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1 Introduction

We consider the nonlinear diffusion problem

ut − uxx = h(u), x ∈ (−l, l), t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ [−l, l],

u(±l, t) = 1, t ∈ [0, T ),

(1.1)

where the initial function satisfies 0 < u0(x) ≤ 1 and u0(±l) = 1. Here T and
l are positive constants. We assume that the reaction term h(u) is singular
at u = 0 in the sense that limu↓0 h(u) = −∞. For u > 0 we take h(u) to be
smooth and to satisfy (−1)kh(k)(u) < 0; k = 0, 1, 2.

Originally the equation (1.1) was studied when h(u) = −u−1, see [12].
This equation arises in the study of electric current transients in polarized
ionic conductors (see [5, 12, 16] and references therein). The special interest
taken in [12] for the equation (1.1) is motivated by the possibility that the
solution u(x, t) approaches zero in finite time. The reaction term then tends
to infinity and the smooth solution ceases to exist. This phenomenon is called
quenching. We say that a is a quenching point and T is a quenching time
for u(x, t), if there exists a sequence {(xn, tn)} with xn → a and tn ↑ T , such
that u(xn, tn) → 0 as n → ∞.

After Kawarada’s paper [12], the quenching problem for the equation (1.1)
has been studied extensively by many authors, see for example the detailed
review articles [13, 15]. In most of the papers that deal with the quenching
problem for the equation (1.1), the reaction term is a power singularity, i.e.,
h(u) = −u−p, p > 0. The results concern existence and nonexistence of
quenching points, qualitative properties of the quenching set, asymptotic
behavior of the solutions in space and time near the quenching points, etc.
For a power singularity it is now well-known that for sufficiently large l
quenching occurs in finite time [1, 2, 14]. It is also known that the set of
quenching points is finite [8].

In [17] the equation (1.1) was studied in the case where we have only
a logarithmic singularity, i.e., h(u) = ln(αu), α ∈ (0, 1). It was shown
there that in spite of this weakening of the singularity, quenching still occurs
for sufficiently large l and that the set of quenching points is finite. The
main result in [17] concerns the asymptotic behavior of the solution in a
neighborhood of a quenching point. It was assumed that

u′′
0(x) + ln(αu0(x)) ≤ 0. (1.2)

Then, it was shown that the quenching-rate satisfies

lim
t↑T

(

1 +
1

T − t

∫ u(x,t)

0

dτ

ln(ατ)

)

= 0 (1.3)

uniformly, when |x − a| < C
√

T − t for every C ∈ (0,∞). Corresponding
results for power singularities are well-known, see [3, 4, 8, 9, 10].
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In this paper we refine the asymptotic result (1.3). The main result
(Theorem 1.1) gives a precise asymptotic expression for the solution in a
backward space-time parabola near a quenching point. The analysis is based
on methods developed in [6, 7, 11]. These techniques were first developed for
so-called blowup problems of reaction diffusion equations in [7, 11]. Then, for
example, h(u) = up or h(u) = eu in (1.1), and blowup means that u(x, t) →
∞ in finite time. Subsequently these approaches were applied to quenching
problems with a power singularity in [6].

Let us first explain briefly how (1.3) is proven in [17]. Without loss of
generality we may assume that the quenching point is the origin. Define new
variables:

y =
x√

T − t
, s = − ln(T − t).

Then the inverse transformations x = x(y, s) and t = t(s) are well defined.
By these variables we define the function w:

w(y, s) = 1+
1

T − t

∫ u(x,t)

0

dτ

ln(ατ)
= 1+

1

T − t(s)

∫ u(x(y,s),t(s))

0

dτ

ln(ατ)
. (1.4)

Then the equation (1.1) can be written in the form

ws = wyy −
1

2
ywy + w + F, (1.5)

where F = u2
x

u(ln(αu))2
, and (y, s) ∈ (−le

1
2
s, le

1
2
s) × (− ln T,∞). Observe that

the nonlinear effects are contained in the F -term. The result (1.3) can now
be formulated in the form:

w(y, s) → 0, (1.6)

uniformly for bounded y, as s → ∞.
In [17], the result (1.6) was derived in two steps. In the first step it was

shown that w(y, s) − w(0, s)(1 − 1
2
y2) → 0 uniformly for bounded y and in

the second step that w(0, s) → 0.
The purpose of the present paper is to conclude how fast this limit value

is reached and to determine the asymptotic form of w with respect to y.
In order to deduce an asymptotic form for w(0, s), we first have to derive

a corresponding ordinary differential equation for w(0, s). However, there is
a technical difficulty, because F cannot be expressed explicitly as a function
of y, s and w. Therefore we first replace the transformation (1.4) by (1.7)
and subsequently the equation (1.5) by (1.8). Define

φ(y, s) =
u(x, t)

(T − t)(− ln(T − t))
− 1. (1.7)

In terms of the function φ, the equation (1.1) can be written in the form

φs = Lφ +
1

s
f(φ) + g(s), (1.8)
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where
f(φ) = ln(1 + φ) − φ, (1.9)

g(s) =
1

s
(ln(αs) − 1) =

ln(s)

s
(1 + o(1)), s → ∞ (1.10)

L =
∂2

∂y2
− y

2

∂

∂y
+ 1. (1.11)

Using Theorem 4.2 and Lemma 4.18 in [17], it can be concluded that (1.6)
is equivalent to

φ(y, s) → 0, (1.12)

uniformly for bounded y, as s → ∞.
We shall now discuss how the result (1.12) might be refined for φ(y, s).

