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1 Introduction

Let Ω = BR(0) = {x ∈ RN ; |x| < R}. Consider the nonlinear diffusion
problem

ut − ∆u = f(u), x ∈ Ω, t > 0,

u(x, t) = 1, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where the initial function satisfies 0 < u0(x) ≤ 1, ∆u0(x) + f(u0(x)) ≤ 0,
u0(±R) = 1, u0(x) is radial, i.e., u0(x) = u0(r) and u′

0(r) ≥ 0, (r = |x|).
We assume that the reaction term f(u) is singular at the origin in the sense
that limu↓0 f(u) = −∞. For u > 0 we take f(u) to be smooth and to satisfy
(−1)kf (k)(u) < 0; k = 0, 1, 2.

Of special interest in the analysis of equation (1.1) has been the situation
where the solution u(x, t) approaches zero in finite time. The reaction term
then tends to infinity and the smooth solution ceases to exist. This phe-
nomenon is called quenching. We say that a is a quenching point and T is a
quenching time for u(x, t), if there exists a sequence {(xn, tn)} with xn → a
and tn ↑ T , such that u(xn, tn) → 0 as n → ∞.

In most of the papers that deal with the quenching problem for the equa-
tion (1.1), the reaction term is a power singularity, i.e., f(u) = −u−p, p > 0.
In this case it is well-known that for sufficiently large Ω quenching occurs in
finite time [1, 2, 14, 16]. A feature of the quenching problem that has been ex-
tensively investigated is the qualitative behavior of solutions and in particular
the asymptotic behavior of solutions in space and time near the quenching
points. See the detailed review articles [15, 17].

In [19, 21] the equation was studied in the case where we have only a
logarithmic singularity, i.e., f(u) = ln(αu), α ∈ (0, 1), for Ω = (−l, l) ⊂ R1.
It was shown there that in spite of this weakening of the singularity, quenching
occurs for sufficiently large l. Furthermore, it was proved that the set of
quenching points is finite. This analysis has been extended to a more general
class of weakly singular reaction terms in [20]. More precisely, it was assumed
that

|unf (n)(u)| = o(|f(u)|), n = 1, 2, (1.2)

as u ↓ 0. Furthermore, we defined f̃(s) = −es · f(e−s)
f ′(e−s)

, s ∈ R, and assumed
that

f̃(s(1 + o(1))) = (1 + o(1))f̃(s), (1.3)

as s → ∞. This requirement means that for a(s) → 0, as s → ∞ there is
b(s) → 0, as s → ∞ such that f̃(s(1 + a(s))) = (1 + b(s))f̃(s), as s → ∞.
Note that (1.2) implies f̃(s) → ∞, as s → ∞. A more detailed discussion on
(1.2) and (1.3) can be found in [20].

Of particular interest for the quenching problem (1.1) with power singu-
larity has been the analysis of the local asymptotics of the solution as t ↑ T
in a neighborhood of the quenching point. Especially, it has been shown that
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the quenching-rate satisfies

lim
t↑T

u(x, t)(T − t)−1/(1+p) = (1 + p)1/(1+p), (1.4)

uniformly for |x− a| < C
√

T − t. In one dimensional x-space this result was
first established by Guo [9] for p ≥ 3, and subsequently generalized to p ≥ 1
by Fila and Hulshof [4]. For the weaker singularity 0 < p < 1, (1.4) has been
shown in [11]. The result (1.4) for higher dimensions has been obtained in
[10] for the case p > 1 and in [5] for the case p > 0. These quenching-rate
results have been refined in backward parabolas, see [6].

The main result in [19] concerns the asymptotic behavior of the solution in
a neighborhood of a quenching point. It was proved there that the quenching-
rate for the logarithmic singularity satisfies

lim
t↑T

(

1 +
1

T − t

∫ u(x,t)

0

dτ

f(τ)

)

= 0 (1.5)

uniformly, when |x−a| < C
√

T − t, for every C ∈ (0,∞). This Theorem was
extended to nonlinearities satisfying (1.2) and (1.3) in [20], with symmetric
initial data. Note that (1.5) reduces to (1.4), if we substitute f(u) = −u−p

in (1.5).
In [21] the quenching-rate estimate (1.5) of [19] was refined in backward

parabolas. More precisely, it was proved that (under certain assumptions)
for any C > 0 and ε > 0 there exists t0 such that

sup
|x|<C

√
T−t

∣

∣

u(x, t)

(T − t)(− ln(T − t))
− 1 − (x2/(T − t) − 2)

8 ln(− ln(T − t))

∣

∣ =

O(
ε

ln(− ln(T − t))
),

(1.6)

as t ≥ t0. Note that the quenching point is (0, T ).
In this paper we prove the result (1.5) for the equation (1.1), where the

conditions (1.2) and (1.3) hold and x ∈ RN . This in done in Theorems 2.11
and 2.16 below. Furthermore we give two examples of refined asymptotics
for nonlinearities of type (1.2) and (1.3). These results are formulated in
Theorem 3.5.

2 Preliminary results and quenching rate es-

timates

We first show that for sufficiently large R quenching occurs.

Theorem 2.1. Assume that u(x, t) is the solution of the equation (1.1),
where the reaction term f(u) satisfies (1.2) and (1.3). Then for R sufficiently
large, u(x, t) quenches in finite time.
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Proof. By [1] it is sufficient to show that the corresponding stationary equa-
tion

∆u + f(u) = 0, x ∈ Ω,

u(x) = 1, x ∈ ∂Ω.
(2.1)

does not have a solution u ∈ (0, 1] for sufficiently large x-domains. We assume
that (2.1) has a solution, and show that this assumption yields a contradiction
for sufficiently large R. We apply the idea of [13] below. Note that by [8] a
solution of (2.1) is symmetric, and therefore we study the radial nonlinear
Poisson equation with the boundary conditions u(R) = 1 and u′(0) = 0.
Substituting v(ρ) = u(r) − 1 in (2.1), where ρ = r/R, we can derive that

v′′ +
N − 1

ρ
v′ + R2f(v + 1) = 0, ρ ∈ (0, 1),

v(1) = 0, v′(0) = 0.

