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Chapter 1

Groups

1.1 Introduction

Perhaps the first non-trivial group that the mankind encountered was the
set Z of integers; with the usual addition (x, y) 7→ x + y and “inversion”
x 7→ −x this is a basic example of a (non-compact) group. Intuitively, a
group is a set G that has two mappings G×G→ G and G→ G generalizing
the properties of the integers in a simple and natural way.

We start by defining the groups, and we study the mappings pre-
serving such structures, i.e., group homomorphisms. Of special interest
are representations, that is, those group homomorphisms that have values
in groups of invertible linear operators on vector spaces. Representation
theory is a key ingredient in the theory of groups.

In this framework we study analysis on compact groups, foremost
measure theory and Fourier transform. Remarkably, on a compact group
G there exists a unique translation-invariant linear functional functional
on C(G) corresponding to a probability measure. We shall construct this
Haar measure, closely related to the Lebesgue measure of a Euclidean
space. We shall also introduce Fourier series of functions on a group.

Groups having a smooth manifold structure (with smooth group op-
erations) are called Lie groups, and their representation theory is especially
interesting. Left-invariant first order partial differential operators on such
a group can be identified with left-invariant vector fields on the group, and
the corresponding set called the Lie algebra is studied.

Finally, we introduce Hopf algebras and study the Gelfand theory
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related to them.
Remark 1.1.1. If X,Y are spaces with the same kind of algebraic structure,
the set Hom(X,Y ) of homomorphisms consists of mappings f : X → Y re-
specting the structure. Bijective homomorphisms are called isomorphisms.
Homomorphisms f : X → X are called endomorphisms of X, and their set
is denoted by End(X) := Hom(X,X). Isomorphism-endomorphisms are
called automorphisms, and their set is Aut(X) ⊂ End(X). If there exist
the zero-elements 0X , 0Y in respective algebraic structures X,Y , the null
space or the kernel of f ∈ Hom(X,Y ) is

Ker(f) := {x ∈ X : f(x) = 0Y } .

Sometimes algebraic structures might have, say, topology, and then the ho-
momorphisms are typically required to be continuous. Hence, for instance,
a homomorphism f : X → Y between Banach spaces X,Y is usually
assumed to be continuous and linear, denoted by f ∈ L(X,Y ), unless oth-
erwise mentioned; for short, let L(X) := L(X,X). The assumptions in
theorems etc. will still be explicitely stated.

Conventions. N is the set of non-negative integers, so that 0 ∈ N,
Z+ := N \ {0},
Z is the set of integers,
Q the set of rational numbers,
R the set of real numbers,
C the set of complex numbers, and
K ∈ {R,C}.
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1.2 Groups without topology

Definition 1.2.1. A group consists of a set G having an element e = eG ∈ G
and endowed with mappings

((x, y) 7→ xy) : G×G→ G,

(x 7→ x−1) : G→ G

satisfying

x(yz) = (xy)z
ex = x = xe

x x−1 = e = x−1x

for every x, y, z ∈ G. We may freely write xyz := x(yz) = (xy)z; element
e ∈ G is called the neutral element, and x−1 is the inverse of x ∈ G. If the
group operations are implicitely known, we may say that G is a group. If
xy = yx for every x, y ∈ G then G is called commutative (or Abelian).

Example. Examples of groups:

1. The sets Z, Q, R and C are commutative groups with operations
(x, y) 7→ x+ y, x 7→ −x. The neutral element is 0 in each case.

2. Any vector space is a commutative group with operations (x, y) 7→
x+ y, x 7→ −x; the neutral element is 0.

3. Let V be a vector space. The set Aut(V ) of invertible linear operators
V → V forms a group with operations (A,B) 7→ AB, A 7→ A−1; this
group is non-commutative when dim(V ) ≥ 2. The neutral element is
I = (v 7→ v) : V → V .

4. Sets Q× := Q \ {0}, R× := R \ {0}, C× := C \ {0} (more generally,
invertible elements of a unital ring) form multiplicative groups with
operations (x, y) 7→ xy (ordinary multiplication) and x 7→ x−1 (as
usual). The neutral element is 1 in each case.

5. The set

Aff(V ) = {Aa = (v 7→ Av + a) : V → V | A ∈ Aut(V ), a ∈ V }

of affine mappings forms a group with operations (Aa, Bb) 7→ (AB)Ab+a,
Aa 7→ (A−1)A−1a; this group is non-commutative when dim(V ) ≥ 1.
The neutral element is I0.
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6. Let G = {f : X → X | f bijection}, where X 6= ∅; this is a group
with operations (f, g) 7→ f ◦ g, f 7→ f−1. This group G is called
the symmetric group of X, and it is non-commutative if |X| ≥ 3,
where |X| is the number of elements of X. The neutral element is
idX = (x 7→ x) : X → X.

7. If G and H are groups then G×H has a natural group structure:

((g1, h1), (g2, h2)) 7→ (g1h1, g2h2), (g, h) 7→ (g−1, h−1).

The neutral element is eG×H := (eG, eH).

Exercise 1.2.2. Let G be a group and x, y ∈ G. Prove:
(a) (x−1)−1 = x.
(b) If xy = e then y = x−1.
(c) (xy)−1 = y−1x−1.

Definition 1.2.3. Some notations: Let G be a group, x ∈ A, A,B ⊂ G and
n ∈ Z+; we define

AB := {ab | a ∈ A, b ∈ B} ,
A0 := {e} ,
A−1 :=

{
a−1 | a ∈ A

}
,

An+1 := AnA,

A−n := (An)−1.

Definition 1.2.4. A set H ⊂ G is a subgroup of a group G, denoted by
H < G, if

e ∈ H, xy ∈ H and x−1 ∈ H

for every x, y ∈ H (hence H is a group with “inherited” operations). A
subgroup H < G is called normal in G if

xH = Hx

for all x ∈ G; then we write H C G.

Exercise 1.2.5. Let H < G. Show that H C G if and only if H = x−1Hx
for every x ∈ G.

Example. Examples of subgroups:

1. We always have normal trivial subgroups {e} C G and G C G. Sub-
groups of a commutative group are always normal.
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2. The center Z(G) C G, where Z(G) := {z ∈ G | ∀x ∈ G : xz = zx}.

3. If F < H and G < H then F ∩G < H.

4. If F < H and G C H then FG < H.

5. {Ia | a ∈ V } C Aff(V ).

6. SO(n) < O(n) < GL(n,R) ∼= Aut(Rn), where the groups consist of
real n × n-matrices: GL(n,R) is the real general linear group con-
sisting of invertible real matrices (i.e. determinant non-zero); O(n)
is the orthogonal group, where the matrix columns (or rows) form
an orthonormal basis for Rn (so that AT = A−1 for A ∈ O(n),
det(A) ∈ {−1, 1}); SO(n) is the special orthogonal group, the group
of rotation matrices of Rn around the origin (so that SO(n) = {A ∈
O(n) : det(A) = 1}).

7. SU(n) < U(n) < GL(n,C) ∼= Aut(Cn), where the groups consist
of complex n × n-matrices: GL(n,C) is the complex general linear
group consisting of invertible complex matrices (i.e. determinant non-
zero); U(n) is the unitary group, where the matrix columns (or rows)
form an orthonormal basis for Cn (so that A∗ = A−1 for A ∈ U(n),
|det(A)| = 1); SU(n) is the special unitary group, SU(n) = {A ∈
U(n) : det(A) = 1}.

Remark 1.2.6. Mapping (z 7→
(
z
)
) : C→ C1×1 identifies complex numbers

with complex (1 × 1)-matrices. Thereby the complex unit circle group
{z ∈ C : |z| = 1} is identified with the group U(1).

Definition 1.2.7. Let H < G. Then

x ∼ y ⇐⇒ xH = yH

defines an equivalence relation on G, as can be easily verified. The (right)
quotient of G by H is the set

G/H = {xH | x ∈ G} .

Notice that xH = yH if and only if x−1y ∈ H.

Proposition 1.2.8. Let H C G be normal. The quotient G/H can be en-
dowed with the group structure

(xH, yH) 7→ xyH, xH 7→ x−1H.
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Proof. The operations are well-defined mappings (G/H) × (G/H) →
G/H and G/H → G/H, respectively, since

xHyH
HCG= xyHH

HH=H= xyH,

and

(xH)−1 = H−1x−1 H−1=H= Hx−1 HCG= x−1H.

The group axioms follow, since by simple calculations

(xH)(yH)(zH) = xyzH,

(xH)(eH) = xH = (eH)(xH),

(x−1H)(xH) = H = (xH)(x−1H).

Notice that eG/H = eGH = H. �

Definition 1.2.9. Let G,H be groups. A mapping φ : G → H is called a
homomorphism (or a group homomorphism), denoted by φ ∈ Hom(G,H),
if

φ(xy) = φ(x)φ(y)

for all x, y ∈ G. A bijective homomorphism φ ∈ Hom(G,H) is called an
isomorphism, denoted by φ : G ∼= H.

Example. Examples of homomorphisms:

1. (x 7→ eH) ∈ Hom(G,H).

2. For y ∈ G, (x 7→ y−1xy) ∈ Hom(G,G).

3. If H C G then x 7→ xH is a surjective homomorphism G→ G/H.

4. For x ∈ G, (n 7→ xn) ∈ Hom(Z, G).

5. If φ ∈ Hom(F,G) and ψ ∈ Hom(G,H) then ψ ◦ φ ∈ Hom(F,H).

Theorem 1.2.10. Let φ : G→ H be a group homomorphism. Then φ(G) <
H and the kernel K = Ker(φ) := {x ∈ G : φ(x) = e} ⊂ G is a normal
subgroup. Moreover, (xK 7→ φ(x)) : G/K → φ(G) is a (well-defined) group
isomorphism.
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Proof. Now φ(G) is a subgroup of H, because

eH = φ(eG) ∈ φ(G),
φ(x)φ(y) = φ(xy) ∈ φ(G),

φ(x−1)φ(x) = φ(x−1x) = φ(eG)
= eH

= . . . = φ(x)φ(x−1)

for every x, y ∈ G; notice that φ(x)−1 = φ(x−1). If a, b ∈ Ker(φ) then

φ(eG) = eH ,

φ(ab) = φ(a)φ(b) = eHeH = eH ,

φ(a−1) = φ(a)−1 = e−1
H = eH ,

so that K = Ker(φ) < G. If moreover x ∈ G then

φ(x−1Kx) = φ(x−1) φ(K) φ(x) = φ(x)−1 {eH} φ(x) = {eH} ,

meaning x−1Kx ⊂ K. Thus K C G by Exercise 1.2.5. By Proposi-
tion 1.2.8, G/K is a group (with the natural operations). Since φ(xa) =
φ(x) for every a ∈ K, ψ = (xK 7→ φ(x)) : G/K → φ(G) is a well-defined
surjection. Furthermore,

ψ(xyK) = φ(xy) = φ(x)φ(y) = ψ(xK)ψ(yK),

thus ψ ∈ Hom(G/K, φ(G)). Finally,

ψ(xK) = ψ(yK) ⇐⇒ φ(x) = φ(y) ⇐⇒ x−1y ∈ K ⇐⇒ xK = yK,

so that ψ is injective. �

1.3 Group actions and representations

Definition 1.3.1. A (left) action of a group G on a set M 6= ∅ is a mapping

((x, p) 7→ x · p) : G×M →M,

for which {
x · (y · p) = (xy) · p,
e · p = p
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for every x, y ∈ G and p ∈M ; the action is transitive if

∀p, q ∈M ∃x ∈ G : x · q = p.

If M is a vector space and the mapping p 7→ x · p is linear for each x ∈ G,
the action is called linear.

Example. Examples of actions:

1. Aut(V ) acts on V by (A, v) 7→ Av.

2. If φ ∈ Hom(G,H) then G acts on H by (x, y) 7→ φ(x)y. Especially,
G acts on G by (x, y) 7→ xy.

3. SO(n) acts on the sphere Sn−1 := {x = (xj)nj=1 | x2
1 + · · ·+ x2

n = 1}
by (A, x) 7→ Ax (interpretation: rotations of a sphere).

4. If H < G and ((x, p) 7→ x · p) : G × M → M is an action then
((x, p) 7→ x · p) : H ×M →M is an action.

Theorem 1.3.2. Let ((x, p) 7→ x · p) : G ×M → M be a transitive action.
Let q ∈M and

Gq := {x ∈ G | x · q = q} .

Then Gq < G (the so-called isotropy subgroup of q), and

fq := (xGq 7→ x · q) : G/Gq →M

is a bijection.

Remark 1.3.3. If Gq C G then G/Gq is a group; otherwise the quotient is
just a set. Notice also that the choice of q ∈M here is essentially irrelevant.

Example. Let G = SO(3), M = S2, and q ∈ S2 be the north pole (i.e.
q = (0, 0, 1) ∈ R3). Then Gq < SO(3) consists of the rotations around
the vertical axis (passing through the north and south poles). Since SO(3)
acts transitively on S2, we get a bijection SO(3)/Gq → S2. The reader may
think how A ∈ SO(3) moves the north pole q ∈ S2 to Aq ∈ S2...

Proof. Let a, b ∈ Gq. Then

e · q = q,

(ab) · q = a · (b · q) = a · q = q,

a−1 · q = a−1 · (a · q) = (a−1a) · q = e · q = q,
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so that Gq < G. Let x, y ∈ G. Since

(xa) · q = x · (a · q) = x · q,

f = (xGq 7→ x · q) : G/Gq → M is a well-defined mapping. If x · q = y · q
then

(x−1y) · q = x−1 · (y · q) = x−1 · (x · q) = (x−1x) · q = e · q = q,

i.e. x−1y ∈ Gq, that is xGq = yGq; hence f is injective. Take p ∈ M . By
transitivity, there exists x ∈ G such that x · q = p. Thereby f(xGq) =
x · q = p, i.e. f is surjective. �

Remark 1.3.4. If an action ((x, p) 7→ x · p) : G×M →M is not transitive,
it is often reasonable to study only the orbit of q ∈M , defined by

G · q := {x · q | x ∈ G} .

Now
((x, p) 7→ x · p) : G× (G · q)→ (G · q)

is transitive, and (x · q 7→ xGq) : G · q → G/Gq is a bijection. Notice that
either G · p = G · q or (G · p) ∩ (G · q) = ∅; thus the action of G “cuts” M
into a disjoint union of “slices” (orbits).

Definition 1.3.5. Let (v, w) 7→ 〈v, w〉H be the inner product of a complex
vector space H. Recall that the adjoint A∗ ∈ Aut(H) of A ∈ Aut(H) is
defined by

〈A∗v, w〉H := 〈v,Aw〉H.

The unitary group of H is

U(H) := {A ∈ Aut(H) | ∀v, w ∈ H : 〈Av,Aw〉H = 〈v, w〉H} ,

i.e. U(H) contains the unitary linear bijections H → H. Clearly A∗ = A−1

for A ∈ U(H). The unitary matrix group for Cn is

U(n) :=
{
A = (aij)ni,j=1 ∈ GL(n,C) | A∗ = A−1

}
;

here A∗ = (aji)ni,j=1 = A−1, i.e.

n∑
k=1

akiakj = δij .
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Definition 1.3.6. A representation of a group G on a vector space V is
φ ∈ Hom(G,Aut(V )); the dimension of φ is dim(φ) := dim(V ). Rep-
resentation ψ ∈ Hom(G,U(H)) is called a unitary representation, and
ψ ∈ Hom(G,U(n)) is called a unitary matrix representation.