Because φ(y, s) → 0, it is evident that the linear part will eventually dominate
in the equation (1.8). We will study the equation (1.8) as a dynamical system
in the space L2

ρ(R), where ρ(y) = exp(−y2/4). Therefore we expand the
function φ(y, s) with respect to the eigenfunctions of L in that space, i.e.,
φ =

∑

aj(s)hj(y). Here the functions hj(y) are scaled Hermite polynomials
and form an orthonormal base on L2

ρ(R). The spectrum of this operator

is {λj|λj = 2−j
2

, j = 0, 1, 2, ..}. By projecting the equation (1.8) to the
subspaces generated by the functions hj(y), we get the ordinary differential
equations for aj(s):

a′
j(s) = (1 − k

2
)aj(s) + 〈f(φ)

s
+ g, hj〉L2

ρ
j = 0, 1, 2, ... (1.13)

By analogy with classical ODE theory, we expect that one term in the Fourier
series is dominant, i.e., φ(y, s) ≈ aj(s)hj(y), for some j as s → ∞. Linear-
izing for the nonzero eigenvalues, we get φ(y, s) ≈ cj exp (2−j

2
s)hj(y). The

positive eigenvalues (j = 0, 1) are incompatible with the result (1.12), and
therefore the nonlinear part has to dominate the positive eigenspace in (1.13).
For the zero eigenvalue (j = 2), we can see that the linear part vanishes and
after some calculations that a2(s) satisfies

a′
2(s) = −c∗

1

s
(1 + o(1))a2(s)

2,

from which we obtain after integration that φ(y, s) ≈ C∗

ln(s)

(

2 − y2
)

.
The goal in this paper is to give a proof for this formal argument. The

presence of a nontrivial null space for the operator L suggests the use of
center manifold theory. More precisely, we use the methods developed in
[6, 7, 11] for the analysis of infinite dimensional dynamical systems. The
main result of this paper gives a refined asymptotics of the quenching:

Theorem 1.1. Assume that h(u) = ln(αu) in (1.1) and that (1.2) holds.
Furthermore assume that u(x, t) quenches at (0, T ). Let φ(y, s) be defined by
(1.7) and assume that |a2(s)| ≥ M(ln(s)/s)2 for some M > 0. Then for any
C > 0 and ε > 0 there exists s0 such that

sup
|y|<C

∣

∣φ(y, s) − (y2 − 2)

8 ln(s)

∣

∣ = O(
ε

ln(s)
) (1.14)
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when s ≥ s0.

Restated in terms of u, (1.14) becomes

u(x, t)

(T − t)(− ln(T − t))
≈ 1 +

1

8 ln(− ln(T − t))

( x2

T − t
− 2

)

, (1.15)

in the sense that the difference is o((ln(− ln(T − t)))−1) as t ↑ T , uniformly
in parabolas |x|2 ≤ C(T − t).

2 Preliminaries

We shall study the equation (1.1) as a dynamical system in the space L2
ρ(R).

Therefore we first extend the equation (1.1) to all x ∈ R. This extended equa-
tion has the same solution in the region {(x, t) ∈ R2|x ∈ (−l, l), t ∈ (0, T )}
as the equation (1.1). The technical construction below is done similarly as
in [18] or in [8], see also [17]. Without loss of generality, we may assume l = 1
in the equation (1.1). So let x ∈ R and following [18] define the kernels:

V (x, t) =
1√
πt

exp(−x2

4t
), W (x, t) =

x

2
√

πt3
exp(−x2

4t
),

when x ∈ R and 0 < t < ∞.
Differentiating these, we can see that Vx = −W , Vt = Vxx and Wt = Wxx.
Define the extension u of u(x, t), when x > 1 and t > 0 by

u(x, t) = (x − 1)

∫ t

0

W (x − 1, t − τ)ux(1, τ)dτ + 1. (2.1)

Here ux(1, t) is obtained from the solution of the equation (1.1) (ux(1, t) =
limz↑1 ux(z, t)).

Lemma 2.1. The function u satisfies:

ut − uxx = 2ux(1, 0)V (x − 1, t) + 2

∫ t

0

V (x − 1, t − τ)uxτ (1, τ)dτ,

when x > 1.

Proof. See [17].

Correspondingly; in the extension of u to the left of x = −1 the term
ux(1, t) in the equation (2.1) is replaced by the term ux(−1, t) and V (x−1, t)
by V (x + 1, t).

An extended equation is now defined

ũt − ũxx = f(ũ(x, t)); x ∈ R\{±1}, 0 < t < T, (2.2)

where

ũ(x, t) =

{

u(x, t), when |x| ≤ 1,
u(x, t), when |x| > 1,
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f(ũ) =

{

ln(αu), when |x| ≤ 1,
g(x, t), when |x| > 1,

(2.3)

and

g(x, t) = 2ux(1, 0)V (x − 1, t) + 2

∫ t

0

V (x − 1, t − τ)uxτ (1, τ)dτ. (2.4)

We can see that ũ ∈ C1(R) (fixed t), but f is not continuous at x = ±1, and
therefore ũ is not twice continuously differentiable.

Because u(x, t) cannot quench at x = ±1, the functions ux(1, t) and
uxt(1, t) are uniformly bounded for t ∈ [0, T ).