(2.2)

The corresponding (linear) eigenvalue problem is

u′′
n +

N − 1

ρ
u′

n = λnun, ρ ∈ (0, 1),

un(1) = 0, u′
n(0) = 0.

(2.3)

The eigenvalues of (2.3) are negative, i.e., 0 > λ1 > λ2 > .., and the corres-
ponding eigenfunctions can be expressed by certain Bessel functions. Denote
the radial Laplacian by ∆ρ = ∂2

∂ρ2 + N−1
ρ

∂
∂ρ

, and define the inner product on

L2(0, 1) with weight ρN−1 by 〈f, g〉 =
∫ 1

0
f(ρ)g(ρ)ρN−1dρ. From (2.2) and

the later part of (2.3) it follows that

〈∆ρv, un〉 + R2〈f(v(ρ) + 1), un〉 = 〈v, ∆ρun〉 + R2〈f(v(ρ) + 1), un〉 = 0.

Therefore, by (2.3), we get λn〈v, un〉+R2〈f(v(ρ)+1), un〉 = 0, for all n. Take
n = 1 to obtain that λ1 < 0 and u1 > 0, when ρ ∈ (0, 1). Then we conclude
that

R2 =
−λ1〈v, u1〉

〈f(v(ρ) + 1), u1〉
≤ M < ∞.

Note that v ∈ (−1, 0], and then that the second term in this equation has an
upper bound which is independent of R. Therefore the claim follows from
this provided that we choose R large enough.

We also recall two Theorems from [3] which are valid in the N -dimensional
case. The first says that the quenching points are bounded away from the
boundary. The second concerns the asymptotic behavior of the solution.

Theorem 2.2. [3] The set of quenching points is a compact subset of Ω.

Theorem 2.3. [3] Assume that the initial function satisfies ∆u0(r)+f(u0(r)) ≤
0 and that quenching occurs at t = T . Then there exist positive constants
β,l1 and t1 such that
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(a) ut − βf(u) ≤ 0, when r ∈ [0, l1) (the quenching points belong to this
interval) and t ∈ [t1, T ).

(b) ut blows up, when u quenches.

(c) ut(x, t) − f(u(x, t)) ≥ 0, when t ∈ (0, T ), and x is a local minimum point
of u(x, t) with respect to x.

We shall now study the local asymptotics of the solution u(x, t) as the
quenching point (0, T ) is approached. Note that for sufficiently large R and
for the radial initial data we know that the solution quenches (at least) at
(0, T ).

We assume in this paper that

∆u0(r) + f(u0(r)) ≤ 0. (2.4)

This condition guarantees that u(r, t) is decreasing in time (for fixed r ∈
[0, R)).

Define new variables by

y =
x√

T − t
, s = − ln(T − t).

Then define the function w in terms of these new variables by

w(y, s) = 1 +
1

T − t(s)

∫ u(x(y,s),t(s))

0

dτ

f(τ)
= 1 +

1

T − t

∫ u(x,t)

0

dτ

f(τ)
. (2.5)

By differentiating (2.5) and using the equation (1.1), we obtain

ws = ∆w − 1

2
y · ∇w + w + F, (2.6)

where F = |∇u|2
(f(u))2

f ′(u).

Because the initial function u0(x) is radial, then by the maximum prin-
ciple the solution u(x, t) of (1.1) is also radial, and consequently the solution
w(y, s) of (2.6) is radial. Therefore we need the equation (2.6) in radially
symmetric form. By defining ρ = r/

√
T − t, we can write the equation (2.6)

in the form

ws − wρρ + (
ρ

2
− N − 1

ρ
)wρ − w = F,

wρ(0, s) = 0, w(Re
1

2
s, s) = 1 + es

∫ 1

0

dτ

f(τ)
,

w(ρ,− ln(T )) = 1 + 1/T

∫ u0(r)

0

dτ

f(τ)
,

(2.7)

where (ρ, s) ∈ (0, Re
1

2
s) × (− ln(T ),∞) and F = u2

r

f(u)2
f ′(u).

We embark on the proof of Theorem 2.11. The main ideas are those of
[19, 20]; however, significant alternations are necessary in the proofs. We
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first present a few technical lemmas with proofs in case the proofs of [19, 20]
do not carry over.

At first we present the equations (2.8), (2.9) and the inequality (2.10),
which are essential in what follows.

From (1.2) we can verify that

∫ u

0

f(τ)dτ = uf(u) + o(|
∫ u

0

f(τ)dτ |) (2.8)

and
∫ u

0

dτ

f(τ)
=

u

f(u)
+ o(|

∫ u

0

dτ

f(τ)
|), (2.9)

as u → 0.
By Theorem 2.3 (a) and (c) we have

−
∫ u

0

dτ

f(τ)
≤ T − t ≤ −C

∫ u

0

dτ

f(τ)
≤ −C

∫ u

0

dτ

f(τ)
, (2.10)

for some C > 0.
Note that in the inequality (2.10) u = u(x, t) is the solution of the equa-

tion (1.1) and u = u(0, t). But in (2.8) or (2.9) u need not be the solution.

Lemma 2.4. Let u(r, t) be the solution of (1.1) and u = u(0, t). Then

P (r, t)
def
= 1

2
u2

r +
∫ u

u
f(τ)dτ ≤ 0, when (r, t) ∈ (0, R) × (0, T ).

Proof. By (1.1) we derive that

Pr = ururr + urf(u) = ur(ut −
N − 1

r
ur).

Because by (2.4) ut < 0 and ur > 0, we get Pr ≤ 0. Furthermore, P (0, t) = 0,
and the claim follows.