Remark 1.3.7. There is a bijective correspondence between the represen-
tations of G on V and linear actions of G on V : If φ ∈ Hom(G,Aut(V ))
then

((x, v) 7→ φ(x)v) : G× V → V

is an action of G on V . Conversely, if ((x, v) 7→ x · v) : G × V → V is a
linear action then

(x 7→ (v 7→ x · v)) ∈ Hom(G,Aut(V )).

Example. Examples of representations:

1. If G < Aut(V ) then (A 7→ A) ∈ Hom(G,Aut(V )).

2. If G < U(H) then (A 7→ A) ∈ Hom(G,U(H)).

3. There is always the trivial representation (x 7→ I) ∈ Hom(G,Aut(V )).

4. Let F(G) = CG, i.e. the vector space of functions G → C. Let us
define πL, πR ∈ Hom(G,Aut(F(G))) by

(πL(y)f)(x) := f(y−1x),
(πR(y)f)(x) := f(xy).

5. Let us identify complex (1× 1)-matrices with C, (z) 7→ z ∈ C. Then
U(1) is identified with the unit circle {z ∈ C : |z| = 1} and (x 7→
eix·ξ) ∈ Hom(Rn,U(1)) for every ξ ∈ Rn.

6. Analogously, (x 7→ ei2πx·ξ) ∈ Hom(Rn/Zn,U(1)) for every ξ ∈ Zn.

7. Let φ ∈ Hom(G,Aut(V )) and ψ ∈ Hom(G,Aut(W )), where V,W are
over the same field. Then

φ⊕ ψ = (x 7→ φ(x)⊕ ψ(x)) ∈ Hom(G,Aut(V ⊕W )),

φ⊗ ψ|G = (x 7→ φ(x)⊗ ψ(x)) ∈ Hom(G,Aut(V ⊗W )),

where V ⊕ W is the direct sum and V ⊗ W is the tensor product
space (to be introduced later).
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8. If φ = (x 7→ (φ(x)ij)ni,j=1) ∈ Hom(G,GL(n,C)) then φ = (x 7→
(φ(x)ij)ni,j=1) ∈ Hom(G,GL(n,C)).

Definition 1.3.8. Let V be a vector space and A ∈ End(V ). Subspace
W ⊂ V is called A-invariant if

AW ⊂W,

where AW = {Aw : w ∈W}. Let φ ∈ Hom(G,Aut(V )). A subspace W ⊂
V is called φ-invariant if W is φ(x)-invariant for every x ∈ G (abbreviated
φ(G)W ⊂ W ); φ is irreducible if the only φ-invariant subspaces are the
trivial subspaces {0} and V .

Remark 1.3.9. If W ⊂ V is φ-invariant for φ ∈ Hom(G,Aut(V )), we may
define the restricted representation φ|W ∈ Hom(G,Aut(W )) by φ|W (x)w :=
φ(x)w. If φ is unitary then its restriction is also unitary.

Lemma 1.3.10. Let φ ∈ Hom(G,U(H)). Let W ⊂ H be a φ-invariant
subspace. Then its orthocomplement

W⊥ = {v ∈ H | ∀w ∈W : 〈v, w〉H = 0}

is φ-invariant.

Proof. If x ∈ G, v ∈W⊥ and w ∈W then

〈φ(x)v, w〉H = 〈v, φ(x)∗w〉H = 〈v, φ(x)−1w〉H = 〈v, φ(x−1)w〉H = 0,

meaning that φ(x)v ∈W⊥. �

Definition 1.3.11. Let V be an inner product space and let {Vj}j∈J be some
family of its mutually orthogonal subspaces (i.e. 〈vi, vj〉V = 0 if vi ∈ Vi,
vj ∈ Vj and i 6= j). The (algebraic) direct sum of {Vj}j∈J is the subspace

W =
⊕
j∈J

Vj := span
⋃
j∈J

Vj .

If Aj ∈ End(Vj) then define

A =
⊕
j∈J

Aj ∈ End(W )
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by A|Vjv = Ajv for every j ∈ J and v ∈ Vj . If φj ∈ Hom(G,Aut(Vj)) then
define

φ =
⊕
j∈J

φj ∈ Hom(G,Aut(W ))

by φ|Vj = φj for every j ∈ J , i.e. φ(x) :=
⊕

j∈J φj(x) for every x ∈ G.

Theorem 1.3.12. Let φ ∈ Hom(G,U(H)) be finite-dimensional. Then φ is
a direct sum of irreducible unitary representations.

Proof (by induction). The claim is true for dim(H) = 1, since then the
only subspaces of H are the trivial ones. Suppose the claim is true for
representations of dimension n or less. Suppose dim(H) = n + 1. If φ is
irreducible, there is nothing to prove. Hence assume that there exists a non-
trivial φ-invariant subspace W ⊂ H. Then also the orthocomplement W⊥

is φ-invariant by Lemma 1.3.10. Due to the φ-invariance of the subspacesW
and W⊥, we may define restricted representations φ|W ∈ Hom(G,U(W ))
and φ|W⊥ ∈ Hom(G,U(W⊥)). Hence H = W ⊕W⊥ and φ = φ|W ⊕φ|W⊥ .
Moreover, dim(W ) ≤ n and dim(W⊥) ≤ n; the proof is complete, since
unitary representations up to dimension n are direct sums of irreducible
unitary representations. �

Remark 1.3.13. Theorem 1.3.12 means that if φ ∈ Hom(G,U(H)) is finite-
dimensional then

H =
k⊕
j=1

Wj , φ =
k⊕
j=1

φ|Wj ,

where each φ|Wj
∈ Hom(G,U(Wj)) is irreducible.

Definition 1.3.14. A linear mapping A : V →W is an intertwining operator
between representations φ ∈ Hom(G,Aut(V )) and ψ ∈ Hom(G,Aut(W)),
denoted by A ∈ Hom(φ, ψ), if

Aφ(x) = ψ(x)A

for every x ∈ G; if such A is invertible then φ and ψ are said to be
equivalent, denoted by φ ∼ ψ.

Remark 1.3.15. Always 0 ∈ Hom(φ, ψ), and Hom(φ, ψ) is a vector space.
Moreover, if A ∈ Hom(φ, ψ) and B ∈ Hom(ψ, ξ) then BA ∈ Hom(φ, ξ).

Proposition 1.3.16. Let φ ∈ Hom(G,Aut(Vφ)) and ψ ∈ Hom(G,Aut(Vψ))
be irreducible. If A ∈ Hom(φ, ψ) then either A = 0 or A : Vφ → Vψ is
invertible.
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Proof. The image AVφ ⊂ Vψ of A is ψ-invariant, because

ψ(G) AVφ = A φ(G)Vφ = AVφ,

so that either AVφ = {0} or AVφ = Vψ, as ψ is irreducible. Hence either
A = 0 or A is a surjection.

The kernel Ker(A) = {v ∈ Vφ | Av = 0} is φ-invariant, since

A φ(G) Ker(A) = ψ(G) A Ker(A) = ψ(G) {0} = {0} ,

so that either Ker(A) = {0} or Ker(A) = Vφ, as φ is irreducible. Hence
either A is injective or A = 0.

Thus either A = 0 or A is bijective. �

Corollary 1.3.17. (Schur’s Lemma (finite-dimensional [1905]).) Let φ ∈
Hom(G,Aut(V )) be irreducible and finite-dimensional. Then Hom(φ, φ) =
CI = {λI | λ ∈ C}.

Proof. Let A ∈ Hom(φ, φ). The finite-dimensional linear operator A :
V → V has an eigenvalue λ ∈ C: now λI − A : V → V is not invert-
ible. On the other hand, λI − A ∈ Hom(φ, φ), so that λI − A = 0 by
Proposition 1.3.16. �

Corollary 1.3.18. Let G be a commutative group. Irreducible finite-dimensional
representations of G are one-dimensional.

Proof. Let φ ∈ Hom(G,Aut(V )) be irreducible, dim(φ) <∞. Due to the
commutativity of G,

φ(x)φ(y) = φ(xy) = φ(yx) = φ(y)φ(x)

for every x, y ∈ G, so that φ(G) ⊂ Hom(φ, φ). By Schur’s Lemma 1.3.17,
Hom(φ, φ) = CI. Hence if v ∈ V then

φ(G)span{v} = span{v},

i.e. span{v} is φ-invariant. Therefore either v = 0 or span{v} = V . �

Corollary 1.3.19. Let φ ∈ Hom(G,U(Hφ)) and ψ ∈ Hom(G,U(Hψ)) be
finite-dimensional. Then φ ∼ ψ if and only if there exists isometric iso-
morphism B ∈ Hom(φ, ψ).

Remark 1.3.20. An isometry f : M → N between metric spaces (M,dM ), (N, dN )
satisfies dN (f(x), f(y)) = dM (x, y) for every x, y ∈M .
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Proof. The “if”-part is trivial. Assume that φ ∼ ψ. Recall that there are
direct sum decompositions

φ =
m⊕
j=1

φj , ψ =
n⊕
k=1

ψk,

where φj , ψk are irreducible unitary representations on Hφj ,Hψk , respec-
tively. Now n = m, since φ ∼ ψ. Moreover, we may arrange the indeces so
that φj ∼ ψj for each j. Choose invertible Aj ∈ Hom(φj , ψj). Then A∗j is
invertible, and A∗j ∈ Hom(ψj , φj): if x ∈ G, v ∈ Hφj and w ∈ Hψj then

〈A∗jψj(x)w, v〉Hφ = 〈w,ψj(x)∗Ajv〉Hψ
= 〈w,ψj(x−1)Ajv〉Hψ
= 〈w,Ajφj(x−1)v〉Hψ
= 〈φj(x−1)∗A∗jw, v〉Hφ
= 〈φj(x)A∗jw, v〉Hφ .

Thereby A∗jAj ∈ Hom(φj , φj) is invertible. By Schur’s Lemma 1.3.17,
A∗jAj = λjI, where λj 6= 0. Let v ∈ Hφj such that ‖v‖Hφ = 1. Then

λ = λ‖v‖2Hφ = 〈λv, v〉Hφ = 〈A∗jAjv, v〉Hφ = 〈Ajv,Ajv〉Hψ = ‖Ajv‖2Hψ > 0,

so that we may define Bj := λ−1/2Aj ∈ Hom(φj , ψj). Then Bj : Hφj →
Hψj is an isometry, B∗jBj = I. Finally, define

B :=
m⊕
j=1

Bj .

Clearly, B : Hφ → Hψ is an isometry, bijection, and B ∈ Hom(φ, ψ). �

Exercise 1.3.21. Let G be a finite group and let F(G) be the vector space
of functions f : G→ C. Let∫

G

f dµG :=
1
|G|

∑
x∈G

f(x),

when f ∈ F(G). Let us endow F(G) with the inner product

〈f, g〉L2(µG) :=
∫
G

f g dµG.
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Define πL, πR : G→ Aut(F(G)) by

(πL(y) f)(x) := f(y−1x),

(πR(y) f)(x) := f(xy).

Show that πL and πR are equivalent unitary representations.

Exercise 1.3.22. Let G be non-commutative and |G| = 6. Endow F(G)
with the inner product given in Exercise 1.3.21. Find the πL-invariant
subspaces and give orthogonal bases for them.

Exercise 1.3.23. Let us endow the n-dimensional torus Tn := Rn/Zn with
the quotient group structure and with the Lebesgue measure. Let πL, πR :
Tn → L(L2(Tn)) be defined by

(πL(y) f)(x) := f(x− y),

(πR(y) f)(x) := f(x+ y)

for almost every x ∈ Tn. Show that πL and πR are equivalent reducible
unitary representations. Describe the minimal πL- and πR-invariant sub-
spaces containing the function x 7→ ei2πx·ξ, where ξ ∈ Zn.
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Chapter 2

Topological groups

2.1 Topological groups

Definition 2.1.1. A group and a topological space G is called a topological
group if {e} ⊂ G is closed and if the mappings

((x, y) 7→ xy) : G×G→ G,

(x 7→ x−1) : G→ G

are continuous.

Example. In the following, when not specified, the topologies and the group
operations are the usual ones:

1. Any group G endowed with the discrete topology P(G) = {U : U ⊂
G} is a topological group.

2. Z, Q, R and C are topological groups when the group operation is
the addition and the topology is as usual.

3. Q×, R×, C× are topological groups when the group operation is the
multiplication and the topology is as usual.

4. Topological vector spaces are topological groups with vector addition:
such a space is both a vector space and a topological Hausdorff space
such that the vector space operations continuous.

5. Let X be a Banach space. The set AUT(X) := Aut(X) ∩ L(X) of
invertible bounded linear operators X → X forms a topological group
with respect to the norm topology.
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6. Subgroups of topological groups are topological groups.

7. If G and H are topological groups then G×H is a topological group.
Actually, Cartesian products always preserve the topological group
structure.

Exercise 2.1.2. Show that a topological group is actually even a Hausdorff
space.

Lemma 2.1.3. Let G be a topological group and y ∈ G. Then

x 7→ xy, x 7→ yx, x 7→ x−1

are homeomorphisms G→ G.

Proof. Mapping

(x 7→ xy) : G
x 7→(x,y)→ G×G (a,b) 7→ab→ G

is continuous as a composition of continuous mappings. The inverse map-
ping is (x 7→ xy−1) : G → G, being also continuous; hence this is a
homeomorphism. Similarly, (x 7→ yx) : G → G is a homeomorphism. The
inversion (x 7→ x−1) : G→ G is continuous by definition, and it is its own
inverse. �

Corollary 2.1.4. If U ⊂ G is open and S ⊂ G then SU,US,U−1 ⊂ G are
open.

Proposition 2.1.5. Let G be a topological group. If H < G then H < G. If
H C G then H C G.

Proof. Let H < G. Trivially e ∈ H ⊂ H. Now

H H ⊂ HH = H,

where the inclusion is due to the continuity of the mapping ((x, y) 7→ xy) :
G×G→ G. The continuity of the inversion (x 7→ x−1) : G→ G gives

H
−1 ⊂ H−1 = H.

Thus H < G.
Let H C G, y ∈ G. Then

yH = yH = Hy = Hy;
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notice how homeomorphisms (x 7→ yx), (x 7→ xy) : G→ G were exploited.
�

Proposition 2.1.6. Let G be a topological group and Ce ⊂ G the component
of e. Then Ce C G is closed.

Proof. Components are always closed, and e ∈ Ce by definition. Since
Ce ⊂ G is connected, also Ce × Ce ⊂ G × G and is connected. By the
continuity of the group operations, CeCe ⊂ G and C−1

e ⊂ G are connected.
Since e = ee ∈ CeCe, we have CeCe ⊂ Ce. And since e = e−1 ∈ C−1

e , also
C−1
e ⊂ Ce. Take y ∈ G. Then y−1Cey ⊂ G is connected, by the continuity

of (x 7→ y−1xy) : G→ G. Now e = y−1ey ∈ y−1Cey, so that y−1Cey ⊂ Ce;
Ce is normal in G. �

Remark 2.1.7. Let H < G and S ⊂ G. The mapping (x 7→ xH) : G →
G/H identifies the sets

SH = {sh : s ∈ S, h ∈ H} ⊂ G,

{sH : s ∈ S} = {{sh : h ∈ H} : s ∈ S} ⊂ G/H.

This provides a nice way to treat the quotient G/H.

Definition 2.1.8. Let G be a topological group, H < G. The quotient
topology of G/H is

τG/H := {{uH : u ∈ U} : U ⊂ G open} ;

in other words, τG/H is the strongest (i.e. largest) topology for which the
quotient map (x 7→ xH) : G → G/H is continuous. If U ⊂ G is open, we
may identify sets UH ⊂ G and {uH : u ∈ H} ⊂ G/H.

