearly intersect. Below we remedy this problem with path following tech-
niques. These methods are also well suited for locating single components of
the spectrum, a realistic approach to deal with large scale problems to find
a small portion of the eigenvalues. As an advantage, these computations are
clearly very parallelizable.

As earlier, we denote the real form of M by A ∈ Rn×n and its character-
istic bivariate polynomial by det A(α, β).
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4.1 Path following techniques for computing a connec-

ted component of the spectrum

Assume having computed a single eigenvalue λ0 ' (α0, β0) ∈ R2 of M.
Our goal in the sequel is to device a method that produces a numerical
approximation to the component of σ(M) containing (α0, β0). We will not
trace this component using directly the formal definition of the spectrum

{
(α, β) ∈ R2 | det A(α, β) = 0

}
, (15)

that relies on the bivariate characteristic polynomial of M. For numerical
stability it is preferable to recast computation of the determinant into solving
a linear algebraic problem. More precisely, we use below bordering techniques
for determinants; see [17] for a good reference.

To this end, consider (α, β, u, v) ∈ R × R × R2n × R2n satisfying

A(α, β)u = A(α, β)T v = 0 and ‖u‖ = ‖v‖ = 1. (16)

Clearly the projection of the solution set of (16) to the first two components
is exactly the set (15).

Now, let u1, u2, v1, v2 ∈ Rn correspond to the splittings u =
[

u1

u2

]
and

v =
[

v1

v2

]
. Hence α + iβ and u1 + iu2 is an eigenpair of M while α − iβ and

v1 + iv2 is an eigenpair of M̃. Define two functions F and F∗ according to

F (u, v, α, β, x, δ) =

[
A(α, β) v

uT 0

] [
x
δ

]
−

[
0
1

]

and

F∗(u, v, α, β, y, δ) =

[
A(α, β)T u

vT 0

] [
y
δ

]
−

[
0
1

]
,

where x, y ∈ R2n and δ ∈ R. Clearly for any solution of (16) we have

F (u, v, α, β, u, 0) = F∗(u, v, α, β, v, 0) = 0. (17)

Conversely, if α, β, u, v, x, y are such that

F (u, v, α, β, x, 0) = F∗(u, v, α, β, y, 0) = 0 (18)

hold, then necessarily x, y, u, v 6= 0. Then also for u′ = x/‖x‖ and v′ = y/‖y‖
the pair of equations (17) is satisfied with u′, v′ in place of u, v. Hence locally
we may choose to continue the curve (α, β, x, y) satisfying (18) for fixed u
and v, instead of the curve (15).

In what follows we describe our scheme in more detail in four parts: 1. De-
scription of the continuation step, 2. Choosing the step length, 3. Stopping
criteria, and 4. Conditions that cause the algorithm to break down.

1. Continuation step. Assume A(α0, β0) has one dimensional kernel.
Fix u0 and v0 satisfying (16) in the sense that

A(α0, β0)u0 = A(α0, β0)
T v0 = 0 and ‖u0‖ = ‖v0‖ = 1.
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Then, implicitly, the equation F (u0, v0, α, β, x, δ) = 0 defines a map Ψ :
(α, β) 7→ (x, δ) uniquely in some neighbourhood U of (α0, β0). That is, an
evaluation of Ψ corresponds to solving the respective linear system. Similarly
F∗(u0, v0, α, β, y, δ) = 0 defines Ψ∗ : (α, β) 7→ (y, δ). By implicit differenti-
ation we obtain linear equations for the first and second derivatives of Ψ
as

[
A(α, β) u0

vT
0 0

] [
∂αx ∂βx
∂αδ ∂βδ

]
=

[
−x Jx
0 0

]
(19)

[
A(α, β) u0

vT
0 0

] [
∂2

αx ∂α∂βx ∂2
βx

∂2
αδ ∂α∂βδ ∂2

βδ

]
=

[
−2∂αx J∂αx − ∂βx 2J∂βx

0 0 0

]
.(20)

Let us denote

δ0 = δ(α0, β0), δ′0 =

[
∂δ0
∂α
∂δ0
∂β

]
, and δ′′0 =

[
∂δ0
∂α2

∂δ0
∂αβ

∂δ0
∂βα

∂δ0
∂β2

]
. (21)