By this Lemma combined with (1.2) (where we take n = 1) and (2.8), we
get

Lemma 2.5. Let u(r, t) be the radial solution of (1.1). Then

(a) u(r, t) → 0 uniformly, when t ↑ T and r ≤ C
√

T − t.

(b) F is uniformly bounded, when (r, t) ∈ [0, R] × [0, T ).

(c) F → 0 uniformly, when t ↑ T and r ≤ C
√

T − t.

Appropriate bounds for the radial solution w(ρ, s) will be obtained in the
sequel.

Lemma 2.6. There exist positive constants c1, c2, c3 and δ such that for all
s ≥ − ln T ,

(a) −c1 ≤ ∆w(0, s) ≤ 0.

(b) −c2 ≤ ∆w(ρ, s), when 0 ≤ ρ ≤ Re
1

2
s.
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(c) −c3ρ ≤ wρ(ρ, s) ≤ 0, when 0 ≤ ρ ≤ Re
1

2
s.

(d) 0 ≤ w(0, s) ≤ 1 − δ.

(e) −1
2
c3ρ

2 ≤ w(ρ, s) ≤ 1 − δ, when 0 ≤ ρ ≤ Re
1

2
s.

Proof. Items (a) and (b) can be obtained from the equation

∆w =
∆u

f(u)
− F,

by Lemma 2.5 and Theorem 2.3.
To conclude (c) we use the divergence theorem

wρ(ρ, s)m(∂Bρ) =

∫

∂Bρ

n · ∇wdσρ =

∫

Bρ

∆wdx ≥ −c2m(Bρ),

by item (b). Here m is Lebesgue measure and Bρ = {x ∈ RN
∣

∣|x| < ρ}.
Therefore

wρ(ρ, s) ≥ −c2
m(Bρ)

m(∂Bρ)
≥ −c3ρ.

Items (d) and (e) can now be deduced as in the one dimensional case, see
[19].

Lemma 2.7. Let l1(ρ) = (1 − ρ2

2N
) be the second order Laguerre-polynomial

and b(s) a bounded function. Then

(a) J(s)
def
=

∫ Re
1
2

s

0
w(ρ, s)e

−ρ2

4 ρN−1dρ → 0, when s → ∞.

(b)
∫ Re

1
2

s

0
(w(ρ, s) − b(s)l1(ρ))e

−ρ2

4 ρN−1dρ → 0, when s → ∞.

Proof. Multiply the equation (2.7) by ρN−1e
−ρ2

4 to obtain

J ′(s) − J(s) =
(

(
1

2
Re

1

2
sw(Re

1

2
s, s) + wρ(Re

1

2
s, s)

)

×

× (Re
1

2
s)N−1 exp

(−(Re
1

2
s)2

4

)

+

∫ Re
1
2

s

0

FρN−1e
−ρ2

4 dρ.

(2.11)

We can now conclude, by Lemmas 2.5 and 2.6, that J ′(s) − J(s) → 0.
The claims (a) and (b) follow as in the one dimensional case.

Lemma 2.8. There exist positive constants γ, δ1 and δ2 such that urt−γut ≥
0, when (r, t) ∈ [0, δ1) × (T − δ2, T ).

Proof. Let J = urt − γut, where the constant γ will be determined later.
Then we get

Jt − ∆rJ + (
N − 1

r2
− f ′(u))J = −N − 1

r2
γut + f ′′(u)urut ≥ 0,

for all (r, t) ∈ (0, R)× (0, T ). Furthermore we see that J(0, t) = −γut(0, t) ≥
0. By Theorem 2.2 we can choose γ sufficiently large such that J ≥ 0 on the
parabolic boundary of (0, δ1) × (T − δ2, T ). An application of the maximum
principle now yields the claim.
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By this Lemma we obtain

ut(r, t) − ut(0, t) =

∫ r

0

utr(η, t)dη ≥ γ

∫ r

0

ut(η, t)dη =

γ

∫ r

0

(urr(η, t) +
N − 1

η
ur(η, t) + f(u(η, t)))dη ≥ γ(ur(r, t) + rf(u(0, t))).

Because ut(0, t) − f(u(0, t)) ≥ 0 and ur > 0, we deduce that

0 ≤ −ut(r, t) ≤ −Cf(u(0, t)), (2.12)

for some C > 0.

Lemma 2.9. Let w(ρ, s) be the solution of (2.7). Then lim sups→∞(∆w)ρ ≤
0 uniformly for bounded ρ.

Proof. By differentiating the equation (2.6), we obtain (∆w)ρ =
∑4

i=1 Gi

where

G1(r, t) =
√

T − t
urt

f(u)
, G2(r, t) = −3

√
T − t

urut

f(u)2
f ′(u),

G3(r, t) = 2
√

T − t
( ur

f(u)
(1 + F )f ′(u) + (

ur

f(u)
)2N − 1

r
f ′(u)

)

,

G4(r, t) = −
√

T − t
( ur

f(u)

)2
f ′′(u)ur.

We shall prove that lim supt↑T G1(r, t) ≤ 0, and that Gi → 0 uniformly
for bounded ρ, as s → ∞ and i = 2, 3, 4.

1. and 2. i = 1, 2: Using the formulas (1.2), (2.9), (2.10) and (2.12), and
Lemmas 2.5, 2.6 and 2.8, we can derive the claims as in [20].

3. i = 3: We estimate the two terms of G3 separately. First we conclude
by the definition and Lemma 2.6 that

|
√

T − t
ur

f(u)
f ′(u)| = |wρ(T − t)f ′(u)| ≤ Cρ(T − t)f ′(u).

Because
T − t ≤ C

u

−f(u)
, (2.13)

we get from (1.2) that
√

T − t ur

f(u)
f ′(u) → 0. The rest follows from Lemma

2.5.
In the second step we estimate by the definition of w and ρ, and Lemma

2.6 that

u2
r

f(u)2
· N − 1

r
f ′(u)

√
T − t = w2

ρ ·
N − 1

r
f ′(u)(T − t)

3

2 ≤

Cρ2N − 1

ρ
f ′(u)(T − t).