Theorem 2.1.9. Let G be a topological group and H C G. Then

((xH, yH) 7→ xyH) : (G/H)× (G/H)→ G/H,

(xH 7→ x−1H) : G/H → G/H

are continuous. Moreover, G/H is a topological group if and only if H is
closed.

Proof. We know already that the operations in Theorem are well-defined
group operations, because H is normal in G. Recall Remark 2.1.7, how we
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may identify certain subsets of G with subsets of G/H. Then a neighbour-
hood of the point xyH ∈ G/H is of the form UH for some open U ⊂ G,
U 3 xy. Take open U1 3 x and U2 3 y such that U1U2 ⊂ U . Then

(xH)(yH) ⊂ (U1H)(U2H) = U1U2H ⊂ UH,

so that ((xH, yH) 7→ xyH) : (G/H) × (G/H) → G/H is continuous. A
neighbourhood of the point x−1H ∈ G/H is of the form V H for some
open V ⊂ G, V 3 x−1. But V −1 3 x is open, and (V −1)−1 = V , so that
(xH 7→ x−1H) : G/H → G/H is continuous.

Notice that eG/H = H. If G/H is a topological group, then

H = (x 7→ xH)−1
{
eG/H

}
⊂ G

is closed. On the other hand, if H C G is closed then

(G/H) \ {eG/H} ∼= (G \H)H ⊂ G

is open, i.e. {eG/H} ⊂ G/H is closed. �

Definition 2.1.10. Let G1, G2 be topological groups. Let

HOM(G1, G2) := Hom(G1, G2) ∩ C(G1, G2),

i.e. the set of continuous homomorphisms G1 → G2.

Remark 2.1.11. By Theorem 2.1.9, closed subgroups of G correspond bi-
jectively to continuous surjective homomorphisms from G to some other
topological group (up to isomorphism).

Definition 2.1.12. Let G be a topological group and H be a Hilbert space.
A representation φ ∈ Hom(G,U(H)) is strongly continuous if

(x 7→ φ(x)v) : G→ H

is continuous for every v ∈ H.

Remark 2.1.13. This means that (x 7→ φ(x)) : G → L(H) is continuous,
when L(H) ⊃ U(H) is endowed with the strong operator topology:

Aj
strongly→ A

definition⇐⇒ ∀v ∈ H : ‖Ajv −Av‖H → 0.

Why we should not endow U(H) with the operator norm topology (which
is even stronger, i.e. larger topology)? The reason is that there are interest-
ing unitary representations, which are continuous in the strong operator
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topology, but not in the operator norm topology: this is exemplified by
πL : Rn → U(L2(Rn)), defined by

(πL(y)f)(x) := f(x− y)

for almost every x ∈ Rn.

Definition 2.1.14. A strongly continuous φ ∈ Hom(G,U(H)) is called topo-
logically irreducible if the only closed φ-invariant subspaces are the trivial
ones {0} and H.

Exercise 2.1.15. Let V be a topological vector space and let W ⊂ V be
an A-invariant subspace, where A ∈ Aut(V ) is continuous. Show that the
closure W ⊂ V is also A-invariant.

Definition 2.1.16. A strongly continuous φ ∈ Hom(G,U(H)) is called a
cyclic representation if

span φ(G)v ⊂ H

is dense for some v ∈ H; then such v is called a cyclic vector.

Example. If φ ∈ Hom(G,U(H)) is topologically irreducible then any non-
zero v ∈ H is cyclic: Namely, if V := span φ(G)v then φ(G)V ⊂ V and
consequently φ(G)V ⊂ V , so that V is φ-invariant. If v 6= 0 then V = H,
because of the topological irreducibility.

Definition 2.1.17. A Hilbert space H is a direct sum of closed subspaces
(Hj)j∈J , denoted by

H =
⊕
j∈J
Hj

if the subspace family is pairwise orthogonal and span∪j∈J Hj is dense in
H. Then

∀x ∈ H ∀j ∈ J ∃!xj ∈ Hj : x =
∑
j∈J

xj , ‖x‖2H =
∑
j∈J
‖xj‖2H .

If φ ∈ Hom(G,U(H)) and each Hj is φ-invariant then φ is said to be the
direct sum

φ =
⊕
j∈J

φ|Hj

where φ|Hj = (x 7→ φ(x)v) ∈ Hom(G,U(Hj)).
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Proposition 2.1.18. Let φ ∈ Hom(G,U(H)) be strongly continuous. Then

φ =
⊕
j∈J

φ|Hj ,

where each φ|Hj is cyclic.

Proof. Let J̃ be the family of all closed φ-invariant subspaces V ⊂ H for
which φ|V is cyclic. Let

S =
{
s ⊂ J̃

∣∣∣ ∀V,W ∈ s : V = W or V⊥W
}
.

It is easy to see that {{0}} ∈ S, so that S 6= ∅. Let us introduce a partial
order on S by inclusion:

s1 ≤ s2
definition⇐⇒ s1 ⊂ s2.

The chains in S have upper bounds: if R ⊂ S is a chain then r ≤ ∪s∈R s ∈
S for every r ∈ R. Therefore by Zorn’s Lemma, there exists a maximal
element t ∈ S. Let

V :=
⊕
W∈t

W.

To get a contradiction, suppose V 6= H. Then there exists v ∈ V ⊥ \ {0}.
Since span(φ(G)v) is φ-invariant, its closure W0 is also φ-invariant (see
Exercise 2.1.15). Clearly W0 ⊂ V ⊥ = V ⊥, and φ|W0 has cyclic vector v,
yielding

s := t ∪ {W0} ∈ S,

where t ≤ s 6≤ t. This contradicts the maximality of t; thus V = H. �

Exercise 2.1.19. Fill in the details in the proof of Proposition 2.1.18.

Exercise 2.1.20. Assuming that H is separable, prove Proposition 2.1.18
by ordinary induction (without resorting to general Zorn’s Lemma).

2.2 Some results for topological groups

Proposition 2.2.1. Let ((x, p) 7→ x · p) : G × M → M be a continuous
action of G on M , and let q ∈ M . If Gq and G/Gq are connected then G
is connected.
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Proof. Suppose G is disconnected and Gq is connected. Then there are
non-empty disjoint open sets U, V ⊂ G such that G = U ∪ V . The sets

U ′ := {uGq : u ∈ U} ⊂ G/Gq, V ′ := {vGq : v ∈ V } ⊂ G/Gq
are non-empty and open, and G/Gq = U ′ ∪ V ′. Take u ∈ U and v ∈ V .
As a continuous image of a connected set, uGq = (x 7→ ux)(Gq) ⊂ G is
connected; moreover u = ue ∈ uGq; thereby uGq ⊂ U . In the same way
we see that vGq ⊂ V . Hence U ′ ∩V ′ = ∅, so that G/Gq is disconnected. �

Corollary 2.2.2. If G is a topological group, H < G is connected and G/H
is connected then G is connected.

Proof. Using the notation of Proposition 2.2.1, let M = G/H, q = H
and x · p = xp, so that Gq = H and G/Gq = G/H. �

Exercise 2.2.3. Show that SO(n), SU(n) and U(n) are connected for every
n ∈ Z+. How about O(n)?

Proposition 2.2.4. Let G be a topological group and H < G. Then f :
G/H → C is continuous if and only if (x 7→ f(xH)) : G → C is continu-
ous.

Proof. If f ∈ C(G/H) then (x 7→ f(xH)) ∈ C(G), since it is obtained by
composing f and the continuous quotient map (x 7→ xH) : G→ G/H.

Now suppose (x 7→ f(xH)) ∈ C(G). Take open V ⊂ C. Then U :=
(x 7→ f(xH))−1(V ) ⊂ G is open, so that U ′ := {uH : u ∈ U} ⊂ G/H is
open. Trivially, f(U ′) = V . Hence f ∈ C(G/H). �

Proposition 2.2.5. Let G be a topological group and H < G. Then G/H is
a Hausdorff space if and only if H is closed.

Proof. If G/H is a Hausdorff space then H = (x 7→ xH)−1({H}) ⊂ G is
closed, because the quotient map is continuous and {H} ⊂ G/H is closed.

Next suppose H is closed. Take xH, yH ∈ G/H such that xH 6= yH.
Then S := ((a, b) 7→ a−1b)−1(H) ⊂ G×G is closed, since H ⊂ G is closed
and ((a, b) 7→ a−1b) : G×G→ G is continuous. Now (x, y) 6∈ S. Take open
sets U 3 x and V 3 y such that (U × V ) ∩ S = ∅. Then

U ′ := {uH : u ∈ U} ⊂ G/H, V ′ := {vH : v ∈ V } ⊂ G/H

are disjoint open sets, and xH ∈ U ′, yH ∈ V ′; G/H is Hausdorff. �
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2.3 Compact groups

Definition 2.3.1. A topological group is a (locally) compact group if it is
(locally) compact as a topological space.

Example. 1. Any group G with the discrete topology is a locally com-
pact group; then G is a compact group if and only if it is finite.

2. Q,Q× are not locally compact groups;
R,R×,C,C× are locally compact groups, but non-compact.

3. A topological vector space is a locally compact group if and only if
it is finite-dimensional.

4. O(n),SO(n),U(n),SU(n) are compact groups.

5. GL(n) is a locally compact group, but non-compact.

6. If G,H are locally compact groups then G×H is a locally compact
group.

7. If {Gj}j∈J is a family of compact groups then
∏
j∈J Gj is a compact

group.

8. If G is a compact group and H < G is closed then H is a compact
group.

Proposition 2.3.2. Let ((x, p) 7→ x ·p) : G×M →M be a continuous action
of a compact group G on a Hausdorff space M , and let q ∈M . Then

f := (xGq 7→ x · q) : G/Gq → G · q

is a homeomorphism.

Proof. We already know that f is a well-defined bijection. We need to
show that f is continuous. An open subset of G ·q is of the form V ∩(G ·q),
where V ⊂ M is open. Since the action is continuous, also (x 7→ x · q) :
G→M is continuous, so that U := (x 7→ x ·q)−1(V ) ⊂ G is open. Thereby

f−1(V ∩ (G · q)) = {xGq : x ∈ U} ⊂ G/Gq

is open; f is continuous. Space G is compact and the quotient map (x 7→
xGq) : G → G/Gq is continuous, so that G/Gq is compact. From the
general topology we know that a continuous bijection from a compact
space to a Hausdorff space is a homeomorphism. �
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Corollary 2.3.3. If G is compact, φ ∈ HOM(G,H) and K = Ker(φ) then

ψ := (xK 7→ φ(x)) ∈ HOM(G/K, φ(G))

is a homeomorphism.

Proof. Using the notation of Proposition 2.3.2, we have M = H, q = eH ,
x · p = φ(x)p, so that Gq = K, G/Gq = G/K, G · q = φ(G), ψ = f . �

Remark 2.3.4. What could happen if we drop the compactness assumption
in Corollary 2.3.3? If G and H are Banach spaces, φ ∈ L(G,H) is compact
and dim(φ(G)) = ∞ then ψ = (x + Ker(φ) 7→ φ(x)) : G/Ker(φ) → φ(G)
is a bounded linear bijection, but ψ−1 is not bounded! But if φ ∈ L(G,H)
is a bijection then φ−1 is bounded by the Open Mapping Theorem!

Definition 2.3.5. Let G be a topological group. A function f : G → C is
uniformly continuous if for every ε > 0 there exists open U 3 e such that

∀x, y ∈ G : x−1y ∈ U ⇒ |f(x)− f(y)| < ε.

Exercise 2.3.6. Under which circumstances a polynomial p : R → C is
uniformly continuous? Show that if a continuous function f : R → C is
periodic or vanishes outside a bounded set then it is uniformly continuous.

Theorem 2.3.7. If G is a compact group and f ∈ C(G) then f is uniformly
continuous.

Proof. Take ε > 0. Define the open disk D(z, r) := {w ∈ C : |w−z| < r},
where z ∈ C, r > 0. Since f is continuous,

Vx := f−1(D(f(x), ε)) 3 x

is open. Then x−1Vx 3 e = ee is open, so that there exist open U1,x, U2,x 3
e such that U1,xU2,x ⊂ x−1Vx, by the continuity of the group multiplica-
tion. Define Ux := U1,x ∩ U2,x. Since {xUx : x ∈ G} is an open cover of
compact G, there is a finite subcover {xjUxj}nj=1. Now

U :=
n⋂
j=1

Uxj 3 e

is open. Suppose x, y ∈ G such that x−1y ∈ U . There exists k ∈ {1, . . . , n}
such that x ∈ xkUxk , so that

x, y ∈ xU ⊂ xkUxkUxk ⊂ xkx
−1
k Vxk = Vxk ,
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yielding

|f(x)− f(y)| ≤ |f(x)− f(xk)|+ |f(xk)− f(y)|
< 2ε.

�

Exercise 2.3.8. Let G be a compact group, x ∈ G and A = {xn}∞n=1. Show
that A < G.

2.4 Haar measure

Definition 2.4.1. Let X be a compact Hausdorff space and K ∈ {R,C}.
Then C(X,K) is a Banach space over K with the norm

f 7→ ‖f‖C(X,K) := max
x∈X
|f(x)|.

Its dual C(X,K)′ = L(C(X,K),K) consists of the bounded linear func-
tionals C(X,K)→ K, and is endowed with the Banach space norm

L 7→ ‖L‖C(X,K)′ := sup
f∈C(X,K): ‖f‖C(X,K)≤1

|Lf |.

A functional L : C(X,K)→ C is called positive if Lf ≥ 0 whenever f ≥ 0.

By the Riesz Representation Theorem (see e.g. [17]), if L ∈ C(X,K)′

is positive then there exists a unique positive Borel regular measure µ on
X such that

Lf =
∫
X

f dµ

for every f ∈ C(X,K); moreover, µ(X) = ‖L‖C(X,K)′ . For short, C(X) :=
C(X,C).

To be proven. Let G be a compact group. There exists a unique positive
linear functional Haar ∈ C(G)′ such that

Haar(f) = Haar(x 7→ f(yx)),
Haar(1) = 1,
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for every y ∈ G, where 1 = (x 7→ 1) ∈ C(G). Moreover, this Haar integral
satisfies

Haar(f) = Haar(x 7→ f(xy))
= Haar(x 7→ f(x−1)).

Remark 2.4.2. By the Riesz Representation Theorem (see e.g. [17]), the
Haar integral begets a unique Borel regular probability measure µG such
that

Haar(f) =
∫
G

f dµG.

This µG is called the Haar measure of G. Obviously,∫
G

1 dµG = µG(G) = 1,∫
G

f dµG =
∫
G

f(yx) dµG(x)

=
∫
G

f(xy) dµG(x)

=
∫
G

f(x−1) dµG(x).

Thus the Haar integral Haar(f) =
∫
G
f dµG can be thought as the most

natural average of f ∈ C(G). In the real (but still idealized) world, we can
know usually only finitely many values of f , i.e. we are able to take only
samples {f(x) : x ∈ S} for a finite set S ⊂ G. Then a natural idea for
approximating Haar(f) would be computing∑

x∈S
f(x) α(x),

where sampling weights α(x) ≥ 0 satisfy
∑
x∈S α(x) = 1. The problem is

to find clever choices for sampling sets and weights, some sort of “almost
uniformly distributed unit mass” on G is needed; for this end we shall
introduce convolutions.
Example. If G is finite then∫

G

f dµG =
1
|G|

∑
x∈G

f(x).
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For T = R/Z, ∫
T
f dµT =

∫ 1

0

f(x+ Z) dx,

i.e. integration with respect to the Lebesgue measure on [0, 1[.