Lemma 2.2. The functions u(x, t) and g(x, t) satisfy for some positive c1

and c2 that 1 ≤ u(x, t) < c1 < ∞ and 0 ≤ g(x, t) < c2 < ∞, when |x| ≥ 1
and 0 ≤ t < T .

Proof. See [17].

We can now define:

φ̃(y, s) =
ũ(x, t)

(T − t)(− ln(T − t))
− 1, (2.5)

where x ∈ R and t ∈ (0, T ).
Differentiating (2.5), we get

φ̃s = Lφ̃ +
1

s
f(φ̃) + g(s) + F (2.6)

where f and g are defined by (1.9) and (1.10). Furthermore

F = χB ·
(2ux(1, 0)V (x − 1, t) + 2

∫ t

0
V (x − 1, t − τ)uxτ (1, τ)dτ

− ln(T − t)
+

+ 1 − ũ(x, t)

(ln(T − t))2(T − t)
− 1

s
(ln(1 + φ̃) − φ̃) − 1

s
(ln(αs) − 1)

)

,

where B = {x ∈ R
∣

∣|x| > 1}.
It can be seen easily that

|F | ≤ C
|φ̃|
s

, (2.7)

when |x| > 1 for sufficiently large s. One can also verify the following estim-
ates

|φ̃(y, s)| ≤ C(y2 + 1), (2.8)

and
|φ̃y(y, s)| ≤ C(|y| + 1). (2.9)

Consider now the extended equation (2.6) as a dynamical system in the
space

L2
ρ(R) = {g ∈ L2

loc(R) :

∫

R

g(y)2ρ(y)dy < ∞}, (2.10)
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where ρ(y) = exp(−y2

4
). Note that (2.8) and (2.9) imply that φ̃ ∈ L2

ρ(R). For

simplicity we from now on use the notation φ = φ̃. Then

φs − Lφ =
1

s
f(φ) + g(s) + F. (2.11)

The space L2
ρ is a Hilbert space with an inner product

〈f, g〉L2
ρ

=

∫

R

f(y)g(y)ρ(y)dy.

Concerning the linear operator L it is known that it is selfadjoint [7], i.e.,
that

〈Lf, g〉L2
ρ

= 〈f,Lg〉L2
ρ
. (2.12)

with spectrum λk = 1− 1
2
k; k = 0, 1, 2, ... The corresponding eigenfunctions

are hk(y) = αkHk(
1
2
y), where Hk are the (standard) Hermite polynomials and

αk = (π
1
2 2k+1k!)−

1
2 . The first three eigenfunctions are

h0 =
1√
2
π

−1
4 , h1 =

1

2
π

−1
4 y, h2 =

1

2
π

−1
4 (

1

2
y2 − 1). (2.13)

The Fourier-expansion of φ with respect to this space is:

φ(y, s) =
∞

∑

j=0

aj(s)hj(y), (2.14)

where L has eigenmodes:

φ+(y, s)
def
= a0(s)h0(y) + a1(s)h1(y), (2.15)

φ0(y, s)
def
= a2(s)h2(y), (2.16)

φ−(y, s)
def
=

∞
∑

j=3

aj(s)hj(y). (2.17)

We have now presented the functional framework, which is needed in the
proof of Theorem 3.1. The importance of the decomposition above will be-
come clear in the next Section.

3 Refined asymptotics

In this Section we prove the main Theorem 1.1 of this paper. This is done
by first concluding the claim in Theorem 3.1 in an L2

ρ-sense. Then we extend
this result by showing that the convergence is uniform on compact subsets.
In this Section φ(y, s) is the solution of (2.11).

In the following we use the notation

‖h(y, s)‖Lp
ρ

=
(

∫

R

|h(z, s)|pρ(z)dz
)1/p

.
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We assume throughout this paper that

‖φ0(y, s)‖L2
ρ
≥ C

(ln(s))2

s2
, (3.1)

for some C > 0.
Let us briefly comment on this assumption. Note that the equation (2.11)

is now nonhomogenous because of the term g(s) (unlike the corresponding
situation in [6, 7, 11]). Due to the nonlinearity of the equation this difficulty
cannot be avoided by a simple transformation. However we believe that the
behavior in Theorem 3.1 is generic and that the cases where (3.1) does not
hold are exceptional, but we are unable to prove it. Finally observe that by
Theorem 3.1 the assumption (3.1) specifies the asymptotics of the solution
in detail.

Theorem 3.1. If (3.1) holds, then ‖φ(y, s) − (y2−2)

8 ln(s)
‖L2

ρ
= o( 1

ln(s)
).

The first fundamental fact in the proof of Theorem 3.1 is Lemma 3.4.
The proof of this Lemma is based on [7, Lemma 3.1, p.836]. We formulate
this Lemma here as Lemma 3.3. Before that we introduce Lemma 3.2. This
Lemma gives an asymptotic form of the function a0(s) (as s → ∞), which
is essentially a consequence of the term g(s) (only dependent of s) in the
equation (2.11).

Lemma 3.2. Let a0(s) be as in (2.14) and (2.15). Then

a0(s) = −(1 + o(1))
√

2π1/4 ln(s)

s
,

as s → ∞.