The claim follows from (2.13) and (1.2).
4. i = 4: An application of (2.13), Lemma 2.4 and (1.2) (when n = 2)

we deduce the claim as in [20].
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Lemma 2.10. Let w(ρ, s) be the solution of (2.7). Then lims→∞ ws(0, s) =
0.

Proof. We first show as in [19] that there exists a positive constant M such
that (T − t)utt ≤ M in some neighborhood N = (−a1, a1)×·· ·×(−aN , aN)×
(T − δ, T ) of (0, T ). Then by this fact and by a straightforward calculation
we obtain that

lim inf
s→∞

(

wss(0, s) − ws(0, s)
)

≥ 0. (2.14)

Next we prove that lim infs→∞ ws(0, s) ≥ 0. By Lemma 2.9 it follows that for
every ε > 0 and C > 0 there exists s∗ ≥ − ln(T ) such that (∆w)ρ < ε, when
ρ < C and s > s∗. Integrating with respect to ρ we get ∆w(ρ, s)−∆w(0, s) <
ρε, when ρ < C and s > s∗. Applying the divergence theorem, we obtain

wρ(ρ, s)m(∂Bρ) − ∆w(0, s)m(Bρ) < ρεm(Bρ)

and therefore

wρ(ρ, s) − ∆w(0, s)
ρ

N
< ε

ρ2

N
.

Recalling the fact that ws(0, s) = ∆w(0, s)+w(0, s), we get after integration
that

lim sup
s→∞

(

w(ρ, s) + ∆w(0, s)(1 − ρ2

2N
) − ws(0, s)

)

≤ 0, (2.15)

uniformly for bounded ρ.
The inequality (2.15) together with Lemmas 2.6 (a) and 2.7 (b) imply

that lim infs→∞ ws(0, s) ≥ 0. Finally this and (2.14) gives the claim.

Theorem 2.11. Let w(ρ, s) be the solution of (2.7). Then

w(ρ, s) − w(0, s)
(

1 − ρ2

2N

)

→ 0,

as s → ∞, uniformly for bounded ρ.

Proof. By Lemma 2.10 and (2.15) we get

lim sup
s→∞

(

w(ρ, s) − w(0, s)(1 − ρ2

2N
)
)

≤ 0,

uniformly for bounded ρ. Combining this with Lemmas 2.6 and 2.7 (b), we
conclude the claim.

Our next goal is to prove Theorem 2.16. In order to do that, we study
the equation (2.7) as a dynamical system in the space Lq

ρ,r(R
N). Therefore

we have to extend the domain of u(x, t) to the entire RN . This is done in
Lemma 2.12 below. Note that we actually first cut a small piece from the
x-domain, and then extend the solution u(r, t), where r ∈ [0, R − ε) for all
r > 0. We do this extension in this manner because of Theorem 2.2, and
because we are interested in a local asymptotics of the solution.
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Lemma 2.12. Let Ω = BR(0) and let u(x, t) be a positive, radially symmetric
solution of (1.1), which quenches at (0, T ). Let t0 ∈ (0, T ). Then there exist
r∗ ∈ (0, R), ũ(x, t) and g(x, t) such that ũ(x, t) = u(x, t), when |x| ≤ r∗,
t0 ≤ t < T and

ũt − ∆ũ =

{

f(u), when |x| ≤ r∗
g(x, t), when |x| > r∗.

Moreover there exist positive constants C1 and C2 such that C1 ≤ ũ(x, t) +
|g(x, t)| ≤ C2, when (x, t) ∈ RN \ Br∗(0) × (t0, T ).

Proof. The idea of the proof follows that of [18] where certain blowup prob-
lems were studied. Because we know by Theorem 2.2 that the set of quench-
ing points of u(x, t) is a compact subset of Ω = BR(0), we can find constans
M1 > 0 and r0 ∈ (0, R) such that

0 < M1 ≤ u(x, t) ≤ 1, (2.16)

when t ∈ (0, T ) and r0 ≤ |x| ≤ R. Let 0 < r0 < r∗ < r1 < r2 < r3 < R. By
classical regularity theory for parabolic equations, we have

u(x, t) + |∇u(x, t)| + |∆u(x, t)| ≤ M2, (2.17)

when t ∈ (0, T ) and r∗ ≤ |x| ≤ r3, for some positive constant M2. Let now
ξ ∈ C∞(RN , R) be a radially symmetric function such that







ξ(x) = 1, if |x| ≤ r1,
ξ(x) = 0, if |x| ≥ r2,
0 < ξ(x) < 1, if r1 < |x| < r2.

Define the extension ũ(x, t) in [t0, T ) × RN by

ũ(x, t) =

{

ξ(x)u(x, t) + 1 − ξ(x), when |x| ≤ r3,
1, when |x| > r3.

We can verify that ũt − ∆ũ = f̃ , where f̃ equals






f(u), if |x| ≤ r1,
ξ(x)f(u) − 2∇ξ(x) · ∇u(x, t) − u(x, t)∆ξ(x) + ∆ξ(x), if r1 < |x| < r3,
0, if |x| ≥ r3.

Finally we can see that ũ(x, t) and g(x, t) satisfy the desired properties.

Let ũ(x, t) be the extension of u(x, t) to all x ∈ RN given by the proof of
Lemma 2.12. Define

w̃(y, s) = 1 +
1

T − t

∫ ũ(x,t)

0

dτ

f(τ)
, (2.18)

where y and s are as earlier. Differentiating (2.18), we obtain

w̃s − ∆w̃ +
y

2
· ∇w̃ − w̃ = F̃ , (2.19)

11



where F̃ = |∇u|2
f(u)2

f ′(u) ≡ F , when |y| ≤ r∗e
s
2 ; and for |y| > r∗e

s
2 , F̃ is







F, if r∗e
s
2 ≤ |y| ≤ r1e

s
2 ,

G
f(ũ)

− 1 + |∇ũ|2
f(ũ)2

f ′(ũ), if r1e
s
2 < |y| < r3e

s
2 ,

−1, if |y| ≥ r3e
s
2 ,

where G = ξ(x)f(u) − 2∇ξ(x) · ∇u(x, t) − u(x, t)∆ξ(x) + ∆ξ(x). We can
conclude that w̃ has same properties as w in Lemma 2.6 for y ∈ RN , i.e.,ρ ∈
R.