Definition 2.4.3. Let G be a compact group. A function α : G→ [0, 1] is a
sampling measure on G, α ∈ SMG, if

supp(α) = {a ∈ G : α(a) 6= 0} is finite and
∑
a∈G

α(a) = 1.

The set supp(α) ⊂ G is called the support of α. Naturally, α ∈ SMG can
be regarded as a finitely supported probability measure on G, and∫

G

f dα = α̌ ∗ f(e) = f ∗ α̌(e),

where α̌(a) := α(a−1).

Definition 2.4.4. Let α, β ∈ SMG and f ∈ C(G,K). The convolutions

α ∗ β, α ∗ f, f ∗ β : G→ K

are defined by

α ∗ β(b) =
∑
a∈G

α(a)β(a−1b),

α ∗ f(x) =
∑
a∈G

α(a)f(a−1x),

f ∗ β(x) =
∑
b∈G

f(xb−1)β(b).

Definition 2.4.5. A semigroup is a non-empty set S with an operation
((r, s) 7→ rs) : S × S → S satisfying r(st) = (rs)t for every r, s, t ∈ S. A
semigroup is commutative if rs = sr for every r, s ∈ S. Moreover, if there
exists e ∈ S such that es = se = s for every s ∈ S then S is called a
monoid.

Example. Z+ = {n ∈ Z : n > 0} is a commutative monoid with respect
to multiplication, and a commutative semigroup with respect addition. If
V is a vector space then (End(V ), (A,B) 7→ AB) is a monoid with e = I.
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Lemma 2.4.6. (SMG, (α, β) 7→ α ∗ β) is a monoid.

Exercise 2.4.7. Prove Lemma 2.4.6. How supp(α ∗β) is related to supp(α)
and supp(β)? In which case SMG is a group? Show that SMG is commu-
tative if and only if G is commutative.

Lemma 2.4.8. If α ∈ SMG then (f 7→ α ∗ f), (f 7→ f ∗ α) ∈ L(C(G,K))
and

‖α ∗ f‖C(G,K) ≤ ‖f‖C(G,K), ‖f ∗ α‖C(G,K) ≤ ‖f‖C(G,K).

Moreover, α ∗ 1 = 1 = 1 ∗ α.

Proof. Trivially, α∗1 = 1. Because (x 7→ a−1x) : G→ G is a homeomor-
phism and the summing is finite, α ∗ f ∈ C(G,K). Linearity of f 7→ α ∗ f
is clear. Next,

|α ∗ f(x)| ≤
∑
a∈G

α(a)|f(a−1x)| ≤
∑
a∈G

α(a)‖f‖C(G,K) = ‖f‖C(G,K).

Similar conclusions hold for f ∗ α. �

Lemma 2.4.9. If f ∈ C(G,R) and α ∈ SMG then

min(f) ≤ min(α ∗ f) ≤ max(α ∗ f) ≤ max(f),

min(f) ≤ min(f ∗ α) ≤ max(f ∗ α) ≤ max(f),

so that
p(α ∗ f) ≤ p(f), p(f ∗ α) ≤ p(f),

where p(g) := max(g)−min(g).

Proof. Now

min(f) =
∑
a∈G

α(a) min(f) ≤ min
x∈G

∑
a∈G

α(a)f(a−1x) = min(α ∗ f),

max(α ∗ f) = max
x∈G

∑
a∈G

α(a)f(a−1x) ≤
∑
a∈G

α(a) max(f) = max(f),

and clearly min(α ∗ f) ≤ max(α ∗ f). The proof for f ∗ α is symmetric. �

Exercise 2.4.10. Show that p := (f 7→ max(f)−min(f)) : C(G,R)→ R is
a bounded seminorm on C(G,R).
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Proposition 2.4.11. Let f ∈ C(G,R). For every ε > 0 there exist α, β ∈
SMG such that

p(α ∗ f) < ε, p(f ∗ β) < ε.

Remark 2.4.12. This is the decisive stage in the construction of the Haar
measure. The idea is that for a non-constant f ∈ C(G) we can find sam-
pling measures α, β that “tame” the oscillations of f so that α∗f and f ∗β
are almost constant functions. It will turn out that there exists a unique
constant function approximated by convolutions, “the average” Haar(f)1
of f . In the sequel, notice how compactness is exploited!

Proof. Let ε > 0. By Theorem 2.3.7, a continuous function on a compact
group is uniformly continuous. Thus there exists an open set U ⊃ e such
that |f(x)− f(y)| < ε, when x−1y ∈ U . We notice easily that if γ ∈ SMG

then also |γ ∗ f(x)− γ ∗ f(y)| < ε, when x−1y ∈ U :

|γ ∗ f(x)− γ ∗ f(y)| =

∣∣∣∣∣∑
a∈G

γ(a)
(
f(a−1x)− f(a−1y)

)∣∣∣∣∣
≤

∑
a∈G

γ(a)
∣∣f(a−1x)− f(a−1y)

∣∣
<

∑
a∈G

γ(a) ε = ε.

Now {xU : x ∈ G} is an open cover of the compact space G, hence having
a finite subcover {xjU}nj=1. The set S := {xix−1

j : 1 ≤ i, j ≤ n} has
|S| ≤ n2 elements. Define γ1 ∈ SMG by

γ1(a) =

{
|S|−1, when a ∈ S,
0, otherwise.

Let γk+1 := γk ∗ γ1 ∈ SMG. Then

p(γk+1 ∗ f) = max(γk+1 ∗ f)−min(γk+1 ∗ f)
≤ max(γk+1 ∗ f)−min(γk ∗ f)

=
1
|S|

max
x∈G

∑
a∈S

γk ∗ f(a−1x)−min(γk ∗ f)

(?)
<

1
|S|

[(|S| − 1) max(γk ∗ f) + [min(γk ∗ f) + ε]]−min(γk ∗ f)

=
|S| − 1
|S|

p(γk ∗ f) +
1
|S|

ε,
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where the last inequality (?) was obtained by estimating |S| − 1 terms
in the sum trivially, and finally the remaining term was estimated by re-
calling the uniform continuity of γk ∗ f . But (p(γk ∗ f))∞k=1 ⊂ R is a
non-increasing sequence bounded from below by 0. Thus there exists the
limit δ := limk→∞ p(γk ∗ f) ≥ 0, and

δ ≤ |S| − 1
|S|

δ +
1
|S|

ε, i.e. δ ≤ ε.

Hence there exists k0 such that, say, p(γk ∗ f) ≤ 2ε for every k ≥ k0. This
proves the claim. �

Exercise 2.4.13. In the proof above, check the validity of inequality (?)
with details.

Corollary 2.4.14. For f ∈ C(G,R) there exists a unique constant function
Haar(f)1 belonging to the closure of

{α ∗ f : α ∈ SMG} ⊂ C(G,R).

Moreover, Haar(f)1 is the unique constant function belonging to the clo-
sure of

{f ∗ β : β ∈ SMG} ⊂ C(G,R).

Proof. Pick any α1 ∈ SMG. Suppose we have chosen αk ∈ SMG. Let
αk+1 := γk ∗ αk, where γk ∈ SMG satisfies

p(αk+1 ∗ f) = p(γk ∗ (αk ∗ f)) < 2−k.

Now

min(αk ∗ f) ≤ min(αk+1 ∗ f) ≤ max(αk+1 ∗ f) ≤ max(αk ∗ f),

so that there exists

lim
k→∞

min(αk ∗ f) = lim
k→∞

max(αk ∗ f) =: c1 ∈ R.

In the same way we may construct (βk)∞k=1 ⊂ SMG such that

lim
k→∞

min(f ∗ βk) = lim
k→∞

max(f ∗ βk) =: c2 ∈ R.
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But

|c1 − c2| = ‖c11− c21‖C(G,R)

= ‖(c11− αk ∗ f) ∗ βk + αk ∗ (f ∗ βk − c21)‖C(G,R)

≤ ‖(c11− αk ∗ f) ∗ βk‖C(G,R) + ‖αk ∗ (f ∗ βk − c21)‖C(G,R)

≤ ‖c11− αk ∗ f‖C(G,R) + ‖f ∗ βk − c21‖C(G,R)

−−−−→
k→∞

0.

Thus c1 = c2 ∈ R is unique, depending only on f ∈ C(G,R). �

Definition 2.4.15. The Haar integral of f ∈ C(G) is

Haar(f) := Haar(<(f)) + i Haar(=(f)),

where <(f),=(f) are the real and imaginary parts of f , respectively.

Theorem 2.4.16. The Haar integral Haar : C(G)→ C is the unique positive
bounded linear functional satisfying

Haar(1) = 1,
Haar(f) = Haar(x 7→ f(yx)),

for every f ∈ C(G) and y ∈ G. Moreover,

Haar(f) = Haar(x 7→ f(xy)) = Haar(x 7→ f(x−1)).

Proof. By the definition of Haar, it is enough to deal with real-valued
functions here. From the construction, it is clear that

f ≥ 0 ⇒ Haar(f) ≥ 0,

|Haar(f)| ≤ ‖f‖C(G),

Haar(λf) = λ Haar(f),

Haar(1) = 1,

Haar(f) = Haar(x 7→ f(yx)) = Haar(x 7→ f(xy)).

Choose α, β ∈ SMG such that

‖α ∗ f −Haar(f)1‖C(G) < ε, ‖g ∗ β −Haar(g)1‖C(G) < ε.
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Then

‖α ∗ (f + g) ∗ β − (Haar(f) + Haar(g))1‖C(G)

= ‖(α ∗ f −Haar(f)1) ∗ β + α ∗ (g ∗ β −Haar(g)1)‖C(G)

≤ ‖(α ∗ f −Haar(f)1) ∗ β‖C(G) + ‖α ∗ (g ∗ β −Haar(g)1)‖C(G)

≤ ‖α ∗ f −Haar(f)1‖C(G) + ‖g ∗ β −Haar(g)1‖C(G)

< 2ε,

so that Haar(f + g) = Haar(f) + Haar(g).
Suppose L : C(G) → C is a positive bounded linear functional such

that L(1) = 1 and L(f) = L(x 7→ f(yx)) for every f ∈ C(G) and y ∈ G.
Let f ∈ C(G), ε > 0 and α ∈ SMG be as above. Then

|L(f)−Haar(f)| = |L(α ∗ f −Haar(f)1)|
≤ ‖L‖C(G)′ ‖α ∗ f −Haar(f)1‖C(G)

< ‖L‖C(G)′ ε

yields the uniqueness L = Haar.
Finally, (f 7→ Haar(x 7→ f(x−1))) : C(G)→ C is a positive bounded

linear translation-invariant normalized functional, hence equaling to Haar
by the uniqueness. �

Exercise 2.4.17. In the previous proof, many properties were declared clear.
Should any of the “clarities” appear uncertain, provide verification.

Definition 2.4.18. For 1 ≤ p < ∞, the Lebesgue-p-space Lp(µG) is the
completion of C(G) with respect to the norm

f 7→ ‖f‖Lp(µG) :=
(∫

G

|f |p dµG

)1/p

.

The space L∞(µG) is the usual Banach space of µG-essentially bounded
functions with the norm f 7→ ‖f‖L∞(µG); on the closed subspace C(G) ⊂
L∞(µG) we have ‖f‖C(G) = ‖f‖L∞(µG). Notice that Lp(µG) is a Banach
space, but it is a Hilbert space if and only if p = 2, having the inner
product (f, g) 7→ 〈f, g〉L2(µG) satisfying

〈f, g〉L2(µG) =
∫
G

fg dµG

for f, g ∈ C(G).
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Remark 2.4.19. We have now seen that for a compact group G there exists
a unique translation-invariant probability functional on C(G), the Haar
integral! We also know that it is enough to demand only either left- or right-
invariance, since one follows from the other. Moreover, the Haar integral
is also inversion-invariant. It must be noted that an inversion-invariant
probability functional on C(G) is not necessarily translation-invariant: e.g.

f 7→ f(e) =
∫
G

f(x) dδe(x)

is inversion-invariant but clearly the point mass δe at e ∈ G cannot be
translation-invariant (unless we have the triviality G = {e}). Next we
observe that the Haar integral distinguishes continuous functions f, g ∈
C(G) in the sense that if

∫
G
|f − g| dµG = 0 then f = g:

Theorem 2.4.20. Let G be a compact group and f ∈ C(G). If
∫
G
|f | dµG =

0 then f = 0.

Proof. The set U := f−1(C \ {0}) ⊂ G is open, since f is continuous and
{0} ⊂ C is closed. Suppose f 6= 0: Then U 6= ∅, and {xU : x ∈ G} is an
open cover for G. By the compactness, there exists a subcover {xjU}nj=1.
Define g ∈ C(G) by

g(x) :=
n∑
j=1

∣∣f(x−1
j x)

∣∣ .
Now g(x) > 0 for every x ∈ G, so that c := minx∈G g(x) > 0 by the com-
pactness. We use the normalization, positivity and translation-invariance
of µG to obtain

0 < c =
∫
G

c1 dµG ≤
∫
G

g dµG = n

∫
G

|f | dµG,

so that 0 <
∫
G
|f | dµG. �

Exercise 2.4.21. Let G,H be compact groups. Show that µG×H = µG×µH
(i.e. the Haar measure of the product group is the product of the original
Haar measures).

Exercise 2.4.22. LetMG denote the σ-algebra of the Haar-measurable sets
on the compact group G. Consider mappings m, p1, p2 : G×G→ G, where

m(x, y) = xy, p1(x, y) = x, p2(x, y) = y.



2.4. Haar measure 37

Show that they are Haar measurable (that is, (MG×G,MG)-measurable).
Moreover, show that

µG(E) = µG×G(m−1(E)) = µG×G(p−1
1 (E)) = µG×G(p−1

2 (E)).

for every E ∈MG.

2.4.1 Integration on quotient spaces

We have already noticed that the “good” subgroups of a topological group
are the closed ones. Moreover, by now we know that a transitive action of
a compact topological group G on a Hausdorff space X begets a homeo-
morphism G/H ∼= X of compact Hausdorff spaces, where H is a closed
subgroup of G; effectively, spaces G/H and X are the same. What we are
about to do is to show that for X there exists a unique G-action-invariant
probability functional on C(X), which might be called the Haar func-
tional of the action; the corresponding measure on G/H will accordingly
be denoted by µG/H . We have seen that continuous functions on G/H
(and hence on X) can be interpreted as continuous right-H-translation-
invariant functions on G, i.e. f(xh) = f(x) for every x ∈ G and h ∈ H.
Next we show how f ∈ C(G) “casts a shadow” fG/H ∈ C(G/H) in a
canonical way...

Lemma 2.4.23. Let G be a compact group and H < G closed. If f ∈ C(G)
then PG/Hf ∈ C(G) and fG/H ∈ C(G/H), where

fG/H(xH) = PG/Hf(x) :=
∫
H

f(xh) dµH(h).

Furthermore, the projection PG/H : C(G) → C(G) is bounded, more pre-
cisely ‖fG/H‖C(G/H) =

∥∥PG/Hf∥∥C(G)
≤ ‖f‖C(G).