Correspondingly, we will use notations x′, x′′ and Ψ′ with obvious definitions.
Consider a point (α(0), β(0)) ∈ U . We project (α(0), β(0)) back to the curve

(15) by applying the following quasi–Newton iteration to the equation δ = 0,
i.e., we solve repeatedly the under–determined equation

δ′(α0, β0)

[
α(k) − α(k+1)

β(k) − β(k+1)

]
= δ(α(k), β(k))

for (α(k+1), β(k+1)). Denote the computed numerical approximation of the
limes of this iteration by (α1, β1). Since an evaluation of δ implies an evalu-
ation of Ψ, we obtain the vector x1 as a by–product. For u1 = x1/‖x1‖ we
then have

F (u1, v0, α1, β1, u1, 0) = 0.

Letting (y1, δ1) = Ψ∗(α1, β1) and v1 = y1/‖y1‖, we obtain (α1, β1, u1, v1).
This satisfies (16) and thus (α1, β1) belongs to the spectrum of M.

Assuming the kernel of A(α1, β1) is one dimensional, we then repeat the
continuation step by using (α1, β1) as a starting point.

2. Choosing the step length. The choice of (α(0), β(0)), given (α0, β0), can
be based on the local second order approximation

0 = δ0 + δ′T0 σ +
1

2
σT δ′′0σ (22)

of the curve (15), where the step σ = h([ 0 −1
1 0 ] δ′0 + g

h
δ′0)/‖δ

′
0‖, with h, g ∈ R,

is a linear combination of the tangential direction [ 0 −1
1 0 ] δ′ and the gradient

direction δ′. Note that A(α, β) is real analytic, so that Ψ is real analytic too,
in some neighbourhood of (α0, β0).

The equation (22) defines g as a function of h in the neighbourhood of
the point h = 0. Take g(h) to be the root with the smaller absolute value.
For small enough h we then have ‖(α(0), β(0)) − (α(k), β(k))‖ = O(h3) for any
k ≥ 1. The parameter h is chosen to satisfy the following criteria:
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C1 The relative distance of (α(0), β(0)) from the tangent at (α0, β0) should
not be too large, i.e., g

h
< γangle for some choice of γangle ∈ [0, 1]. In

(22) this is guaranteed by imposing

h ≤
2γangle

(1 + γ2
angle)‖δ

′
0‖‖δ

′′
0‖

.

C2 The step length should be small enough, to guarantee that the Ψ stays
well defined, that is, uT x > 0 and vT y > 0 in the region. Since
uT x(α, β) = 1, i.e., uT x′

0 = 0, we require that ‖x − x0‖ < γu‖x‖ = γu

for some γu ∈ [0, 1]. Using the first degree approximation of x(α, β)
around (α0, β0) we get the bound h‖x′

0‖ < γu.

C3 The step length should not more than double from the previous step.
This is to guarantee a nice looking curve, and to be a safe guard for
the first two criteria C1 and C2.

The following criteria are used to determine whether to accept or reject
(α1, β1) once computed. If the point is rejected, we recompute it with step
length h/4.

C4 Repeating the computations in criteria C1 and C2 above at (α1, β1) we
require that the new step length thus obtained for the next step is not
less than h/3. The aim of this criterion is, on the one hand, to work
as a safe guard in addition to the other criteria, and on the other, to
guarantee a nice looking curve.

C5 The angle between the line passing through the points (α0, β0) and
(α1, β1), the tangent at (α0, β0), and the tangent at (α1, β1) should be
small enough, that is,

(β1 − β0, α0 − α1)
T δ′1 >

√
1 − γ2

angle‖δ
′
1‖‖(α1 − α0, β1 − β0)‖, and

(β1 − β0, α0 − α1)
T δ′0 >

√
1 − γ2

angle‖δ
′
0‖‖(α1 − α0, β1 − β0)‖.

Furthermore, note that if the continuation jumps to a nearby com-
ponent, then typically δ′0 and δ′1 point roughly in opposite directions.
Whereas for small enough γangle the criterion above guarantees that
δ′T0 δ′1 ≥ 0, immediately detecting this anomalia.