Because the solution w̃(y, s) is symmetric with respect to y, we will need
the weighted spaces of radially symmetric functions:

Lq
ρ,r(R

N) = {g ∈ Lq
ρ(R

N) : g(x) = g(|x|) for all x ∈ RN},

Hp
ρ,r(R

N) = {g ∈ Hp
ρ(RN) : g(x) = g(|x|) for all x ∈ RN},

where

Lq
ρ(R

N) = {g ∈ Lq
loc(R

N) :

∫

RN

|g(x)|qρ(x)dx < ∞},

Hp
ρ(RN) = {g ∈ L2

ρ(R
N) : Dαg ∈ L2

ρ(R
N), α = (α1, ..., αN ), |α| ≤ p},

with ρ(x) = exp
(

− |x|2
4

)

, x ∈ RN and Dαg = ∂|α|g
∂α1x1...∂αN xN

, where α =

(α1, ..., αN ), αi is a nonnegative integer for 1 ≤ i ≤ N and |α| =
∑N

i=1 αi.
We define the inner product in L2

ρ,r(R
N) by

〈f, g〉 =

∫

RN

f(x)g(x)ρ(x)dx,

where f, g ∈ L2
ρ,r(R

N) and the norm in Lq
ρ(R

N) by

‖f‖q,ρ =
(

∫

RN

|f(x)|qρ(x)dx
)1/q

.

The operator L with domain H2
ρ,r(R

N) is self-adjoint in L2
ρ,r(R

N), with ei-
genvalues λn = 1 − n, (n = 0, 1, 2, ...) and corresponding eigenfunctions

Ln(x) = cn(−1)nL̃(γ)
n

( |x|2
4

)

,

with γ = N−2
2

, where

cn = cn(N) = (4π)−N/4
( Γ(N/2)

n!Γ(n + N/2)

)1/2
,

and

L̃(γ)
n (r) = err−γ

( d

dr

)n
(e−rrn+γ)

is the standard n-degree Laguerre polynomial of order γ, so that ‖Ln‖2,ρ = 1
and Γ denotes the standard Euler’s gamma function.
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We have now presented the functional framework, which we need in the
proof of Theorem 2.16. With this preliminary material at hand, we begin to
prove it. Obviously, w̃(y, s) may be expanded as a Fourier-Laguerre series:

w̃(y, s) =
∑

n

bn(s)Ln(y). (2.20)

Lemma 2.13. Let b̃1(s) = −b1(s)
c1N
2

, where c1 = 1

(4π)
N
4

·
(

Γ(N/2)
Γ(1+N/2)

)1/2

. Then

b̃1(s) − w(0, s) → 0, as s → ∞.

Proof. Set φ̃(ρ, s) = w(ρ, s)−w(0, s)
(

1− ρ2

2N

)

. Then the projection to L1(ρ) =

−c1

(

N
2
− ρ2

4

)

yields

〈φ̃, L1〉 = 〈
∑

bnLn, L1〉 − w(0, s)〈
(

1 − ρ2

2N

)

, L1〉 = b1(s) − w(0, s)〈L̂1, L1〉,

where L̂1 = 1 − ρ2

2N
. By Lemma 2.7 〈φ̃, L1〉 → 0, and the claim follows from

a straightforward calculation.

The proofs of Lemmas 2.14 and 2.15 below are essentially the same as
in the one-dimensional case. For the purposes we have in mind the function
g(s), defined by

lim
u→0

uf ′(u)

−f(u)
g(− ln(u)) = 1. (2.21)

This function satisfies

lim
s→∞

∫ s

K

ds

g(s)
= ∞. (2.22)

The condition (1.3) on slow variation remains true if we replace f̃ by g. This
is essential in Lemmas 2.14 and 2.15.

Lemma 2.14. The inequalities 0 ≤ f ′(u)(T − t)g(− ln(T − t)) ≤ M < ∞
hold on the set [−R,R] × [0, T ).

Proof. See [20].

Lemma 2.15. For the solution u(r, t) one has

f ′(u(r, t))(T − t)g(− ln(T − t)) − 1

1 − w(0, s)L̂1(ρ)
→ 0

uniformly when r ≤ C
√

T − t, as t ↑ T .

Proof. We replace h2 in [20] by L̂1, which is defined in the proof of Lemma
2.13. Otherwise the proof is the same as in [20].

Theorem 2.16. w(0, s) → 0, as s → ∞.

13



Proof. This Theorem can be obtained in the same way as the corresponding
Theorem in the one-dimensional case in [20] provided minor changes are
made. For the readers convenience we present the argument here.

We begin by projecting the equation ws = Lw + F to the subspace gen-
erated by the function L̂1. By the orthogonality and the self-adjointness of
the base {Ln}∞n=0, we can conlude that

Cg(s)b′1(s) =

∫ ∞

0

(T − t)f ′(u)g(− ln(T − t))w2
ρL̂1(ρ) exp(−ρ2

4
)ρN−1dρ.