Proof. First, H is a compact group having the Haar measure µH . The
integration in the definition is legitimate since fx := (h 7→ f(xh)) ∈ C(H)
for each x ∈ G. If x ∈ G and h0 ∈ H then

PG/Hf(xh0) =
∫
H

fx(h0h) dµH(h) =
∫
H

fx(h) dµH(h) = PG/Hf(x),

so that fG/H : G/H → C. Next we prove the continuities. Let ε > 0.
A continuous on a compact group is uniformly continuous, so that for
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f ∈ C(G) there exists an open U 3 e such that

∀x, y ∈ G : xy−1 ∈ U ⇒ |f(x)− f(y)| < ε

(apparently, this slightly deviates from our definition of the uniform con-
tinuity; however, this is almost trivially equivalent). Suppose xy−1 ∈ U .
Then

|PG/Hf(x)− PG/Hf(y)| =
∣∣∣∣∫
H

f(xh)− f(yh) dµH(h)
∣∣∣∣

≤
∫
H

|f(xh)− f(yh)| dµH(h) < ε,

so that PG/Hf ∈ C(G) and fG/H ∈ C(G/H). Finally,

|PG/Hf(x)| ≤
∫
H

|f(xh)| dµH(h) ≤
∫
H

‖f‖C(G) dµH(h) = ‖f‖C(G).

�

Remark 2.4.24. Projection PG/H ∈ L(C(G)) uniquely extends to an or-
thogonal projection PG/H ∈ L(L2(µG)).

Theorem 2.4.25. Let ((x, p) 7→ x · p) : G × M → M be a continuous
transitive action of a compact group G on a Hausdorff space M . Then
there exists a unique Borel-regular probability measure µM on M which is
the action-invariant in the sense that∫

M

fM dµM =
∫
M

fM (x · p) dµM (p)

for every fM ∈ C(M) and x ∈ G.

Proof. Given q ∈ M , we know that M ∼= G/Gq. Hence it is enough to
deal with M = G/H, where H < G is closed and the action is ((x, yH) 7→
xyH) : G×G/H → G/H.

We first prove the existence of a G-action-invariant Borel regular
probability measure µG/H on the compact Hausdorff space G/H. Define
HaarG/H : C(G/H)→ C by

HaarG/H(fG/H) :=
∫
G

fG/H(xH) dµG(x).
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Notice that

HaarG/H(fG/H) =
∫
G

∫
H

f(xh) dµH(h) dµG(x)

Fubini=
∫
H

∫
G

f(xh) dµG(x) dµH(h)

=
∫
H

HaarG(f) dµH(h)

= HaarG(f).

It is clear that HaarG/H is a bounded linear functional, and HaarG/H(1G/H) =
HaarG(1G) = 1. By the Riesz Representation Theorem, there exists the
unique Borel-regular probability measure µG/H on G/H such that

HaarG/H(fG/H) =
∫
G/H

fG/H dµG/H

for every fG/H ∈ C(G/H). Action-invariance follows by the left-invariance
of HaarG: if g(y) = f(xy) for every x, y ∈ G then

HaarG/H(y 7→ fG/H(xyH)) = HaarG/H(gG/H)
= HaarG(g)
= HaarG(f)
= HaarG/H(fG/H).

Now we prove the uniqueness part. So suppose L : C(G/H) → C
is an action-invariant bounded linear functional for which L(1G/H) = 1.
Recall the mapping (f 7→ fG/H) : C(G) → C(G/H) from Lemma 2.4.23.
Then

L̃(f) := L(fG/H)

defines a bounded linear functional L̃ : C(G) → C such that L̃(1G) = 1
and

L̃(y 7→ f(xy)) = L(y 7→ fG/H(xyH)) = L(fG/H) = L̃(f).

Hence L̃ = HaarG by Theorem 2.4.16. Consequently,

L(fG/H) = L̃(f) = HaarG(f) = HaarG/H(fG/H),

yielding L = HaarG/H . �
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Remark 2.4.26. Let G be a compact group and H < G closed. From the
proof of Theorem 2.4.25 we see that∫

G

f dµG =
∫
G/H

∫
H

f(xh) dµH(h) dµG/H(xH)

for every f ∈ C(G).

Exercise 2.4.27. Let ωj(t) ∈ SO(3) denote the rotation of R3 by angle
t ∈ R around the jth coordinate axis, j ∈ {1, 2, 3}. Show that x ∈ SO(3)
can be represented in the form

x = x(φ, θ, ψ) = ω3(φ) ω2(θ) ω3(ψ)

where 0 ≤ φ, ψ < 2π and 0 ≤ θ ≤ π.

Exercise 2.4.28. Let G = SO(3) and M = S2. Let ((x, p) 7→ xp) : G×M →
M be the usual action. Let q = (0, 0, 1) ∈M , i.e. q is the north pole. Show
that Gq = {ω3(ψ) : 0 ≤ ψ < 2π}. We know that the Lebesgue measure
is rotation-invariant. Using the normalized angular part of the Lebesgue
measure of R3, deduce that here∫

G

f dµG =
1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0

f(x(φ, θ, ψ)) sin(θ) dψ dθ dφ,

i.e. dµSO(3) = 1
8π2 sin(θ) dψ dθ dφ.

2.5 Fourier transforms on compact groups

In this section, we exploit the Haar integral in studying unitary repre-
sentations of compact groups. The main result is the Peter–Weyl Theo-
rem 2.5.13, begetting canonical Fourier series representations for functions
on a compact group.

Exercise 2.5.1. Let φ ∈ Hom(G,Aut(H)) be a representation of a compact
group G on a finite-dimensional C-vector space H. Construct a G-invariant
inner product ((u, v) 7→ 〈u, v〉H) : H×H → C, that is

〈φ(x)u, φ(x)v〉H = 〈u, v〉H

for every x ∈ G and u, v ∈ H. Notice that now φ is unitary with respect
to this inner product!
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Lemma 2.5.2. Let G be a compact group and H be a Hilbert space with
the inner product (u, v) 7→ 〈u, v〉H. Let φ ∈ Hom(G,U(H)) be cyclic and
w ∈ H a φ-cyclic vector with ‖w‖H = 1. Then

〈u, v〉φ :=
∫
G

〈φ(x)u,w〉H 〈w, φ(x)v〉H dµG(x)

defines an inner product (u, v) 7→ 〈u, v〉φ for H. Moreover, φ is unitary
also with respect to this new inner product, and ‖u‖φ ≤ ‖u‖H for every
u ∈ H, where ‖u‖2φ := 〈u, u〉φ.

Proof. Defining fu(x) := 〈φ(x)u,w〉H, we notice that f ∈ C(G), because

|fu(x)− fu(y)| = |〈(φ(x)− φ(y))u,w〉H|
≤ ‖(φ(x)− φ(y))u‖H ‖w‖H
−−−→
x→y

0

due to the strong continuity of φ. Thereby fufv is Haar integrable, justi-
fying the definition of 〈u, v〉φ.

Let λ ∈ C and t, u, v ∈ H. Then it is easy to verify that

〈λu, v〉φ = λ〈u, v〉φ,
〈t+ u, v〉φ = 〈t, v〉φ + 〈u, v〉φ,
〈u, v〉φ = 〈v, u〉φ,

‖u‖2φ =
∫
G

|fu|2 dµG ≥ 0.

What if 0 = ‖u‖2φ =
∫
G
|fu|2dµG? Then fu ≡ 0 by Theorem 2.4.20, i.e.

0 = 〈φ(x)u,w〉H = 〈u, φ(x−1)w〉H

for every x ∈ G. Since w is a cyclic vector, u = 0 follows. Thus (u, v) 7→
〈u, v〉φ is an inner product on H.

The original norm dominates the φ-norm, since

‖u‖2φ =
∫
G

|〈φ(x)u,w〉H|2 dµG(x)

≤
∫
G

‖φ(x)u‖2H ‖w‖
2
H dµG(x)

=
∫
G

‖u‖2H dµG(x) = ‖u‖2H.
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The φ-unitarity of φ follows by

〈u, φ(y)∗v〉φ = 〈φ(y)u, v〉φ

=
∫
G

〈φ(xy)u,w〉H 〈w, φ(x)v〉H dµG(x)

z=xy
=

∫
G

〈φ(z)u,w〉H 〈w, φ(zy−1)v〉H dµG(z)

= 〈u, φ(y)−1v〉φ,

where we applied the translation invariance of the Haar integral. �

Exercise 2.5.3. Check the missing details in the proof of Lemma 2.5.2.

Lemma 2.5.4. Let 〈u, v〉φ be as above. Then

〈u,Av〉H := 〈u, v〉φ (2.1)

defines a compact operator A = A∗ ∈ L(H). Moreover, A is positive defi-
nite and A ∈ Hom(φ, φ).

Proof. By Lemma 2.5.2, if v ∈ H then Fv(u) := 〈u, v〉φ defines a linear
functional Fv : H → C, which is bounded in both norms, since

|Fv(u)| = |〈u, v〉φ| ≤ ‖u‖φ ‖v‖φ ≤ ‖u‖H ‖v‖φ.

By the Riesz Representation Theorem 5.7.3, Fv is represented by a unique
vector A(v) ∈ H, i.e. Fv(u) = 〈u,A(v)〉H for every u ∈ H. Thus we have
an operator A : H → H, which is clearly linear. We obtain a bound
‖A‖L(H) ≤ 1 from

‖Av‖2H = 〈Av,Av〉H = 〈Av, v〉φ ≤ ‖Av‖φ ‖v‖φ ≤ ‖Av‖H ‖v‖H.

Self-adjointness follows from

〈u,A∗v〉H = 〈Au, v〉H = 〈v,Au〉H = 〈v, u〉φ = 〈u, v〉φ = 〈u,Av〉H.

Moreover, A is positive definite, because 〈u,Au〉H = 〈u, u〉φ = ‖u‖2φ ≥ 0,
where ‖u‖φ = 0 if and only if u = 0.

The intertwining property A ∈ Hom(φ, φ) is seen from

〈u,Aφ(y)v〉H = 〈u, φ(y)v〉φ
= 〈φ(y)−1u, v〉φ
= 〈φ(y)−1u,Av〉H
= 〈u, φ(y)Av〉H.
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Let B = {u ∈ H : ‖u‖H ≤ 1}, the closed unit ball of H. To show
that A ∈ L(H) is compact, we must show that A(B) ⊂ H is a compact
set. So take a sequence (vj)∞j=1 ⊂ A(B); we have to find a converging
subsequence. Take a sequence (uj)∞j=1 ⊂ B such that Auj = vj . By the
Banach–Alaoglu Theorem 5.7.5, the closed ball B is weakly compact: there
exists a subsequence (ujk)∞k=1 such that ujk −−−−→

k→∞
u ∈ B weakly, i.e.

〈ujk , v〉H −−−−→
k→∞

〈u, v〉H

for every v ∈ H. Then

‖vjk −Au‖
2
H = ‖A(ujk − u)‖2H

= 〈A(ujk − u), ujk − u〉φ

=
∫
G

gk dµG

where
gk(x) := 〈φ(x)A(ujk − u), w〉H 〈w, φ(x)(ujk − u)〉H.

Let us show that
∫
G
gk dµG →k→∞ 0. First, gk ∈ C(G) (hence gk is

integrable) and for each x ∈ G

|gk(x)| =
∣∣〈ujk − u,A∗φ(x−1)w〉H

∣∣ ∣∣〈φ(x−1)w, ujk − u〉H
∣∣

−−−−→
k→∞

0

by the weak convergence. Second,

|gk(x)| ≤ ‖φ(x)‖2L(H) ‖A
∗‖L(H) ‖w‖

2
H ‖ujk − u‖

2
H

≤ 4,

because ‖φ(x)‖L(H) = 1, ‖A‖L(H) = ‖A‖L(H) ≤ 1, ‖w‖H = 1 and ujk , u ∈
B. Thus

∫
G
gk dµG →k→∞ 0 by the Lebesgue Dominated Convergence

Theorem. Equivalently, vjk →k→∞ Au ∈ A(B). We have shown that
A(B) = A(B) ⊂ H is compact. �

Theorem 2.5.5. Let G be a compact group and H a Hilbert space. Let
φ ∈ Hom(G,U(H)) be strongly continuous. Then φ is a direct sum of
finite-dimensional irreducible unitary representations.
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Proof. We know that φ is a direct sum of cyclic representations. There-
fore it is enough to assume that φ itself is cyclic. With the notation of
Lemma 2.5.4, A ∈ L(H) is a compact self-adjoint operator, hence by the
Hilbert–Schmidt Spectral Theorem 5.7.6, we have

H =
⊕

λ∈σ(A)

Ker(λI −A),

where dim(Ker(λI − A)) < ∞ for each λ ∈ σ(A). Since A ∈ Hom(φ, φ),
the subspace Ker(λI −A) ⊂ H is φ-invariant. Thereby

φ =
⊕

λ∈σ(A)

φ|Ker(λI−A),

where φ|Ker(λI−A) is finite-dimensional and unitary for every λ ∈ σ(A).
The proof is concluded, since we know that a finite-dimensional unitary
representation is a direct sum of irreducible unitary representations. �

Corollary 2.5.6. A strongly continuous irreducible unitary representation
of a compact group is always finite-dimensional. �

Definition 2.5.7. The (unitary) dual Ĝ of a locally compact group G is
the set consisting of the equivalence classes of the strongly continuous
irreducible unitary representations of G.

Remark 2.5.8. For compact G, Ĝ consists of the equivalence classes of con-
tinuous irreducible unitary representations (due to the finite-dimensionality),
i.e.

Ĝ = {[φ] | φ continuous irreducible unitary representation of G} ,

where [φ] = {ψ | ψ ∼ φ} is the equivalence class of φ.
Example. It can be proven that

R̂n =
{

[eξ] | ξ ∈ Rn, eξ : Rn → U(1), eξ(x) := ei2πx·ξ} ,
so that R̂n ∼= Rn. Similarly,

T̂n =
{

[eξ] | ξ ∈ Zn, eξ : Rn → U(1), eξ(x) := ei2πx·ξ} ,
so that T̂n ∼= Zn.
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Remark 2.5.9. For a commutative locally compact group G the unitary
dual Ĝ has a natural structure of a commutative locally compact group,

and ̂̂
G ∼= G; this is so called Pontryagin duality. For a compact non-

commutative group G, the unitary dual Ĝ is never a group, but still has a
sort of “weak algebraic structure”; we do not consider this in these lecture
notes.

Definition 2.5.10. Let G be a compact group. For the equivalence class
ξ ∈ Ĝ we may find a representative φ ∈ ξ = [φ] such that φ = (φij)

m
i,j=1 ∈

Hom(G,U(m)), with m = dim(φ): namely, if ψ ∈ ξ, ψ ∈ Hom(G,U(H))
and {ej}mj=1 ⊂ H is an orthonormal basis for H then we can define

φij(x) := 〈ei, φ(x)ej〉H.
Notice that the matrix element φij ∈ C(G), because φ is continuous. Next
we present an L2-orthogonality result for these continuous functions φij :
G→ C.

Lemma 2.5.11. Let G be a compact group. Let ξ, η ∈ Ĝ, where ξ 3 φ =
(φij)mi,j=1 ∈ Hom(G,U(m)) and η 3 ψ = (ψkl)nk,l=1 ∈ Hom(G,U(n)). Then

〈φij , ψkl〉L2(µG) =

{
0, if ξ 6∼ η,
1
m δikδjl, if φ = ψ.

Proof. Let 1 ≤ j ≤ m and 1 ≤ l ≤ n. Define matrix E ∈ Cm×n by
Epq := δpjδlq (i.e. the matrix elements of E are zero except for the (j, l)-
element, which is 1.) Define matrix A ∈ Cm×n by

A :=
∫
G

φ(y) E ψ(y−1) dµG(y).

Now A ∈ Hom(ψ, φ), since

φ(x)A =
∫
G

φ(xy) E ψ(y−1) dµG(y)

=
∫
G

φ(z) E ψ(z−1x) dµG(z)

= Aψ(x).