Proof. Projecting the equation (2.11) to the subspace generated by h0, we
get by (2.12) and (2.13) that

a′
0 = a0 +

√
2π1/4g(s) +

1

s
〈f(φ), h0〉L2

ρ
+ 〈F, h0〉L2

ρ
.

Using (2.7) and Hölder’s inequality, we derive that

|〈F, h0〉L2
ρ
| ≤ C

s

∫ ∞

e
s
2

|φ(η, s)|e− η2

4 dη ≤ C

s
‖φ(y, s)‖L2

ρ
,

and from (1.9) that |〈f(φ), h0〉L2
ρ
| ≤ C‖φ(y, s)‖L2

ρ
. Hence it follows from

(1.12) and (2.8) that

a′
0 = a0+

√
2π1/4 ln(s)

s
(1+o(1))+

1

s
O(‖φ(y, s)‖L2

ρ
) = a0+

√
2π1/4 ln(s)

s
(1+o(1)).

(3.2)
Furthermore, Parseval’s formula and (1.12) imply that

lim
s→∞

a0(s) = 0. (3.3)
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By the equation (3.2) it holds that:

(e−sa0(s))s = (1 + o(1))
√

2π1/4e−s ln(s)

s
,

where the claim follows from a partial integration and from (3.3).

Lemma 3.3. [7] Let x(t), y(t) and z(t) be absolutely continuous, real valued
functions which are non-negative and satisfy: (a) z′ ≥ c0z − ε(x + y), (b)
|x′| ≤ ε(x+y +z), (c) y′ ≤ −c0y + ε(x+z), (d) x, y, z → 0, as t → ∞, where
c0 is any positive constant and ε is a sufficiently small positive constant.
Then: either (i) x, y, z → 0 exponentially fast, or else, (ii) there exists
a time t0 such that z + y ≤ bεx for t ≥ t0, where b is a positive constant
depending only on c0.

Lemma 3.4. Let φ0 and φ− be defined by (2.16) and (2.17). If (3.1) holds,
then

‖a1(s)h1(y)‖L2
ρ
+ ‖φ−(y, s)‖L2

ρ
= o(‖φ0(y, s)‖L2

ρ
).

Proof. We prove the inequalities (a), (b) and (c) in Lemma 3.3. Let x(s) =
‖φ0(y, s)‖L2

ρ
, y(s) = ‖φ−(y, s)‖L2

ρ
and z(s) = ‖a1(s)h1(y)‖L2

ρ
. Furthermore,

note that the condition (d) follows from (1.12) by Parseval’s formula.
By (3.1) and Lemma 3.2, we get

|a0(s)| = |(1 + o(1))
√

2π1/4 ln(s)

s
| ≤ Cs

ln(s)
‖φ0(y, s)‖L2

ρ
. (3.4)

(a) The inequality for ∂z
∂s

= ∂
∂s
‖a1(s)h1(y)‖L2

ρ
: Projecting the equation

(2.11) to the subspace generated by h1, it follows that

a′
1 =

1

2
a1 +

1

s
〈f(φ), h1〉L2

ρ
+ 〈F, h1〉L2

ρ
.

Multiplying this by sgn(a1(s)), and estimating the terms on the right-hand
side as in the proof of Lemma 3.2, we get

|a1(s)|s ≥
1

2
|a1(s)| −

C

s
‖φ(y, s)‖L2

ρ
.

Because ‖φ‖L2
ρ

= ‖a0h0 + a1h1 + φ0 + φ−‖L2
ρ
≤ |a0|+ |a1|+ ‖φ0‖L2

ρ
+ ‖φ−‖L2

ρ
,

then by the inequality (3.4)

|a1(s)|s ≥ (
1

2
− C

s
)|a1(s)| − (

C

ln(s)
+

C

s
)‖φ0(y, s)‖L2

ρ
− C

s
‖φ−(y, s)‖L2

ρ
.

Therefore it holds for sufficiently large s that

∂

∂s
‖a1(s)h1(y)‖L2

ρ
≥ (

1

2
− ε)|a1(s)| − ε{‖φ0(y, s)‖L2

ρ
+ ‖φ−(y, s)‖L2

ρ
}. (3.5)

(b) The inequality for ∂x
∂s

= ∂
∂s
‖φ0(y, s)‖L2

ρ
: Projecting the equation (2.11)

to the subspace generated by h2, we get

a′
2 =

1

s
〈f(φ), h2〉L2

ρ
+ 〈F, h2〉L2

ρ
. (3.6)
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As in part (a), one can see that

||a2(s)|s| ≤
C

s
‖φ(y, s)‖L2

ρ
≤ C

s
{|a0(s)|+|a1(s)|+‖φ0(y, s)‖L2

ρ
+‖φ−(y, s)‖L2

ρ
}.

Thus by (3.4)

| ∂

∂s
‖φ0(y, s)‖L2

ρ
| ≤ ε{‖a1(s)h1(y)‖L2

ρ
+ ‖φ0(y, s)‖L2

ρ
+ ‖φ−(y, s)‖L2

ρ
}. (3.7)

(c) The inequality for ∂y
∂s

= ∂
∂s
‖φ−(y, s)‖L2

ρ
: Projecting (2.11) to the neg-

ative eigenspace (2.17), we get

∂

∂s
φ− = Lφ− + π−(

1

s
f(φ) + F ). (3.8)

Multiplying by φ−ρ and integrating with respect to y, we obtain
∫

R

(
∂

∂s
φ−)φ−ρ =

∫

R

(Lφ−)φ−ρ+

1

s

∫

R

π−(f(φ))φ−ρ +

∫

R

π−(F )φ−ρ.