We write the right side as a sum of four term Ii; i = 1, 2, 3, 4; where

I1 =

∫ ∞

0

(T − t)f ′(u)g(s)(w2
ρ − w(0, s)2ρ2)L̂1(ρ) exp(−ρ2

4
)ρN−1dρ,

I2 =

∫ ∞

0

((T − t)f ′(u)g(s) − 1

1−w(0,s)L̂1(ρ)
)w(0, s)2ρ2L̂1(ρ) exp(−ρ2

4
)ρN−1dρ,

I3 =

∫ ∞

0

1

1−w(0,s)L̂1(ρ)
(w(0, s)2 − b̃1(s)

2)ρ2L̂1(ρ) exp(−ρ2

4
)ρN−1dρ,

and

I4 =

∫ ∞

0

b̃1(s)2ρ2

1−w(0,s)L̂1(ρ)
L̂1(ρ) exp(−ρ2

4
)ρN−1dρ.

By Theorem 2.11, Lemmas 2.13, 2.14 and 2.15 we may conclude that

lim sup
s→∞

(g(s)b′1(s) + c3b1(s)
2) ≤ 0,

for some positive constant c3. By this equation combined with (2.22) it
follows that b1(s) → 0, as s → ∞, and also b̃1(s) → 0, as s → ∞. Finally,
Lemma 2.13 gives the claim.

3 Examples of refined asymptotics

In this Section we investigate the refined asymptotics of quenching for two
examples of reaction terms in (1.1) that satisfy conditions (1.2) and (1.3).
The first case is f(u) = −| ln(u)|p , and the second one is f(u) = −| ln(u)|p−
| ln(u)|q, where p ≥ q + 1.

The considerations below are strongly based on results in [21], where we
have used the methods devoloped in [6, 7, 12, 22]. An essential tool in the
analysis is the functional framework presented in the previous Section.

The first fundamental ingredient is Corollary 3.1. This result gives the
quenching rate-estimate in the form which can be used after the change of
variables (3.2). More precisely, (3.2) makes it possible for us to analyze
the asymptotics of the solution with respect to space- and time variable in
backward parabolas |x| ≤ C

√
T − t of the quenching point (0, T ).
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Corollary 3.1. Let u(r, t) be the solution of (1.1), where f(u) = −| ln(u)|p,
p > 0. Assume that (2.4) holds and that u(r, t) quenches at (0, T ). Then

lim
t↑T

u(r, t)

(T − t)(− ln(T − t))p
= 1,

uniformly when r ≤ C
√

T − t.

Proof. We first show that
ln(T − t)

ln(u)
→ 1, (3.1)

as t ↑ T uniformly when r ≤ C
√

T − t. By Theorems 2.11 and 2.16, and the
formula (2.9) we can obtain that

u

−ut(T − t)
+

u

f(u)(T − t)
=

u

−f(u)(T − t)

{f(u)

ut

− 1
}

→ 0,

and
u

f(u)(T − t)
→ −1,

as t ↑ T uniformly when r ≤ C
√

T − t. Therefore, u
−ut(T−t)

→ 1. An

application of l’Hospital’s rule yields ln(T−t)
ln(u(0,t))

→ 1 and ln(T−t)

ln(u(C
√

T−t,t))
→ 1,

because wρ → 0 by Theorems 2.11 and 2.16. We derive (3.1) from this and
from the fact that ur > 0.

Furthermore, f ′(u)u
−f(u)

= p
− ln(u)

; hence we can take g(s) = s/p in (2.21).
From Lemma 2.15 and Theorem 2.16 we get

p

f ′(u(r, t))(T − t)s
→ 1.

Finally from this and from (3.1) after some calculations the claim follows.

Motivated by this Lemma we define

φ(y, s) =
ũ(x, t)

(T − t)(− ln(T − t))p
− 1, (3.2)

where ũ(x, t) denotes the extended solution, which is defined in Lemma 2.12.
From now on we simply denote u = ũ. Then we obtain by (1.1) that

φs − ∆φ +
y

2
· ∇φ − φ =

f̃

sp
+ 1 − p

s
(1 + φ), (3.3)

where f̃ is defined as in Lemma 2.12. This equation may be written in the
form

φs − ∆φ +
y

2
· ∇φ − φ = G + H · χB, (3.4)

where B = {|y| > r1e
s/2},

G = −
(

1 − p ln(s)

s
− ln(1 + φ)

s

)p

+ 1 − p

s
(1 + φ),
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and

H =
(

1 − p ln(s)

s
− ln(1 + φ)

s

)p

+

ξ(x)f(u) − 2∇ξ(x) · ∇u(x, t) − u(x, t)∆ξ(x) + ∆ξ(x)

sp
.

On B one has, by Lemma 2.12, that C1es

sp ≤ φ ≤ C2es

sp . Thus: |H · χB| ≤
Ce−δs|φ|.

We study the term G. Write

G1 =
(

1 − p ln(s)

s
− ln(1 + φ)

s

)p

.

An expansion of this yields

G1 = 1 − p

s
(p ln(s) + ln(1 + φ)) +

p(p − 1)

2s2
(p ln(s) + ln(1 + φ))2+

O
[

(
p ln(s) + ln(1 + φ)

s
)3

]

.

Therefore we get

G =
p

s
(p ln(s) − 1) +

p

s
(ln(1 + φ) − φ) − p3(p − 1)(ln(s))2

2s2
(1 +

ln(1 + φ)

p ln(s)
)2+

O
[

(
p ln(s) + ln(1 + φ)

s
)3

]

.

Finally,

G =
p

s

(

p ln(s) − 1 − p2(p − 1)(ln(s))2

2s

)

+

p

s
(ln(1 + φ) − φ) − p2(p − 1) ln(s)

s2
ln(1 + φ) − 1

2
p(p − 1)

( ln(1 + φ)

s

)2
+

O
[

(
p ln(s) + ln(1 + φ)

s
)3

]

≡
5

∑

i=1

G̃i.

(3.5)

After these preliminary considerations we begin to study the refined
asymptotics of φ(y, s) when |y| ≤ C. More precisely, we expand φ(y, s)
in (3.6), and assume that (3.7) holds. Then we apply a dynamical system
approach to the problem. Because the solution is symmetric, we study the
situation in the space Lq

ρ,r(R
N), which we have already presented in the

previous Section. Actually the goal is to prove that the term b1(s)L1(y) is
dominant in (3.6), which will lead to the desired results.