Since φ, ψ are finite-dimensional irreducible unitary representations, Schur’s
Lemma 1.3.17 implies

A =

{
0, if φ 6∼ ψ,
λI, if φ = ψ
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for some λ ∈ C. We notice that

Aik =
∫
G

m∑
p=1

n∑
q=1

φip(y) Epq ψqk(y−1) dµG(y)

=
∫
G

φij(y) ψkl(y) dµG(y)

= 〈φij , ψkl〉L2(µG).

Now suppose φ = ψ. Then m = n and

〈φkj , ψkl〉L2(µG) = Akk = λ =
1
m

Tr(A)

=
1
m

∫
G

Tr(φ(y) E φ(y−1)) dµG(y)

=
1
m

∫
G

Tr(E) dµG(y)

=
1
m
δjl,

where we used the property Tr(BC) = Tr(CB) of the trace functional.
The results can be collected from above. �

Definition 2.5.12. Let G be a compact group. Its left and right regular
representations πL, πR : G→ U(L2(µG)) are defined, respectively, by

(πL(y) f)(x) := f(y−1x),

(πR(y) f)(x) := f(xy)

for µG-almost every x ∈ G.

The idea here is that G is represented as a natural group of operators
on a Hilbert space, enabling the use of functional analytic techniques in
studying G. And now for the main result of this section, the Peter–Weyl
Theorem (1927):

Theorem 2.5.13. Let G be a compact group. Then

B :=
{√

dim(φ)φij | φ = (φij)
dim(φ)
i,j=1 , [φ] ∈ Ĝ

}
is an orthonormal basis for L2(µG). Let φ = (φij)mi,j=1, φ ∈ [φ] ∈ Ĝ. Then

Hφi,· := span{φij | 1 ≤ j ≤ m} ⊂ L2(µG)
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is πR-invariant and
φ ∼ πR|Hφi,· ,

L2(µG) =
⊕

[φ]∈ bG
m⊕
i=1

Hφi,·,

πR ∼
⊕

[φ]∈ bG
m⊕
i=1

φ.

Remark 2.5.14. Here
⊕m

i=1 φ := φ ⊕ · · · ⊕ φ, the m-fold direct sum of φ;
in literature, this is sometimes denoted even by mφ.

Left Peter–Weyl. We can formulate the Peter–Weyl Theorem 2.5.13 anal-
ogously for the left regular representation, as follows: Let φ = (φij)mi,j=1,
φ ∈ [φ] ∈ Ĝ. Then

Hφ·,j := span{φij | 1 ≤ i ≤ m} ⊂ L2(µG)

is πL-invariant and
φ ∼ πL|Hφ·,j ,

L2(µG) =
⊕

[φ]∈ bG
m⊕
j=1

Hφ·,j ,

πL ∼
⊕

[φ]∈ bG
m⊕
j=1

φ.

Example. Let G = Tn. Recall that

T̂n =
{

[eξ] | ξ ∈ Zn, eξ(x) = ei2πx·ξ} .
Now B = {eξ | ξ ∈ Zn} is an orthonormal basis for L2(µTn),

L2(µTn) =
⊕
ξ∈Zn

span{eξ},

πL ∼
⊕
ξ∈Zn

eξ ∼ πR.
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Moreover, for f ∈ L2(µTn), we have

f =
∑
ξ∈Zn

f̂(ξ) eξ,

where the Fourier coefficients f̂(ξ) are calculated by

f̂(ξ) =
∫

Tn
f eξ dµTn = 〈f, eξ〉L2(µTn ).

We shall return to the Fourier series theme after the proof of the Peter–
Weyl Theorem...

Proof for the Peter–Weyl Theorem 2.5.13. The πR-invariance of Hφi,· fol-
lows due to

πR(y)φij(x) = φij(xy) =
dim(φ)∑
k=1

φik(x)φkj(y),

i.e.

πR(y)φij =
dim(φ)∑
k=1

λk(y) φik ∈ span{φik}dim(φ)
k=1 = Hφi,·.

If {ej}dim(φ)
j=1 ⊂ Cdim(φ) is the standard orthonormal basis then

φ(y)ej =
dim(φ)∑
k=1

φkj(y)ek,

so that

A

dim(φ)∑
j=1

λjej :=
dim(φ)∑
j=1

λjφij

defines an intertwining isomorphism A ∈ Hom(φ, πR|Hφi,·), i.e. φ ∼ πR|Hφi,· .
By Lemma 2.5.11, B ⊂ L2(µG) is orthonormal. Let

H :=
⊕

[φ]∈ bG
dim(φ)⊕
i=1

Hφi,·.
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We assume that H 6= L2(µG), and show that this leads to a contradiction
(so that H = L2(µG) and B must be a basis): Clearly H is πR-invariant. By
our assumption, H⊥ is a non-trivial πR-invariant closed subspace. Since
πR|H⊥ is a direct sum of irreducible unitary representations, there exists
a non-trivial subspace E ⊂ H⊥ and a unitary matrix representation φ =
(φij)mi,j=1 ∈ HOM(G,U(m)) such that φ ∼ πR|E . The subspace E has an
orthonormal basis {fj}mj=1 such that

πR(y)fj =
m∑
i=1

φij(y)fi

for every y ∈ G and j ∈ {1, . . . ,m}. Notice that fj ∈ L2(µG) has pointwise
values perhaps only µG-almost everywhere, so that

fj(xy) =
m∑
i=1

φij(y)fi(x)

may hold for only µG-almost every x ∈ G. Let us define measurable sets

N(y) :=

{
x ∈ G : fj(xy) 6=

m∑
i=1

φij(y)fi(x)

}
,

M(x) :=

{
y ∈ G : fj(xy) 6=

m∑
i=1

φij(y)fi(x)

}
,

K :=

{
(x, y) ∈ G×G : fj(xy) 6=

m∑
i=1

φij(y)fi(x)

}
.

By Exercise 2.4.22, we may exploit the Fubini Theorem to change the order
of integration, to get∫

G

µG(M(x)) dµG(x) = µG×G(K)

=
∫
G

µG(N(y)) dµG(y)

=
∫
G

0 dµG(y)

= 0,
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meaning that µG(M(x)) = 0 for almost every x ∈ G. But it is enough for
us to pick just one x0 ∈ G such that µG(M(x0)) = 0. Then

fj(x0y) =
m∑
i=1

φij(y)fi(x0)

for µG-almost every y ∈ G. If we denote z := x0y then

fj(z) =
m∑
i=1

φij(x−1
0 z)fi(x0)

=
m∑
i=1

m∑
k=1

φik(x−1
0 )φkj(z)fi(x0)

=
m∑
k=1

φkj(z)
m∑
i=1

φik(x−1
0 )fi(x0)

for µG-almost every z ∈ G. Hence

fj ∈ span{φkj}mk=1 ⊂
m⊕
k=1

Hφk,· ⊂ H

for every j ∈ {1, . . . ,m}. Thereby

E = span{fj}mj=1 ⊂ H;

at the same time E ⊂ H⊥, yielding E = {0}. This is a contradiction, since
E should be non-trivial. Hence H = L2(µG) and B is a basis. �

Exercise 2.5.15. Check the details of the proof of the Peter–Weyl Theorem.
In particular, pay attention to verify the conditions for applying the Fubini
Theorem.

2.6 Trigonometric polynomials and Fourier series

Let G be a compact group and

B :=
{√

dim(φ)φij | φ = (φij)
dim(φ)
i,j=1 , [φ] ∈ Ĝ

}
as in the Peter–Weyl Theorem 2.5.13. The space of trigonometric polyno-
mials on G is

TrigPol(G) = span(B).
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For instance, f ∈ TrigPol(Tn) is of the form

f(x) =
∑
ξ∈Zn

f̂(ξ)ei2πx·ξ,

where f̂(ξ) 6= 0 for only finitely many ξ ∈ Zn.

Theorem 2.6.1. TrigPol(G) is a dense subalgebra of C(G).

Proof. It is enough to verify that TrigPol(G) is a involutive subalgebra
of C(G); the Stone–Weierstrass Theorem 5.9.3 provides then the density.
We already know that TrigPol(G) is a subspace of C(G).

First, φ = (x 7→ (1)) ∈ Hom(G,U(1)) is a continuous irreducible
unitary representation, so that 1 = (x 7→ 1) ∈ C(G) belongs to B ⊂
TrigPol(G).

Let [φ] ∈ Ĝ, φ = (φij)mi,j=1. Then [φ] ∈ Ĝ, where φ = (φij)mi,j=1, as it
is easy to verify. Thereby we get the involutivity: f ∈ TrigPol(G) whenever
f ∈ TrigPol(G).

Let [ψ] ∈ Ĝ, ψ = (ψkl)nk,l=1. Then φ ⊗ ψ|G = (x 7→ φ(x) ⊗ ψ(x)) ∈
Hom(G,U(Cm ⊗ Cn)). Let {ei}mi=1 ⊂ Cm and {fk}nk=1 ⊂ Cn be orthonor-
mal bases. Then {ei⊗ fk | 1 ≤ i ≤ m, 1 ≤ k ≤ n} is an orthonormal basis
for Cm ⊗ Cn, and the (ik)(jl)-matrix element of φ⊗ ψ|G is calculated by

(φ⊗ ψ|G)(ik)(jl)(x) = 〈(φ⊗ ψ|G)(x)(ej ⊗ fl), ei ⊗ fk〉Cm⊗Cn

= 〈φ(x)ej , ei〉Cm 〈ψ(x)fl, fk〉Cn
= φij(x)ψkl(x).

Hence φijψkl is a matrix element of φ⊗ψ|G. Representation φ⊗ψ|G can be
decomposed as a finite direct sum of irreducible unitary representations.
Hence the matrix elements of φ⊗ψ|G can be written as linear combinations
of elements of B. Thus φijψkl ∈ TrigPol(G), so that fg ∈ TrigPol(G) for
every f, g ∈ TrigPol(G). �

Corollary 2.6.2. TrigPol(G) is dense in L2(µG). �

Another proof for the Peter–Weyl Theorem. Notice that we did not need
the Peter–Weyl Theorem 2.5.13 to show that TrigPol(G) ⊂ L2(µG) is
dense. Therefore this density provides another proof for that B in the
Peter–Weyl Theorem is a basis!
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Remark 2.6.3. By now, we have encountered plenty of translation- and
inversion-invariant function spaces on G. For instance, TrigPol(G), C(G)
and Lp(G), and more: namely, if [φ] ∈ Ĝ, φ = (φij)mi,j=1, then

πL(y)φi0j0 , πR(y)φi0j0 ∈ span{φij}mi,j=1

for every y ∈ G (and inversion-invariance is clear!).

Exercise 2.6.4. Prove that f ∈ C(G) is a trigonometric polynomial if and
only if

dim (span{πR(y)f : y ∈ G}) <∞.
Corollary 2.6.5. (Corollary to the Peter–Weyl Theorem (Fourier series).)
f ∈ L2(µG) can be represented as the Fourier series

f =
∑

[φ]∈ bG
dim(φ)

dim(φ)∑
i,j=1

〈f, φij〉L2(µG) φij ;

in the series here, we pick just one unitary matrix representation φ =
(φij)

dim(φ)
i,j=1 from each equivalence class [φ] ∈ Ĝ. Moreover, there is the

Plancherel equality (sometimes called the Parseval equality)

‖f‖L2(µG) =
∑

[φ]∈ bG
dim(φ)

dim(φ)∑
i,j=1

|〈f, φij〉L2(µG)|2.

�

Remark 2.6.6. In L2(µG), also clearly

f =
∑

[φ]∈ bG
dim(φ)

dim(φ)∑
i,j=1

〈f, φij〉L2(µG) φij .

A nice thing about the Fourier series is that the basis functions φij are
well-behaved under translations and inversions.

Definition 2.6.7. LetG be a compact group, f ∈ L1(µG) and φ = (φij)mi,j=1,
[φ] ∈ Ĝ. The φ-Fourier coefficient of f is

f̂(φ) :=
∫
G

f(x) φ(x) dµG(x) ∈ Cm×m,

where the integration of the matrix-valued function is element-wise. The
matrix-valued function f̂ is called the the Fourier transform of f ∈ L1(µG).
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Corollary 2.6.8. (Corollary again to the Peter–Weyl Theorem.) f ∈ L2(µG)
can be presented by the series

f(x) =
∑

[φ]∈ bG
dim(φ) Tr

(
f̂(φ) φ(x)∗

)
converging for µG-almost every x ∈ G. The Plancherel equality takes the
form

‖f‖2L2(µG) =
∑

[φ]∈ bG
dim(φ) Tr

(
f̂(φ) f̂(φ)∗

)
.

Proof. Now

f̂(φ)ij =
∫
G

f(x) φij(x) dµG(x) = 〈f, φij〉L2(µG),

so that

Tr
(
f̂(φ) φ(x)∗

)
=

dim(φ)∑
i=1

(
f̂(φ) φ(x)∗

)
ii

=
dim(φ)∑
i,j=1

f̂(φ)ij φij(x)

=
dim(φ)∑
i,j=1

〈f, φij〉L2(µG) φij(x).

Finally, if A = (Akl)mk,l=1 ∈ Cm×m then

‖A‖2Cm×m := Tr(A∗A) =
m∑

k,l=1

|Akl|2.

�

Definition 2.6.9. The natural inner product for Cm×m is

(A,B) 7→ 〈A,B〉Cm×m := Tr (A B∗) =
m∑

k,l=1

Akl Bkl.
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Definition 2.6.10. Let G be a compact group. Let L2(Ĝ) be the space
containing mappings

F : Ĝ→
∞⋃
m=1

Cm×m

satisfying F ([φ]) ∈ Cdim(φ)×dim(φ) such that∑
[φ]∈ bG

dim(φ) ‖F ([φ])‖2Cdim(φ)×dim(φ) <∞.

Then L2(Ĝ) is a Hilbert space with the inner product

〈E,F 〉L2( bG) :=
∑

[φ]∈ bG
dim(φ) 〈E([φ]), F ([φ])〉Cdim(φ)×dim(φ) .

Theorem 2.6.11. Let G be a compact group. The Fourier transform f 7→ f̂
defines a surjective isometry L2(µG)→ L2(Ĝ).

Proof. Let us choose one unitary matrix representation φ from each [φ] ∈
Ĝ. If we define F ([φ]) := f̂(φ) then F ∈ L2(Ĝ), and f 7→ F is isometric by
the Plancherel equality.

Now take any F ∈ L2(Ĝ). We have to show that F ([φ]) = f̂(φ) for
some f ∈ L2(µG), where φ ∈ [φ] ∈ Ĝ. Define

f(x) :=
∑

[φ]∈ bG
dim(φ) Tr (F ([φ]) φ(x)∗)

for µG-almost every x ∈ G. This can be done, since

f =
∑

[φ]∈ bG
dim(φ)

dim(φ)∑
i,j=1

F ([φ])ij φij

belongs to L2(µG) by

‖f‖2L2(µG) = ‖F‖2
L2( bG)

<∞.

Clearly f̂(φ) = F ([φ]), the Fourier transform is surjective. �
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2.7 Convolutions

Let G be a compact group and f ∈ L1(µG), g ∈ C(G) (or f ∈ C(G) and
g ∈ L1(µG). The convolution f ∗ g : G→ C is defined by

f ∗ g(x) :=
∫
G

f(y) g(y−1x) dµG(y).

Now f ∗ g ∈ C(G): Due to the uniform continuity, for each ε > 0 there
exists open U 3 e such that |g(x)− g(z)| < ε when z−1x ∈ U . Thereby

|f ∗ g(x)− f ∗ g(z)| ≤
∫
G

|f(y)| |g(y−1x)− g(y−1z)| dµG(y)

≤ ‖f‖L1(µG) ε,

when z−1x ∈ U . Moreover, linear mapping g 7→ f ∗ g satisfies

‖f ∗ g‖C(G) ≤ ‖f‖L1(µG) ‖g‖C(G), ‖f ∗ g‖L1(µG) ≤ ‖f‖L1(µG) ‖g‖L1(µG).