C6 To guarantee the validity of the approximation (22) we require

‖(α1 − α(0), β1 − β(0))‖ < g/2.

In the numerical examples of Section 4.3 we used values γangle = tan π/8
and γu = 1/5.

3. Stopping criteria. Because the components of the spectrum are closed
curves of finite length the continuation will run interminably unless explicitly
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stopped. To detect returning of the continuation back to the starting point
we fix a line L transversal to the tangent direction at the starting point, and
track crossings of the line. At each crossing we compute the intersection of
the continued curve with L. If the intersection is the starting point with a
given tolerance, we return the point as the end point. Otherwise we continue
the usual way neglecting the computed intersection point.

Since the intersection of the spectrum with a line (e.g. the real axis)
is easy to compute, we might well start off by knowing intersections of the
spectrum with a line. Then the components of the spectrum intersecting
the line are obtained by continuing each known intersection until the line is
reached anew. Note that in a typical case the component of the spectrum is
a closed curve without self–intersections, and then it is enough to continue
only in the direction of [ 0 −1

1 0 ] σ′ and only until the line is encountered anew
for the first time.

4. Breaking down. There are several conditions causing the algorithm to
break down. We have not designed any recovery procedures for them, but
only list four conditions here.

If at same point both δ′ = 0 and x′ = 0 the step length choice fails.

Since ‖δ′‖ ∼ ‖
[

A(α,β) u

vT 0

]−2

‖ and ‖δ′′‖ ∼ ‖
[

A(α,β) u

vT 0

]−3

‖, the continuation

immediately breaks down if1 dim N(A(α, β)) > 1. Numerically this may
happen even if the next to the smallest singular value approaches zero.

If the step size is too large, it may happen that u ∈ R(A(α, β)) or v ∈

R(A(α, β)T ) so that
[

A(α,β) u

vT 0

]
becomes singular. The criterion C2 above is

designed to prevent this.

If the continuation step jumps over to another nearby lying component
of the spectrum, the stopping criterion is not necessarily met at all. Again
the criterion C5 will make it less likely.

Remark 9 The fact that we know the derivatives δ ′ and δ′′ at every point
(αk, βk) allows us to consider a spline approximation for the curve. We store
δ′ along with the points (αk, βk) and use cubic splines in our examples.

4.2 Remarks on finding eigenvalues of large scale prob-

lems

Since for finding the spectrum of M we only need the real eigenvalues and
the corresponding eigenvectors of −βJ − A while β varies, an obvious idea
to reduce the computational burden is to have a method that ignores the
complex eigenvalues of a real matrix. This can result in a significant reduction
in the computational complexity by the fact that for certain matrices only a
small fraction of the eigenvalues are real; see [5] for the random matrix case.

1We denote by R(A) the range of A and by N(A) the kernel of A.
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For problems of moderate size an alternative to achieve savings is to
compute a Schur decomposition of −βJ −A. Then, instead of finding all the
eigenvectors, one computes only those related to real eigenvalues.

With large scale problems we typically can not assume that the Schur
decomposition is computable. Instead, a realistic computational task could
be that of finding a component of the spectrum passing through a given
region D of the complex plane. This is solvable in two steps with iterative
methods as follows.

The first step is to find a real eigenvalue α of −βJ − A with (α, β) ∈
D. For a fixed β this type of a problem gives a natural criterion for using
restarted iterative eigensolvers. (For restarted eigenvalue algorithms, see
[1].) Namely, those Ritz values of −βJ − A that appear to be converging to
complex eigenvalues should be filtered out.

The second step, once an eigenvalue (α, β) inside D has been found,
consists of employing our path following techniques just described by using
(α, β) as a starting point. Since the dimension is assumed to be large, all
the linear systems involved should be solved iteratively. Here an appropriate
preconditioning strategy is likely to be crucial for fast computation of the
component, or a portion of it.

4.3 Numerical examples of computing components of

the spectrum

In this subsection we illustrate the prescribed computational techniques with
numerical examples. The experiments were performed with Matlab [18]
whose syntax is used.