Let

φ(y, s) =
∞

∑

i=0

bi(s)Li(y), (3.6)

where

|b1(s)| ≥ C
(ln(s))2

s
, (3.7)

for some C.
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Lemma 3.2. Let b0(s) be as in (3.6). Then

b0(s) = −p2(1 + o(1))

s

(

4π
)N/4

ln(s),

as s → ∞.

Proof. By projecting the equation (3.4) to the subspace generated by L0, we
get

b′0(s) = b0(s) + 〈G,L0〉 + 〈H · χB, L0〉.
Splitting the term 〈G,L0〉 as in (3.5) and using Corollary 3.1 we obtain

b′0(s) = b0(s) +
(4π)N/4p2

s
(1 + o(1)) ln(s).

The claim follows from this as in the one dimensional case [21, Lemma 3.2].

Lemma 3.3. Let bi(s) be defined by (3.6). Assume that (3.7) holds. Then

‖
∞

∑

i=2

bi(s)Li(y)‖2,ρ = o(|b1(s)|).

Proof. We have now only one positive eigenvalue, i.e., λ = 1, which corres-
ponds to b0(s)× (constant) eigenfunction. Therefore the function z(t) in [21]
(see also [7]) is now zero, and we only need inequalities for ‖φ0(y, s)‖2,ρ and
‖φ−(y, s)‖2,ρ to conclude the claim.

(a) Projecting the equation (3.4) to L1, we derive

b′1(s) = 〈G,L1〉 + 〈H · χB, L1〉.

First we get from the orthogonality that 〈G̃1, L1〉 = 0. Then by (3.5) we
deduce that: |〈G̃2, L1〉| ≤ C‖G̃2‖2 ≤ C

s
‖φ‖2. Correspondingly, |〈G̃3, L1〉| ≤

C ln(s)
s2 ‖φ‖2 and |〈G̃4, L1〉| ≤ C

s2‖φ‖2. The term G̃5 can be split in a part
which is only dependent on s and a part which is dominated by C

s
‖φ‖2.

Hence we obtain |〈G,L1〉| ≤ C
s
‖φ‖2. On the other hand, it can be checked

that |〈H · χB, L1〉| ≤ Ce−δs‖φ‖2. Then we estimate by (3.7) and by Lemma
3.2 that

‖φ(y, s)‖2,ρ ≤ C
(

|b0(s)| + |b1(s)| + ‖φ−(y, s)‖2,ρ

)

≤

≤ C

ln(s)
|b1(s)| + |b1(s)| + C‖φ−(y, s)‖2,ρ.

After these preliminaries we can conclude that

||b1(s)|s| ≤ ε
(

|b1(s)| + ‖φ−(y, s)‖2,ρ

)

. (3.8)

(b) Projecting the equation (3.4) to the negative eigenspace, multiplying
by φ−ρ and integrating, we get

∫

RN

(
∂

∂s
φ−)φ−ρ =

∫

RN

(Lφ−)φ−ρ +

∫

RN

(π−(G + H · χB))φ−ρ.
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Because the greatest negative eigenvalue is −1 and arguing as in the part
(a), we can proceed as in [21] to conclude that

∂

∂s
‖φ−(y, s)‖2,ρ ≤ −‖φ−(y, s)‖2,ρ + ε

(

‖φ−(y, s)‖2,ρ + |b1(s)|
)

. (3.9)

Now apply [7, Lemma 3.1] to Corollary 3.1, and recall (3.8) and (3.9) to
obtain the claim.

Lemma 3.4. Let φ(y, s) be the solution of (3.4). Assume that (3.7) holds.
Then

‖φ(y, s)‖q,ρ ≤ C‖φ(y, s)‖2,ρ.

Proof. This Lemma can be derived in two steps as in [21].
(1) We first demonstrate the following claim: Let r > 1 and L > 0. Then

there exist s∗0(r) and C(r, L) > 0 such that

‖φ(y, s + s0)‖r,ρ ≤ C‖φ(y, s)‖2,ρ, (3.10)

for every s > 0 and s0 ∈ [s∗0(r), s
∗
0(r) + L].

We obtain by Kato’s inequality (∆g · sgn(g) ≤ ∆(|g|) in D ′(RN)), and
from (3.4) as in the previous Lemma that

∂

∂s
|φ(y, s)| ≤ A|φ(y, s)| + (1 + c)|φ(y, s)| + G̃1(s),

where A = ∆ − y
2
· ∇. From this we can verify as in [21] that

‖φ(y, s + s0)‖r,ρ ≤ C‖es0A|φ(y, s)|‖r,ρ + CG̃1(s).

The right-hand side of this inequality can be estimated in two steps. First
we use [22, Proposition 2.1] to obtain the corresponding inequality as [21,
Lemma 3.5], and then apply this to the first term. The second term can be
handled by Lemma 3.2. These two inequalities yield the claim (3.10).

(2) In the second step we prove that: Let L > 0. If (3.7) holds, then
there exists C = C(L) such that

‖φ(y, s)‖2,ρ ≤ C‖φ(y, s + L)‖2,ρ, (3.11)

for all s.
We project the equation (3.3) to the subspace generated by L1, and

then notice that the necessary analysis may be carried out as in the one-
dimensional case [21].

We shall now derive an ordinary differential equation for b1(s). This is
done in the equation (3.15) below. By projecting the equation (3.3) to the
subspace generated by L1 we get by (3.5) that

b′1(s) = 〈
5

∑

i=2

G̃i, L1〉 + 〈H · χB, L1〉.
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Here

〈G̃2, L1〉 =
p

2s
〈−φ2 + O(|φ|3), L1〉.