Hence we can consider g 7→ f ∗ g as a bounded operator on C(G) and
L1(µG); of course, we have symmetrical results for g 7→ g ∗ f .

It is also easy to show other Lp-boundedness results, like

‖f ∗ g‖L2(µG) ≤ ‖f‖L2(µG) ‖g‖L2(µG)

and so on. Notice that the convolution product is commutative if and only
if G is commutative.

Proposition 2.7.1. Let f, g, h ∈ L1(µG). Then f ∗ g ∈ L1(µG),

‖f ∗ g‖L1(µG) ≤ ‖f‖L1(µG) ‖g‖L1(µG),

and f ∗ g(x) =
∫
G
f(y−1) g(yx) dµG(y) for almost every x ∈ G. Moreover,

for µG-almost every x ∈ G,

f ∗ g(x) =
∫
G

f(xy−1) g(y) dµG(y)

=
∫
G

f(y−1) g(yx) dµG(y)

=
∫
G

f(xy) g(y−1) dµG(y).

The convolution product is also associative: f ∗ (g ∗ h) = (f ∗ g) ∗ h.

Exercise 2.7.2. Prove Proposition 2.7.1.

Proposition 2.7.3. For f, g ∈ L1(µG), f̂ ∗ g(φ) = f̂(φ) ĝ(φ).
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Proof. It is enough to assume that f, g ∈ C(G). Then

f̂ ∗ g(φ) =
∫
G

f ∗ g(x) φ(x) dµG(x)

=
∫
G

∫
G

f(y) g(y−1x) dµG(y) φ(x) dµG(x)

=
∫
G

f(y)φ(y)
∫
G

g(y−1x) φ(y−1x) dµG(x) dµG(y)

=
∫
G

f(y) φ(y) dµG(y)
∫
G

g(z) φ(z) dµG(z)

= f̂(φ) ĝ(φ).

�

Remark 2.7.4. There are plenty of other interesting results concerning the
Fourier transform and convolutions on compact groups. For instance, one
can study approximate identities for L1(µG) and prove that the Fourier
transform f 7→ f̂ is injective on L1(µG).

Definition 2.7.5. Let f ∈ L2(µG). For µG-almost every x ∈ G,

f(x) =
∑

[ξ]∈ bG
dim(ξ) Tr

(
f̂(ξ) ξ∗(x)

)
,

where ξ∗(x) := ξ(x)∗. If A ∈ L(L2(µG)) then

Af(x) =
∑

[ξ]∈ bG
dim(ξ) Tr

(
f̂(ξ) (A(ξ∗))(x)

)
,

where (A(ξ∗))(x) =
(
(Aξji)(x)

)dim(ξ)

i,j=1
. The (Fourier) symbol ofA ∈ L(L2(µG))

is
(x, ξ) 7→ σA(x, ξ), σA(x, ξ) := ξ(x)(A(ξ∗))(x).

Then it is easy to see that

Af(x) =
∑

[ξ]∈ bG
dim(ξ) Tr

(
σA(x, ξ) f̂(ξ) ξ∗(x)

)
;

one may think that this a σA-weighted inverse Fourier transform formula
for f .
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Example. Show that

σf 7→f (x, ξ) = I ∈ Cdim(ξ)×dim(ξ),

σf 7→g∗f (x, ξ) = ĝ(ξ),

σf 7→gf (x, ξ) = g(x)I.

Symbols are often easier to study than the corresponding linear operators,
and in many cases the symbols behave almost like ordinary functions.
Symbols are used in e.g. the theory of partial differential equations; the
classical “freezing-coefficients-technique” is related to symbol calculus. But
this is another story, and we move on.

2.8 Characters

Let φ : G → Aut(H) be a finite-dimensional representation of a group G
on a Hilbert space H; the character of φ is the function χφ : G→ C defined
by

χφ(x) := Tr (φ(x)) .

Notice that here G is just any group. It turns out that on a compact group,
characters provide a way of recognizing equivalence of representations:
namely, for finite-dimensional unitary representations, φ ∼ ψ if and only
if χφ = χψ, as we shall see.

Proposition 2.8.1. Let φ, ψ be finite-dimensional representations of a group
G.
(1) χφ = χψ if φ ∼ ψ.
(2) χφ(xyx−1) = χφ(y) for every x, y ∈ G.
(3) χφ⊕ψ = χφ + χψ.
(4) χφ⊗ψ|G = χφ χψ.
(5) χφ(e) = dim(φ).

Proof. The results follow from the properties of the trace functionals. �

Remark 2.8.2. Since the character depends only on the equivalence class
of a representation, we may define χ[φ] := χφ, where [φ] is the equivalence
class of φ.
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Proposition 2.8.3. (Orthonormality of characters.) Let G be a compact
group and ξ, η ∈ Ĝ. Then

〈χξ, χη〉L2(µG) =

{
1 if ξ = η,

0 if ξ 6∼ η.

Proof. Let φ = (φij)mi,j=1 ∈ ξ and ψ = (ψkl)nk,l=1 ∈ η. Then

〈χξ, χη〉L2(µG) =
m∑
j=1

n∑
k=1

〈φjj , ψkk〉L2(µG)

=

{
0 if φ 6∼ ψ,
1 if φ = ψ.

�

Theorem 2.8.4. (Irreducibility and equivalence characterizations.) Let φ, ψ
be finite-dimensional continuous unitary representations of a compact group
G. Then φ is irreducible if and only if ‖χφ‖L2(µG) = 1. Moreover, φ ∼ ψ
if and only if χφ = χψ.

Proof. We already know the “only if”-parts of the proof. So suppose φ is
a finite-dimensional unitary representation. Then

φ ∼
⊕

[ξ]∈ bG
m[ξ]ξ,

where m[ξ] ∈ N is non-zero for only finitely many [ξ] ∈ Ĝ. Then

χφ =
∑

[ξ]∈ bG
m[ξ]χξ,

and if [η] ∈ Ĝ then

〈χφ, χη〉L2(µG) =
∑

[ξ]∈ bG
m[ξ]〈χξ, χη〉L2(µG) = m[η].
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This implies that the multiplicities m[ξ] ∈ N can be uniquely obtained by
knowing only χφ; hence if χφ = χψ then φ ∼ ψ. Moreover,

‖χφ‖2L2(µG) = 〈χφ, χφ〉L2(µG)

=
∑

[ξ],[η]∈ bG
m[ξ] m[η] 〈χξ, χη〉L2(µG)

=
∑

[ξ]∈ bG
m2

[ξ],

so that φ is irreducible if and only if ‖χφ‖L2(µG) = 1. �

Remark 2.8.5. If f ∈ L2(µG) then

f =
∑

[ξ]∈ bG
dim(ξ) f ∗ χξ.

2.9 Induced representations

A group representation trivially begets a representation of its subgroup:
if H < G and ψ ∈ Hom(G,Aut(V )) then the restriction ResGHψ := (h 7→
ψ(h)) ∈ Hom(H,Aut(V )). In this section, we show how a representation
of a subgroup sometimes induces a representation for the whole group.
This induction process has also plenty of nice properties. Induced repre-
sentations were defined and studied by Ferdinand Georg Frobenius in 1898
for finite groups, and by George Mackey in 1949 for (most of the) locally
compact groups.

The technical assumptions here are thatG is a compact group,H < G
is closed and φ ∈ Hom(H,U(H)) is a strongly continuous; then φ induces
a strongly continuous unitary representation

IndGHφ ∈ Hom
(
G,U(IndGφH)

)
,

where the notation will be explained in the sequel. We start by a lengthy
definition of the induced representation space IndGφH.

Definition 2.9.1. Since G is a compact group, continuous functions G→ H
are uniformly continuous in the following sense: Let f ∈ C(G,H) and
ε > 0. Then there exists open U 3 e such that ‖f(x) − f(y)‖H < ε when
xy−1 ∈ U (or x−1y ∈ U); the proof of this fact is as in the scalar-valued
case.
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Proposition 2.9.2. If f ∈ C(G,H) then fφ ∈ C(G,H), where

fφ(x) :=
∫
H

φ(h)f(xh) dµH(h).

Moreover, fφ(xh) = φ(h)∗fφ(x) for every x ∈ G and h ∈ H.

Proof. The integral here is to be understood in a weak sense (Pettis
integral; see e.g. [16] (3.26–3.29): fφ(x) ∈ H is the unique vector defined
by inner products, and

fφ(x) =
∑
j∈J
〈fφ(x), ej〉H ej

=
∑
j∈J

∫
H

〈φ(h)f(xh), ej〉H dµH(h) ej ,

where {ej}j∈J ⊂ H is an orthonormal basis. The integrals here are sound,
since (h 7→ 〈φ(h)f(xh), ej〉H) ∈ C(H) because f ∈ C(G,H) and φ is
strongly continuous (this is easy to prove). If h0 ∈ H then

fφ(xh0) =
∫
H

φ(h) f(xh0h) dµH(h)

=
∫
H

φ(h−1
0 h)f(xh) dµH(h)

= φ(h0)∗fφ(x).

Take ε > 0. By the uniform continuity of f ∈ C(G,H), there exists an
open set U 3 e such that ‖f(a) − f(b)‖H < ε whenever ab−1 ∈ U . If
x ∈ yU then

‖fφ(x)− fφ(y)‖2H =
∥∥∥∥∫

H

φ(h)(f(xh)− f(yh)) dµH(h)
∥∥∥∥2

H

≤
(∫

H

‖f(xh)− f(yh)‖H dµH(h)
)2

≤ ε2,

sealing the continuity of fφ. �

Lemma 2.9.3. If f, g ∈ C(G,H) then (xH 7→ 〈fφ(x), gφ(x)〉H) ∈ C(G/H).
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Proof. Let x ∈ G and h ∈ H. Then

〈fφ(xh), gφ(xh)〉H = 〈φ(h)∗fφ(x), φ(h)∗gφ(x)〉H
= 〈fφ(x), gφ(x)〉H,

so that (xH 7→ 〈fφ(x), gφ(x)〉H) : G/H → C is well-defined. There exists a
constant C <∞ such that ‖fφ(y)‖H, ‖gφ(x)‖H ≤ C because G is compact
and fφ, gφ ∈ C(G,H). Thereby

|〈fφ(x), gφ(x)〉H − 〈fφ(y), gφ(y)〉H|
≤ |〈fφ(x)− fφ(y), gφ(x)〉H|+ |〈fφ(y), gφ(x)− gφ(y)〉H|
≤ C (‖fφ(x)− fφ(y)‖H + ‖gφ(x)− gφ(y)‖H)
−−−→
x→y

0

by the continuities of fφ and gφ. �

Definition 2.9.4. Let us endow the vector space

Cφ(G,H) := {fφ | f ∈ C(G,H)}
= {e ∈ C(G,H) | ∀x ∈ G ∀h ∈ H : e(xh) = φ(h)∗e(x)}

with the inner product defined by

〈fφ, gφ〉IndGφH
:=
∫
G/H

〈fφ(x), gφ(x)〉H dµG/H(xH).

Let IndGφH be the completion of Cφ(G,H) with respect to the correspond-
ing norm

fφ 7→ ‖fφ‖IndGφH
:=
√
〈fφ, fφ〉IndGφH

;

this Hilbert space is called the induced representation space.

Remark 2.9.5. If H 6= {0} then {0} 6= Cφ(G,H) ⊂ IndGφH: Let 0 6= u ∈ H.
Due to the strong continuity of φ, choose open U ⊂ G such that e ∈ U
and ‖(φ(h) − φ(e))u‖H < ‖u‖H for every h ∈ H ∩ U . Choose w ∈ C(G)
such that w ≥ 0, w|G\U = 0 and

∫
H
w(h) dµH(h) = 1. Let f(x) := w(x)u

for every x ∈ G. Then

‖fφ(e)− u‖H =
∥∥∥∥∫

H

w(h) (φ(h)− φ(e))u dµH(h)
∥∥∥∥
H

=
∫
H

w(h) ‖(φ(h)− φ(e))u‖H dµH(h)

< ‖u‖H,
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so that fφ(e) 6= 0, yielding fφ 6= 0.

Theorem 2.9.6. If x, y ∈ G and fφ ∈ Cφ(G,H), let(
IndGHφ(y)fφ

)
(x) := fφ(y−1x).

This begets a unique strongly continuous IndGHφ ∈ Hom
(
G,U(IndGφH)

)
,

called the representation of G induced by φ.

Proof. If y ∈ G and fφ ∈ Cφ(G,H) then IndGHφ(y)fφ = gφ ∈ Cφ(G,H),
where g ∈ C(G,H) is defined by g(x) := f(y−1x). Thus we have a linear
mapping IndGHφ(y) : Cφ(G,H)→ Cφ(G,H). Clearly

IndGHφ(yz)fφ = IndGHφ(y) IndGHφ(z)fφ.

Hence IndGHφ ∈ Hom (G,Aut(Cφ(G,H))).
If f, g ∈ C(G,H) then〈
IndGHφ(y)fφ, gφ

〉
IndGφH

=
∫
G/H

〈fφ(y−1x), gφ(x)〉H dµG/H(xH)

=
∫
G/H

〈fφ(z), gφ(yz)〉H dµG/H(zH)

=
〈
fφ, IndGHφ(y)−1gφ

〉
IndGφH

;

hence we have an extension IndGHφ ∈ Hom
(
G,U(IndGφH)

)
. Next we ex-

ploit the uniform continuity of f ∈ C(G,H): Let ε > 0. Take an open set
U 3 e such that ‖f(a)− f(b)‖H < ε when ab−1 ∈ U . Thereby, if y−1z ∈ U
then ∥∥∥(IndGHφ(y)− IndGHφ(z)

)
fφ

∥∥∥2

IndGφH

=
∫
G/H

∥∥fφ(y−1x)− fφ(z−1x)
∥∥2

H dµG/H(xH)

≤ ε2.

This shows the strong continuity of the induced representation. �
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Remark 2.9.7. In the sequel, some of the elementary properties of induced
representations are deduced. Briefly: induced representations of equivalent
representations are equivalent, and induction process can be taken in stages
leading to the same result modulo equivalence.

Proposition 2.9.8. Let G be a compact group and H < G a closed subgroup.
Let φ ∈ Hom(H,U(Hφ)) and ψ ∈ Hom(H,U(Hψ)) be strongly continuous.
If φ ∼ ψ then IndGHφ ∼ IndGHψ.

Proof. Since φ ∼ ψ, there is an isometric isomorphism A ∈ Hom(φ, ψ).
Then

(Bfφ)(x) := A(fφ(x))

defines a linear mapping B : Cφ(G,Hφ) → Cψ(G,Hψ), because if x ∈ G
and h ∈ H then

(Bfφ)(xh) = A(fφ(xh))
= A(φ(h)∗fφ(x))
= A(φ(h)∗A∗A(fφ(x)))
= A(A∗ψ(h)∗A(fφ(x)))
= ψ(h)∗A(fφ(x))
= ψ(h)∗(Bfφ)(x).

Furthermore, B begets a unique linear isometry C : IndGφHφ → IndGψHψ,
since

‖Bfφ‖2IndGψHψ
=

∫
G/H

‖(Bfφ)(x)‖2Hψ dµG/H(xH)

=
∫
G/H

‖A(fφ(x))‖2Hψ dµG/H(xH)

=
∫
G/H

‖fφ(x)‖2Hφ dµG/H(xH)

= ‖fφ‖2IndGφHφ
.