(3.9)

We now estimate the terms on the right-handside of the equation (3.9).
Because the greatest negative eigenvalue of L is − 1

2
, we conclude

∫

R

(Lφ−)φ−ρ =

∫

R

(L(
∑

j≥3

ajhj))(
∑

j≥3

ajhj)ρ =

∫

R

(
∑

j≥3

2 − j

2
ajhj))(

∑

j≥3

ajhj)ρ ≤ −1

2
‖φ−‖2

L2
ρ
.

(3.10)

For the two nonlinear terms in (3.9) we have

|
∫

R

π−(f(φ))φ−ρ| ≤ (

∫

R

(π−(f(φ)))2ρ)
1
2‖φ−‖L2

ρ
≤ C‖φ‖L2

ρ
‖φ−‖L2

ρ
, (3.11)

and

|
∫

R

π−(F )φ−ρ| ≤ (

∫

R

(π−(F ))2ρ)
1
2‖φ−‖L2

ρ
≤ C

s
‖φ‖L2

ρ
‖φ−‖L2

ρ
. (3.12)

Substituting the inequalities (3.10), (3.11) and (3.12) into the equation (3.9),
and using the inequality (3.4), we get for sufficiently large s that

1

2

∂

∂s
‖φ−(y, s)‖2

L2
ρ
≤ −1

2
‖φ−(y, s)‖2

L2
ρ
+ ε‖φ−(y, s)‖L2

ρ

(

‖φ0(y, s)‖L2
ρ
+

+ ‖φ−(y, s)‖L2
ρ
+ ‖a1(s)h1(y)‖L2

ρ

)

,

and therefore

∂

∂s
‖φ−(y, s)‖L2

ρ
≤ (−1

2
+ ε)‖φ−(y, s)‖L2

ρ
+ ε

(

‖φ0(y, s)‖L2
ρ
+ ‖a1(s)h1(y)‖L2

ρ

)

(3.13)
An application of Lemma 3.3 to the inequalities (3.5), (3.7) and (3.13),

and recalling (1.12) and (3.1), gives the claim.
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The second crucial ingredient in the proof of Theorem 3.1 is to derive the
ordinary differential equation for a2(s). This is done in Lemma 3.8. In order
to obtain that Lemma, we need the estimate

‖φ(y, s)‖Lq
ρ
≤ C(q)‖φ(y, s)‖L2

ρ
,

for any q > 2. This inequality is a consequence of Lemmas 3.6 and 3.7. Before
we prove these two Lemmas, we introduce some background from [11].

Let S(t) be the linear semigroup corresponding to the heat equation in
the strip S = [0, T ) × R. Take u0(x) ∈ L1

loc(R) satisfying suitable growth
conditions as |x| → ∞, so that (S(t)u0(x)) makes sense in S. Define now

w(y, s) = S(t)u0(x), where y = x(T − t)−
1
2 and s = − ln(T − t). Then w(y, s)

satisfies

ws = wyy −
1

2
ywy, y ∈ R, s > 0,

w(y, 0) = w0(y) ≡ u0(x), s = 0.
(3.14)

Then we have

Lemma 3.5. [11] Let w(y, s) be the solution of (3.14). Then for any r > 1,
q > 1 and L > 0, there exist s∗0(q, r) > 0 and C(q, r, L) > 0 such that

‖w(y, s + s0)‖Lr
ρ
≤ C‖w(y, s)‖Lq

ρ
,

for every s > 0 and every s0 ∈ [s∗0, s
∗
0 + L].

This Lemma is used for our purposes below. More precisely, we estimate
the first term at the right-hand side in the inequality (3.19) to take the final
step in the proof of Lemma 3.6.

Lemma 3.6. Let r > 1 and L > 0. Then there exist s∗0(r) > 0 and C(r, L) >
0 such that ‖φ(y, s+s0)‖Lr

ρ
≤ C‖φ(y, s)‖L2

ρ
, for every s > 0 and s0 ∈ [s∗0, s

∗
0+

L].

Proof. Multiplying the equation (2.11) by the function sgn(φ) and using
Kato’s inequality (∆g · sgn(g) ≤ ∆(|g|) in D′(RN)), we get by (2.7) that

∂

∂s
|φ(y, s)| ≤ A|φ(y, s)| + (1 + c)|φ(y, s)| + g(s), (3.15)

where A = ∂2

∂y2 − y
2

∂
∂y

. We now replace s by τ and multiply (3.15) by the

function e(1+c)(s+s0−τ)e(s+s0−τ)A, where

esAz(y, s0) =

∫

R

exp{− (η−ye−
1
2

s)2

4(T−e−s)
}

√

4π(T − e−s)
z(η, s0)dη,

to obtain the inequality (3.15) in the form

∂

∂τ
{e(1+c)(s+s0−τ)e(s+s0−τ)A|φ(y, τ)|} ≤ e(1+c)(s+s0−τ)e(s+s0−τ)Ag(τ). (3.16)
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Integrating (3.16) with respect to τ , from s to s + s0, we conclude that

|φ(y, s + s0)| ≤ e(1+c)s0es0A|φ(y, s)| +
∫ s+s0

s

e(1+c)(s+s0−τ)e(s+s0−τ)Ag(τ)dτ.