The terms G̃i, when i = 3, 4, 5, can be estimated as follows. By Lemmas 3.2,
3.3, and by the relations (3.5) and (3.7) we get

|〈G̃3, L1〉| ≤ C
( ln(s)

s2

)

‖φ(y, s)‖2,ρ ≤ C
( ln(s)

s2

)(

C
ln(s)

s
+ C|b1(s)|

)

≤

≤ C
((ln(s))2

s3

)

+ C
( ln(s)

s2

)

|b1(s)| ≤
C

s2

(

1 + C ln(s)
)

|b1(s)|.
(3.12)

Similarly,

|〈G̃4, L1〉| ≤
C

s2
O(1)|b1(s)|, (3.13)

and

|〈G̃5, L1〉| ≤ C
( ln(s)

s

)3

≤ C
ln(s)

s2
· (ln(s))2

s
≤ C ln(s)

s2
|b1(s)|. (3.14)

Then we conclude that: |〈H · χB, L1〉| ≤ Ce−δs‖φ‖2.
Gathering these items we obtain

sb′1(s) = −p

2
〈φ2, L1〉 + 〈O(|φ|3), L1〉 + O(1)

ln(s)

s
b1(s).

Next we estimate the term 〈φ2, L1〉. Let: φ = b0L0 + b1L1 + φr. Then we get
from the orthogonality that

〈φ2, L1〉 = 〈b2
1L

2
1, L1〉 + 〈φ2

r, L1〉 + 2b0b1〈L0L1, L1〉 + 2b1〈L1φr, L1〉 ≡
4

∑

j=1

Ij.

We obtain that p
2
I1 = c1b1(s)

2, where c1 = p
2
〈L2

1, L1〉 and I3 =

−2p2(1+o(1)) ln(s)
s

b1(s) from Lemma 3.2. The term I2 + I4 can be analyzed

as in [21] to derive that |I2 + I4| ≤ Co(1)|b1(s)|max
{

C ln(s)
s

, |b1(s)|
}

.

On the other hand by Lemma 3.4 we get

|
∫

R

φ3(z)L1(z)zN−1e−z2/4dz| ≤ C‖φ‖3
6,ρ ≤ C‖φ‖3

2,ρ.

These estimates yield

sb′1(s) = −c1b1(s)
2(1+o(1))+(2p2(1+o(1))+O(1))

ln(s)

s
b1(s)+O

[

(
ln(s)

s
)3

]

.

(3.15)
We remark now that this equation is essentially the same as [21, (3.42)].

Therefore b1(s) = c∗+o(1)
ln(s)

, as s → ∞. We formulate this as
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Theorem 3.5. Let f(u) = −| ln(u)|p in (1.1), where p > 0. Assume that the
initial function u0(r) is symmetric and that (2.4) and (3.7) hold. Let u(r, t)
quench at (0, T ). Then for any C > 0 and ε > 0 there exists t0 such that

sup
r<C

√
T−t

∣

∣

u(r, t)

(T − t)(− ln(T − t))p
− 1 −

N( r2

4(T−t)
− N

2
)

2p ln(− ln(T − t))

∣

∣ =

O
( ε

ln(− ln(T − t))

)

,

(3.16)

when t > t0.

To complete the proof of this Theorem we have to determine the constant
c∗ above. This is done in two steps. First we derive that

c1 =
p

2
〈L2

1, L1〉 =
p

128

∫

SN−1

dθ·
(

4π
)−3N/4·

( 2

N

)3/2
∫ ∞

0

(

r2−2N
)3

e−r2/4rN−1dr.

Then we calculate the integrals and apply properties of the gamma function
to conclude (3.16).

At the end of this Section we study the equation (1.1) when

f(u) = −| ln(u)|p − | ln(u)|q, (3.17)

where p ≥ q + 1.
First one can re-examine the proof of Corollary 3.1 to conclude that the

claim of that Corollary holds for (3.17). Then we change the variables as
in (3.2) and use the extension of Lemma 2.12. After some calculations we
obtain that φ(y, s) satisfies

φs − ∆φ +
y

2
· ∇φ − φ = G + H · χB, (3.18)

where B = {|y| > r1e
s/2},

G = −
(

1−1

s
[p ln(s) + ln(1 + φ)]

)p

+ 1−

− p

s
(1 + φ) − sq−p

(

1 − 1

s
[p ln(s) + ln(1 + φ)]

)q

,

and

H =
(

1 − 1

s
[p ln(s) + ln(1 + φ)]

)p

+ sq−p
(

1 − 1

s
[p ln(s) + ln(1 + φ)]

)q

+

+
ξ(x)f(u) − 2∇ξ(x) · ∇u(x, t) − u(x, t)∆ξ(x) + ∆ξ(x)

sp
.

An expansion of G now yields

G =
5

∑

i=1

G̃i+sq−p
(

1− q

s
[p ln(s)+ln(1+φ)]+

q(q − 1)

2s2
[p ln(s)+ln(1+φ)]2+...

)

,
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by (3.5). This equation can be written in the form G =
∑5

i=1 Gi, where

G1 =
p

s

(

p ln(s) − 1 − p2(p − 1)(ln(s))2

2s

)

+ sq−p(1 + o(1)),

G2 =
p

s
(ln(1 + φ) − φ), G3 = −p2(p − 1) ln(s)

s2
ln(1 + φ)(1 + o(1))

G4 = −1

2
p(p − 1)

( ln(1 + φ)

s

)2
(1 + o(1)), G5 = O

[

(
p ln(s) + ln(1 + φ)

s
)3.

We observe that G2 = G̃2 and that Gi = (1 + o(1))G̃i, when i = 1, 3, 4, 5
(G̃i defined in (3.5)). Then we can conclude that Lemmas 3.2-3.4 remain
true for the reaction term (3.17) in (1.1). Because G2 = G̃2, we obtain that
the multiplier function b1(s) in (3.6) satifies the equation (3.15). Finally, by
these remarks, we derive that the claim of Theorem 3.5 holds for the reaction
terms (3.17).
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