## Mat-1.198 Scattering Theory

## $2^{\text {nd }}$ set of exercises, 5.2.2003

1. Consider the acoustic medium scattering problem of solving

$$
\left(\Delta+k^{2} n(x)\right) u(x)=0 \text { in } \mathbb{R}^{3},
$$

where $n(x)=c_{0}^{2} / c(x)^{2} \in C\left(\mathbb{R}^{3}\right)$ is the refractive index of the medium, and $n=1$ outside a bounded domain $D$. We write

$$
u=u_{\mathrm{inc}}+u_{\mathrm{sc}},
$$

where the incoming field $u_{\mathrm{inc}}$ is known and satsifies the Helmholtz equation in the whole $\mathbb{R}^{3}$, and the scattered field $u_{\mathrm{sc}}$ satisfies the Sommerfeld radiation condition at infinity. By using the Helmholtz representation formula, derive the Lippmann-Schwinger equation for $u$,

$$
u(x)=u_{\mathrm{inc}}(x)+k^{2} \int_{D} \Phi(x-y)(n(y)-1) u(y) d y
$$

2. Let the incoming field in the previous excercise be a plane wave propagating in the direction $\widehat{\alpha}$

$$
u_{\mathrm{inc}}(x)=e^{i k \widehat{\alpha} \cdot x}, \quad \widehat{\alpha} \in S^{2}
$$

(a) Write the far field pattern $u_{\infty}(\widehat{x})$ for the scattered field.
(b) Consider the Born approximation of the solution,

$$
u(x) \approx u_{\mathrm{B}}(x)=u_{\mathrm{inc}}+k^{2} \int_{D} \Phi(x-y)(n(y)-1) u_{\mathrm{inc}}(y) d y
$$

What is the far field pattern of $u_{\mathrm{B}}$ ?
3. Calculate the far field pattern of the Born approximation explicitly, when the refractive index is given as

$$
n(x)= \begin{cases}1+h, & |x|<R \\ 1, & |x| \geq R\end{cases}
$$

where $h>0$ is a constant.
How does the approximate far field pattern behave in the (a) forward scattering direction, $\widehat{x}=\widehat{\alpha}$, and (b) the Backscattering direction, $\widehat{x}=-\widehat{\alpha}$ ?
4. Let $D \subset \mathbb{R}^{3}$ be a bounded domain containing the scatterer, so that outside $D$ the field $u$ satisfies the Helmholtz equation. As in the previous problems, let

$$
u=u_{\mathrm{inc}}+u_{\mathrm{sc}}
$$

where the incoming field satisfies the Helmholtz equation in the whole $\mathbb{R}^{3}$ and the scattered field satisifes the radiation condition. Show that then

$$
u_{\mathrm{sc}}(x)=\int_{\partial D}\left(u(y) \frac{\partial \Phi}{\partial n(y)}(x-y)-\Phi(x-y) \frac{\partial u}{\partial n(y)}(y)\right) d S
$$

i.e., in the Helmholtz representation formula, we may replace $u_{\mathrm{sc}}$ by $u$.