(3.17)
Because g depends only on time, we have e(s+s0−τ)Ag(τ) = cg(τ). Further-
more, s0 ≤ L, and thus

∫ s+s0

s

e(1+c)(s+s0−τ)e(s+s0−τ)Ag(τ)dτ ≤ Ce(1+c)s0g(s).

Therefore the inequality (3.17) yields

|φ(y, s + s0)| ≤ Ces0A|φ(y, s)| + Cg(s). (3.18)

Applying now Minkowski’s inequality to (3.18), we deduce

‖φ(y, s + s0)‖Lr
ρ
≤ C‖es0A|φ(y, s)|‖Lr

ρ
+ Cg(s). (3.19)

Finally, by using Lemma 3.5 (take q = 2 there) to the first term on right-hand
side of (3.19), and Lemma 3.2 to the last term, we get the claim.

Lemma 3.7. Let L > 0. If (3.1) holds, then there exists C = C(L) such
that

‖φ(y, s)‖L2
ρ
≤ C‖φ(y, s + L)‖L2

ρ
,

for all s.

Proof. Define I1 = 〈1
s
(f(φ)), h2〉ρ and I2 = 〈F, h2〉ρ. By Hölder’s inequality,

we can see that

|Ij| ≤
C

s
‖φ‖L2

ρ
, (3.20)

when j = 1, 2. Multiplying the equation (3.6) by sgn(a2), we conclude by
(3.20) that

|a2(s)|s ≥ −C

s
‖φ‖L2

ρ
. (3.21)

On the other hand, by Lemma 3.4 it holds that

‖φ(y, s)‖L2
ρ
≤ C(|a0(s)| + |a2(s)|). (3.22)

Combining the inequalities (3.21), (3.22) and (3.4), we obtain

|a2(s)|s ≥ −(
C

ln(s)
+

C

s
)|a2(s)| ≥ −C|a2(s)|. (3.23)

An integration with respect to s yields

|a2(s + L)| ≥ e−cL|a2(s)|. (3.24)

Using the relations (3.22), (3.24) and Lemma 3.2, we get

‖φ(y, s + L)‖L2
ρ
≥ C max

{

|a2(s + L)|, |a0(s + L)|
}

≥

max
{

Ce−cL|a2(s)|, C(L)|a0(s)|
}

≥ C(L)‖φ(y, s)‖L2
ρ
.
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Lemma 3.8. The function a2(s) satisfies a2(s) → 0 and the ordinary differ-
ential equation (ci > 0, i = 1, 2):

sa′
2 = −c1(1 + o(1))a2

2 + c2(1 + o(1))
ln(s)

s
a2 + O[(

ln(s)

s
)3], (3.25)

as s → ∞.

Proof. We first conclude by Parseval’s formula and by (1.12) that a2(s) → 0
as s → ∞.

Then write the equation (3.6) in the form

a′
2(s) =

1

s
〈f(φ), h2〉L2

ρ
+ 〈F, h2〉L2

ρ
≡ 1

s
I + J. (3.26)

We estimate the term J . It can be seen by (2.7) that for s sufficiently large
it holds: |F | ≤ C

s
|φ(y, s)|6, and then by Lemmas 3.6 and 3.7 we obtain

|J | ≤ C

s
‖φ(y, s)‖6

L12
ρ
≤ C

s
‖φ(y, s)‖6

L2
ρ
. (3.27)

Define

f̃(φ) = f(φ) +
1

2
φ2. (3.28)

Then we get:
(i) When |φ| < 1, then, by Taylor’s expansion, |f̃(φ)| ≤ C|φ|3.
(ii) When |φ| ≥ 1, then |f̃(φ)| ≤ Cφ2 ≤ C|φ|3. Therefore

|f̃(φ)| ≤ C|φ|3. (3.29)

Using the formulas (3.28), (3.29), Hölder’s inequality, Lemmas 3.6 and 3.7,
we conclude (as s → ∞)

I = −1

2

∫

R

φ2h2ρ +

∫

R

f̃(φ)h2ρ = −1

2

∫

R

φ2h2ρ + O(‖φ(y, s)‖3
L2

ρ
) (3.30)

Let: I1 = −1
2

∫

R
φ2h2ρ, I2 = I−I1 and φr(y, s) = a1(s)h1(y)+

∑∞
j=3 aj(s)hj(y).

Therefore

I1 = −1

2

∫

R

a2
0h

2
0h2ρ − 1

2

∫

R

a2
2h

3
2ρ − 1

2

∫

R

φ2
rh2ρ−

− a0a2

∫

R

h0h
2
2ρ − a0

∫

R

h0h2φrρ − a2

∫

R

h2
2φrρ ≡

6
∑

j=1

Pj.
(3.31)

Because the base {hj}∞j=0 is orthogonal and h0 is constant, then

P1 = 0 and P5 = 0. (3.32)

Furthermore we can verify that 1
2

∫

R
h3

2ρ = c
∫

R
(y2−2)3 exp(−y2

4
)dy = c1 > 0,

therefore
P2 = −c1a

2
2. (3.33)
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Correspondingly
∫

R
h0h

2
2ρ = c2 > 0, thus by Lemma 3.2

P4 = c2a2
ln(s)

s
(1 + o(1)). (3.34)