Example 10 In this experiment we consider a symmetric real linear oper-
ator M acting on Cn, with n = 40. The task is to locate the components
of the spectrum of M intersecting the real axis. To this end we find the
eigenvalues of its real form which are then used as starting points for tracing
the corresponding components with path following techniques. We take M
to be the Hermitian part of a random matrix randn(n, n) + i randn(n, n),
while M# is the symmetric part of another random matrix generated simil-
arly. See Figure 1 for the spectrum of M. This example illustrates well how
the spectrum of a symmetric real linear operator is “rich” in components.

The effect of using variable step length in path following is illustrated by
zooming in the fine details of a component of the spectrum in two steps. Circa
4200 points with tangent directions were computed for the approximation.
The approximations were drawn by using cubic splines.

Example 11 Here we consider a real symmetric linear operator alike that of
Example 10 but with n = 10. The purpose of the example is to illustrate the
spectral mapping theorem (Theorem 4). In Figure 2 we have the spectrum of
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(a) The spectrum intersecting the real axis.
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Figure 1: The spectrum intersecting the real axis of a random symmetric
real linear operator in Cn, n = 40, is illustrated in the top figure (a). The
lower figures (b) and (c) are magnifications of the top one. The dots mark
the computed eigenvalues, (with computed tangents,) the line represents the
cubic spline approximation of the spectrum.

the real linear operators M, p1(M) := M2+2iM, and p2(M) := M2−2M.
In the sub–figure (a) we mark the intersections of the spectrum with the real
axis, σ(M) ∩ R, by a dot. In the sub–figures (b) and (c) the dots mark
the points pk(σ(M) ∩ R), for k = 1, 2 respectively. The labelling of the
points of pk(σ(M) ∩ R) corresponds to the labelling of the preimage in the
sub–figure (a).

We see that that pk(σ(M) ∩ R) ⊂ σ(pk(M)). The topology, however,
has changed. See the points labelled 1, 2 and 3. The points 1 and 2 are
connected by σ(M) but their images are not connected by σ(pk(M)), hence
by continuity of pk we see that pk(σ(M)) 6= σ(pk(M)).

The symmetry of the spectrum with respect to the real axis is expectantly
lost for the complex polynomial p2 in the sub–figure (b).

Example 12 In this example we split the anti–linear part of a real linear
operator according to Theorem 25. We illustrate the effect of having in the
anti–linear part M# = S# + T# either dominating T# or S#. We take M
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(c) The spectrum of M2 − 2M .

Figure 2: The figure illustrates the spectral mapping theorem 4; see Ex-
ample 11.

and M# to be random matrices of type randn(40, 40) + i randn(40, 40) both.
Then we set

Mt(z) = Mz + S#z + t T#z with t ∈ {0, 1, 2, 4, 8, 16}.

By Theorem 25 the field of values F (Mt) is invariant of t. For t = 0 the anti–
symmetric part t T# of the anti–linear part vanishes and hence the symmetric
part S# dominates. For large values of t the anti–symmetric part of Mt

dominates in norm (we had ‖T#‖/‖S#‖ ≈ 1). In the Figure 3 we see the
change in the spectrum predicted by Remark 4. For large t the spectrum
resembles a circle in contrast to the very complex structure of the case t = 0.

5 Conclusions

In this paper we have studied the real linear eigenvalue problem in Cn. We
have considered basic properties of the spectrum, like ways to reestablish the
spectral mapping theorem, bounds on the degree of the components of the
spectrum, and exclusion regions for the eigenvalues. We have introduced a
symmetric as well as other structured eigenvalue problems. By using the field
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Figure 3: The figure illustrates Example 12. For every value of the parameter
t on the vertical axis we plot the spectrum of Mt on the horizontal copy of
the complex plane. The bottom picture corresponds to the case of symmetric
M#. At the top M# is highly anti–symmetric.

of values, splitting of the anti–linear part of a real linear operator into its
symmetric and anti–symmetric parts yields a simple condition on having an
empty spectrum.

Path continuation methods were implemented for computing components
of the spectrum. Numerical examples illustrating the aspects studied were
presented.
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