Using Hölder’s and Minkowski’s inequalities, and also Lemma 3.2, we obtain

|P3 + P6| = |
∫

R

−1

2
φr(φr + 2a2h2)h2ρ|

≤ C‖φr(y, s)‖L2
ρ

{

‖φr(y, s)h2(y)‖L2
ρ
+ c4|a2(s)|

}

,

(3.35)

from which follows, by Hölder’s inequality and Lemma 3.4, that (as s → ∞)

|P3 + P6| ≤ o(|a2(s)|)
{

‖φr(y, s)‖L4
ρ
+ c4|a2(s)|

}

. (3.36)

Next we show that (as s → ∞)

|P3 + P6| ≤ o(1)|a2(s)|max
{

C
ln(s)

s
, |a2(s)|

}

. (3.37)

If ‖φr(y, s)‖L4
ρ
≤ C max

{

C ln(s)
s

, |a2(s)|
}

, as s → ∞, then (3.37) follows

immediately from (3.36). On the other hand, if there exist sequences ci → ∞
and si → ∞ such that

‖φr(y, si)‖L4
ρ
≥ ci max

{

C
ln(si)

si

, |a2(si)|
}

(3.38)

then, by Lemmas 3.2 and 3.4, one concludes: ‖φr(y, si)‖L4
ρ
≥ Cci‖φ(y, si)‖L2

ρ
.

Applying Lemmas 3.6 and 3.7 to this, and also making use of the triangle
inequality, we can see that

‖φr(y, si)‖L4
ρ
≥ Cci‖φ(y, si)‖L4

ρ
≥ Cci

{

‖φr(y, si)‖L4
ρ
− C

ln(si)

si

− |a2(si)|
}

The assumption (3.38) now yields: ‖φr(y, si)‖L4
ρ
≥ C̃i‖φr(y, si)‖L4

ρ
, where

C̃i → ∞ and si → ∞. This is a contradiction, and so (3.38) does not hold
and (3.37) is true.

Combining items (3.31), (3.32), (3.33), (3.34) and (3.37), we can conclude
that (as s → ∞)

I1 = −c1(1 + o(1))a2(s)
2 + c2(1 + o(1))

ln(s)

s
a2(s). (3.39)

Invoke the formulas (3.27) and (3.30), and also (1.12) to get: s( 1
s
I2 + J) =

O{‖φ(y, s)‖3
L2

ρ
}. Finally note that the formulas (3.26), (3.30) and (3.39) imply

(as s → ∞)

sa′
2(s) = −c1(1+o(1))a2(s)

2+c2(1+o(1))
ln(s)

s
a2(s)+O{‖φ(y, s)‖3

L2
ρ
}. (3.40)
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By Lemmas 3.2 and 3.4 we know that

‖φ(y, s)‖L2
ρ
≤ C

√

(C
ln(s)

s
)2 + |a2(s)|2 ≤ C

(

|C ln(s)

s
| + |a2(s)|

)

.

Hence the equation (3.40) can be written in the form

sa′
2(s) = −c1(1+ o(1))a2(s)

2 + c2(1+ o(1))
ln(s)

s
a2(s)+O

[

( ln(s)

s

)3
]

. (3.41)

Lemma 3.9. The solution of the equation in Lemma 3.8 is a2(s) = c∗+o(1)
ln(s)

,
as s → ∞.

Proof. We show that the term (−c1(1+o(1))a2(s)
2) is dominant on the right-

handside of the equation (3.41).
From the equation (3.41) we get the estimate

p1(a2, s) ≤ sa′
2 ≤ p2(a2, s), (3.42)

where (C > 0)

{

p1(a2, s) = −c1(1 + o(1))a2(s)
2 + c2(1 + o(1)) ln(s)

s
a2(s) − C( ln(s)

s
)3

p2(a2, s) = −c1(1 + o(1))a2(s)
2 + c2(1 + o(1)) ln(s)

s
a2(s) + C( ln(s)

s
)3.

We shall determine under what conditions a2(s) is increasing or decreasing
for large s. Therefore we solve the equations: pi = 0. An elementary calculus
yields

a2(s) =
1

2
· c2

c1

(1 + o(1))
ln(s)

s

[

1 ±
√

1 − 4(±C)
c1

c2
2

(1 + o(1))
ln(s)

s

]

,

and thus







a2(s) = 1
2
· c2

c1
(1 + o(1)) ln(s)

s

[

1 ±
{

1 − 2C c1
c22

(1 + o(1)) ln(s)
s

}]

, when p1 = 0

a2(s) = 1
2
· c2

c1
(1 + o(1)) ln(s)

s

[

1 ±
{

1 + 2C c1
c22

(1 + o(1)) ln(s)
s

}]

, when p2 = 0.

(3.43)
Define the regions:

A1 =
{

(a2, s) : s > s0, a2(s) >
c2

c1

(1 + ε)
ln(s)

s

}

A2 =
{

(a2, s) : s > s0,
C

c2

(1 + ε)(
ln(s)

s
)2 < a2(s) <

c2

c1

(1 − ε)
ln(s)

s

}

A3 =
{

(a2, s) : s > s0, a2(s) < −C

c2

(1 + ε)(
ln(s)

s
)2

}
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B1 =
{

(a2, s) : s > s0,
c2

c1

(1 − ε)
ln(s)

s
< a2(s) <

c2

c1

(1 + ε)
ln(s)

s

}

B2 =
{

(a2, s) : s > s0, −
C

c1

(1 + ε)(
ln(s)

s
)2 < a2(s) <

C

c2

(1 + ε)(
ln(s)

s
)2

}

Using the formulas (3.42) and (3.43), we can see that

{

a2(s) is increasing in the region A2

a2(s) is decreasing in the regions A1 and A3.
(3.44)

Because we know by Lemma (3.8) that: a2(s) → 0, as s → ∞, then by (3.44)
we can conclude that for sufficiently large s, (s,a2(s)) cannot belong to the
region A3. Furthermore it follows from (3.1) that (s, a2(s)) /∈ B̄2. Hence for
s sufficiently large it holds: (s, a2(s)) ∈ A1 ∪ B̄1 ∪A2. By the fact (3.44) we
can see that for s sufficiently large there exists k > 0 such that

a2(s) > k
ln(s)

s
. (3.45)

We prove next that for s suficiently large there exists β > 0 such that

a2(s) > β
(ln(s))2

s
. (3.46)

Define

z(s) = a2(s) − β
(ln(s))2

s
, (3.47)

where β > 0 is a constant, which will be determined later. Differentiating
with respect to s the equation (3.47) and using the equation (3.41), we get

sz′ = β
(ln(s))2

s

{

1 − 2

ln(s)
+ c2(1 + o(1))

ln(s)

s
− c1(1 + o(1))·

(2z + β
(ln(s))2

s
)
}

+ O
[

(
ln(s)

s
)3

]

+ z · c2(1 + o(1))
ln(s)

s
− z2c1(1 + o(1)).

(3.48)

By the inequality (3.45) one may deduce that z(s) ≥ −β (ln(s))2

s
, thus from

the equation (3.48) it follows that

sz′ ≥ β
(ln(s))2

s

{

1 − 2

ln(s)
+ c2 · o(1)

ln(s)

s
−

c1(1 + o(1))(2z + β
(ln(s))2

s
)
}

− C(
ln(s)

s
)3 − z2c1(1 + o(1)).

(3.49)

Because we know that a2(s) → 0, then also by (3.47) it holds that z → 0, as
s → ∞. Therefore from the ineqality (3.49) we obtain

sz′ ≥ 1

2
β

(ln(s))2

s
− C(

ln(s)

s
)3 − 2c1z

2, (3.50)
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for s sufficiently large.
We shall now conclude the claim (3.46) from the inequalities (3.45) and

(3.50), and from the definition (3.47).
Let β = k

2 ln(s∗)
, and choose s∗ large enough. Then

(i) z(s∗) > 0,

(ii) z′(s) ≥ 0, when s ≥ s∗ and z ∈ [0, ε (ln(s))2

s
].

The claim (3.46) follows from the items (i) and (ii).
Substituting (3.46) in the equation (3.41), we obtain: sa′

2(s) = −c1(1 +
o(1))a2(s)

2. Integrating this it follows that

∫ a2(s)

a2(s0)

dz

z2
=

∫ s

s0

(−c1(1 + o(1)))
dτ

τ
,

and further

a2(s) =
1 + o(1)

c1 ln(s)
=

C∗(1 + o(1))

ln(s)
.

Proof of Theorem 3.1. We can write: φ(y, s) = a0(s)h0(y) + a1(s)h1(y) +
φ0(y, s) + φr(y, s), and then by Lemmas 3.2, 3.4 and 3.9 we get

‖φ(y, s) − C∗

ln(s)
h2(y)‖L2

ρ
= ‖a0h0 + a1h1 + φr + φ0 −

C∗

ln(s)
h2(y)‖L2

ρ
≤

C
ln(s)

s
+ o(

1

ln(s)
) ≤ o(

1

ln(s)
).

(3.51)

Finally we determine the constant C∗. By the equations (2.13), (3.31) and
(3.33) it holds that

c1 =
1

2

∫

R

h3
2ρ =

π−3/4

16

∫

R

(

y2/2 − 1
)3

exp(−y2/4)dy.

A straighforward calculation yields c1 = 2/π1/4 and C∗ = π1/4/2. Further-
more by (2.13) we get C∗h2(y) = (y2 − 2)/8.

From this Theorem and from (2.9) we can conclude that the convergence
is uniform, and the claim of Theorem 1.1 follows.
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Mathematical and historical reflections on the lowest order finite element mod-

els for thin structures

May 2002

A448 Teijo Arponen

Numerical solution and structural analysis of differential-algebraic equations

May 2002



HELSINKI UNIVERSITY OF TECHNOLOGY INSTITUTE OF MATHEMATICS

RESEARCH REPORTS

The list of reports is continued inside. Electronical versions of the reports are

available at http://www.math.hut.fi/reports/ .

A461 Tuomas Hytönen

Vector-valued wavelets and the Hardy space H1(Rn;X)

April 2003

A460 Jan von Pfaler , Timo Eirola

Numerical Taylor expansions for invariant manifolds

April 2003

A459 Timo Salin

The quenching problem for the N-dimensional ball

April 2003

A458 Tuomas Hytönen

Translation-invariant Operators on Spaces of Vector-valued Functions

April 2003

A457 Timo Salin

On a Refined Asymptotic Analysis for the Quenching Problem

March 2003

ISBN 951-22-6443-9

ISSN 0784-3143

Institute of Mathematics, Helsinki Univ. of Tech., Espoo, 2003