Next, C is a surjection: if F ∈ Cψ(G,Hψ) then (y 7→ A−1(F (y)) ∈
Cφ(G,Hφ) and

(
C
(
y 7→ A−1(F (y))

))
(x) = AA−1(F (x)) = F (x), and this
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is enough due to the density. Finally,

(C IndGHφ(y)fφ)(x) = A(IndGHφ(y)fφ(x))
= A(fφ(y−1x))
= (Cfφ)(y−1x)

= (IndGHφ(y)Cfφ)(x),

so that C ∈ Hom
(

IndGHφ, IndGHψ
)

is an isometric isomorphism. �

Corollary 2.9.9. Let G be a compact group and H < G closed. Let φ1 and φ2

be strongly continuous unitary representations of H. Then IndGH(φ1⊕φ2) ∼(
IndGHφ1

)
⊕
(

IndGHφ2

)
.

Exercise 2.9.10. Prove Corollary 2.9.9.

Corollary 2.9.11. IndGHφ is irreducible only if φ is irreducible.

Remark 2.9.12. Let G1, G2 be compact groups and H1 < G1, H2 < G2 be
closed. If φ1, φ2 are strongly continuous unitary representations of H1, H2,
respectively, then

IndG1×G2
H1×H2

(φ1 ⊗ φ2) ∼
(

IndG1
H1
φ1

)
⊗
(

IndG2
H2
φ2

)
;

this is not proved in these lecture notes.

Theorem 2.9.13. Let G be a compact group and H < K < G, where H,K
are closed. If φ ∈ Hom(H,U(H)) is strongly continuous then IndGHφ ∼
IndGKIndKHφ.

Proof. In this proof, x ∈ G, k, k0 ∈ K and h ∈ H. Let ψ := IndKHφ
and Hψ := IndKφ H. Let fφ ∈ Cφ(G,H). Since (k 7→ fφ(xk)) : K → H
is continuous and fφ(xkh) = φ(h)∗fφ(xk), we obtain (k 7→ fφ(xk)) ∈
Cφ(K,H) ⊂ Hψ. Let us define fKφ : G→ Hψ by

fKφ (x) := (k 7→ fφ(xk)).

If x ∈ G and k0 ∈ K then

fKφ (xk0)(k) = fφ(xk0k)

= fKφ (x)(k0k)

=
(
ψ(k0)∗fKφ (x)

)
(k),
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i.e. fKφ (xk0) = ψ(k0)∗fKφ (x). Let ε > 0. By the uniform continuity of fφ,
take open U 3 e such that ‖fφ(a) − fφ(b)‖H < ε if ab−1 ∈ U . Thereby if
xy−1 ∈ U then∥∥fKφ (x)− fKφ (y)

∥∥2

Hψ
=

∫
K/H

∥∥fKφ (x)(k)− fKφ (y)(k)
∥∥2

H dµK/H(kH)

=
∫
K/H

‖fφ(xk)− fφ(yk)‖2H dµK/H(kH)

≤ ε2.

Hence fKφ ∈ Cψ(G,Hψ) ⊂ IndGψHψ, so that we have a mapping (fφ 7→
fKφ ) : Cφ(G,H)→ Cψ(G,Hψ).

We claim that fφ 7→ fKφ defines a surjective linear isometry IndGφH →
IndGψHψ. Isometricity follows by

∥∥fKφ ∥∥2

IndGψHψ
=

∫
G/K

∥∥fKφ (x)
∥∥2

Hψ
dµG/K(xK)

=
∫
G/K

∫
K/H

∥∥fKφ (x)(k)
∥∥2

H dµK/H(kH) dµG/K(xK)

=
∫
G/K

∫
K/H

‖fφ(xk)‖2H dµK/H(kH) dµG/K(xK)

=
∫
G/H

‖fφ(x)‖2H dµG/H(xH)

= ‖fφ‖2IndGφH
.

How about the surjectivity? The representation space IndGψHψ is the
closure of Cψ(G,Hψ), and Hψ is the closure of Cφ(K,H). Consequently,
IndGψHψ is the closure of the vector space

Cψ(G,Cφ(K,H)) :=
{g ∈ C(G,C(K,H)) | ∀x ∈ G ∀k ∈ K ∀h ∈ H :

g(xk) = ψ(k)∗g(x), g(x)(kh) = φ(h)∗g(x)(k)}.

Given g ∈ Cψ(G,Cφ(K,H)), define fφ ∈ Cφ(G,H) by fφ(x) := g(x)(e).
Then fKφ = g, because

fKφ (x)(k) = fφ(xk) = g(xk)(e) = ψ(k)∗g(x)(e) = g(x)(k).
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Thus (fφ 7→ fKφ ) : Cφ(G,H) → Cψ(G,Cφ(K,H)) is a linear isometric bi-
jection. Hence this mapping can be extended uniquely to a linear isometric
bijection A : IndGφH → IndGψHψ.

Finally, A ∈ Hom
(

IndGHφ, IndGKIndKHφ
)

, since

A
(

IndGHφ(y)fφ(x)
)

= Afφ(y−1x)

= fKφ (y−1x)

= IndGKψ(y)fKφ (x)

= IndGKψ(y)Afφ(x).

�

Exercise 2.9.14. Let G be a compact group, H < G closed. Let φ = (h 7→
I) ∈ Hom(H,U(H)), where I = (u 7→ u) : H → H.
(a) Show that IndGφH ∼= L2(G/H,H), where the inner product for L2(G/H,H)
is given by

〈fG/H , gG/H〉L2(G/H,H) :=
∫
G/H

〈fG/H(xH), gG/H(xH)〉H dµG/H(xH),

when fG/H , gG/H ∈ C(G/H,H).
(b) Let K < G be closed. Let πK and πG be the left regular representa-
tions of K and G, respectively. Prove that πG ∼ IndGKπK .

Remark 2.9.15. A fundamental result for induced representations is the
Frobenius Reciprocity Theorem 2.9.16, stated below without a proof. Let
G be a compact group and φ ∈ Hom(G,U(H)) be strongly continuous.
Let n ([ξ], φ) ∈ N denote the multiplicity of [ξ] ∈ Ĝ in φ, defined as fol-
lows: if φ =

⊕k
j=1 φj , where each φj is a continuous irreducible unitary

representation, then

n([ξ], φ) := |{j ∈ {1, . . . , k} : [φj ] = [ξ]}| .

That is, n([ξ], φ) is the number of how many times ξ may occur in a direct
sum decomposition of φ as an irreducible component.

Theorem 2.9.16. (Frobenius Reciprocity Theorem.) Let G be a compact
group and H < G be closed. Let ξ, η be continuous such that [ξ] ∈ Ĝ and
[η] ∈ Ĥ. Then

n
(

[ξ], IndGHη
)

= n
(
[η],ResGHξ

)
.
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Example. Let [ξ] ∈ Ĝ, H = {e} and η = (e 7→ I) ∈ Hom(H,U(C)). Then
πL ∼ IndGHη by Exercise 2.9.14, and Ĥ = {[η]}, so that

n
(

[ξ], IndGHη
)

= n ([ξ], πL)

Peter−Weyl
= dim(ξ)
= dim(ξ) n ([η], η)

= n

[η],
dim(ξ)⊕
j=1

η


= n

(
[η],ResGHξ

)
which is in accordance with the Frobenius Reciprocity Theorem 2.9.16!
Example. Let [ξ], [η] ∈ Ĝ. Then by the Frobenius Reciprocity Theorem 2.9.16,

n
(

[ξ], IndGGη
)

= n
(
[η],ResGGξ

)
= n ([η], ξ)

=

{
1, when [ξ] = [η],
0, when [ξ 6= [η].

Let φ be a finite-dimensional continuous unitary representation of G. Then
φ =

⊕k
j=1 ξk, where each ξk is irreducible. Thereby

IndGGφ ∼
k⊕
j=1

IndGGξj ∼
k⊕
j=1

ξj ∼ φ;

induction “does nothing” in the finite-dimensional case.
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Chapter 3

Linear Lie groups

3.1 Exponential map

A Lie group, by definition, is a group and a C∞-manifold such that the
group operations are C∞-smooth. A linear Lie group means a closed sub-
group of GL(n,C). There is a result stating that a Lie group is diffeomor-
phic to a linear Lie group, and thereby the matrix groups are especially
interesting. The fundamental tool for studying these groups is the matrix
exponential map, treated below.

Let us endow Cn with the usual inner product

(x, y) 7→ 〈x, y〉Cn :=
n∑
j=1

xjyj .

The corresponding norm is x 7→ ‖x‖Cn := 〈x, x〉Cn . We identify the matrix
algebra Cn×n with L(Cn), the algebra of linear operators Cn → Cn. Let
us endow Cn×n ∼= L(Cn) with the usual operator norm

Y 7→ ‖Y ‖L(Cn) := sup
x∈Cn: ‖x‖Cn≤1

‖Y x‖Cn .

Notice that ‖XY ‖L(Cn) ≤ ‖X‖L(Cn)‖Y ‖L(Cn). For a matrix X ∈ Cn×n,
the exponential exp(X) ∈ Cn×n is defined by the usual power series

exp(X) :=
∞∑
k=0

1
k!
Xk,
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where X0 := I; this series converges in the Banach space Cn×n ∼= L(Cn),
because

∞∑
k=0

1
k!

∥∥Xk
∥∥
L(Cn)

≤
∞∑
k=0

1
k!
‖X‖kL(Cn) = e‖X‖L(Cn) <∞.

Proposition 3.1.1. Let X,Y ∈ Cn×n. If XY = Y X then exp(X + Y ) =
exp(X) exp(Y ). Consequently, exp : Cn×n → GL(n,C) such that exp(−X) =
exp(X)−1.

Proof. Now

exp(X + Y ) = lim
l→∞

2l∑
k=0

1
k!

(X + Y )k

XY=Y X= lim
l→∞

2l∑
k=0

1
k!

k∑
i=0

k!
i! (k − i)!

XiY k−i

= lim
l→∞

 l∑
i=0

1
i!
Xi

l∑
j=0

1
j!
Y j +

∑
i,j: i+j≤2l,
max(i,j)>l

1
i! j!

XiY j


= lim

l→∞

 l∑
i=0

1
i!
Xi

l∑
j=0

1
j!
Y j


= exp(X) exp(Y ),

since the remainder term satisfies∥∥∥∥∥∥∥∥
∑

i,j: i+j≤2l,
max(i,j)>l

1
i! j!

XiY j

∥∥∥∥∥∥∥∥
L(Cn)

≤
∑

i,j: i+j≤2l,
max(i,j)>l

1
i! j!
‖X‖iL(Cn)‖Y ‖

j
L(Cn)

≤ l(l + 1)
1

(l + 1)!
c2l

−−−→
l→∞

0,

where c := max
(
1, ‖X‖L(Cn), ‖Y ‖L(Cn)

)
.

Consequently, I = exp(0) = exp(X) exp(−X) = exp(−X) exp(X), so
that we get exp(−X) = exp(X)−1. �
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Lemma 3.1.2. If X ∈ Cn×n then exp
(
XT
)

= exp(X)T and exp(X∗) =
exp(X)∗; if P ∈ GL(n,C) then exp(PXP−1) = P exp(X)P−1.

Proof. For the adjoint X∗,

exp(X∗) =
∞∑
k=0

1
k!

(X∗)k =
∞∑
k=0

1
k!

(Xk)∗ =

( ∞∑
k=0

1
k!
Xk

)∗
= exp(X)∗,

and similarly for the transpose XT. Finally,

exp(PXP−1) =
∞∑
k=0

1
k!

(PXP−1)k =
∞∑
k=0

1
k!
PXkP−1 = P exp(X)P−1.

�

Proposition 3.1.3. If λ ∈ C is an eigenvalue of X ∈ Cn×n then eλ is an
eigenvalue of exp(X). Consequently

Det(exp(X)) = eTr(X).

Proof. Choose P ∈ GL(n,C) such that Y := PXP−1 ∈ Cn×n is up-
per triangular; the eigenvalues of X and Y are the same, and for tri-
angular matrices the eigenvalues are the diagonal elements. Since Y k is
upper triangular for every k ∈ N, exp(Y ) is upper triangular. Moreover,
(Y k)jj = (Yjj)k, so that (exp(Y ))jj = eYjj . The eigenvalues of exp(X) and
exp(Y ) = P exp(X)P−1 are the same.

The determinant of a matrix is the product of its eigenvalues; the
trace of a matrix is the sum of its eigenvalues; this implies the last claim.
�

Theorem 3.1.4. HOM(R,GL(n,C)) = {t 7→ exp(tX) | X ∈ Cn×n}.

Proof. It is clear that (t 7→ exp(tX)) ∈ HOM(R,GL(n,C)), since it is
continuous and exp(sX) exp(tX) = exp((s+ t)X).

Let φ ∈ HOM(R,GL(n,C)). Then φ(s+ t) = φ(s)φ(t) implies(∫ h

0

φ(s) ds

)
φ(t) =

∫ h

0

φ(s+ t) ds =
∫ t+h

t

φ(u) du.
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Recall that A ∈ Cn×n is invertible if ‖I −A‖L(Cn) < 1; now∥∥∥∥∥I − 1
h

∫ h

0

φ(s) ds

∥∥∥∥∥
L(Cn)

=

∥∥∥∥∥ 1
h

∫ h

0

(I − φ(s)) ds

∥∥∥∥∥
L(Cn)

≤ sup
s: |s|≤|h|

‖I − φ(s)‖L(Cn)

< 1

when |h| is small enough, because φ(0) = 1 and φ is continuous. Hence∫ h
0
φ(s) ds is invertible for small |h|, and we get

φ(t) =

(∫ h

0

φ(s) ds

)−1 ∫ t+h

t

φ(u) du.

Since φ is continuous, this formula states that φ is differentiable. Now

φ′(t) = lim
s→0

φ(s+ t)− φ(t)
s

= lim
s→0

φ(s)− φ(0)
s

φ(t) = X φ(t),

where X := φ′(0). Hence the initial value problem{
ψ′(t) = X ψ(t), ψ : R→ GL(n,C),
ψ(0) = I

has solutions ψ = φ and ψ = φX := (t 7→ exp(tX)). Define α : R →
GL(n,C) by α(t) := φ(t) φX(−t). Then α(0) = φ(0) φX(0) = I and

α′(t) = φ′(t) φX(−t)− φ(t) φ′X(−t)
= X φ(t) φX(−t)− φ(t) X φX(−t)
= 0,

since X φ(t) = φ(t) X. Therefore α(t) = I for every t ∈ R, so that φ = φX .
�

Proposition 3.1.5. Logarithm

log(A) := −
∞∑
k=1

1
k

(I −A)k

is well-defined for matrices A ∈ Cn×n satisfying ‖I − A‖L(Cn) < 1. More-
over, exp(log(A)) = A, and log(exp(X)) = X if ‖X‖L(Cn) < ln(2).
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Proof. When c := ‖I −A‖L(Cn) < 1,
∞∑
k=1

1
k

∥∥(I −A)k
∥∥
L(Cn)

≤
∞∑
k=1

1
k
‖I −A‖kL(Cn) ≤

∞∑
k=1

ck =
c

1− c
<∞,

so that log(A) is well-defined. Because numbers a ∈ C satisfy

eln a =
∞∑
k=0

1
k!

(
−
∞∑
l=1

1
l
(1− a)l

)k
= a,

when |1− a| < 1, respectively for a matrix A ∈ Cn×n

exp(log(A)) =
∞∑
k=0

1
k!

(
−
∞∑
l=1

1
l
(I −A)l

)k
= A,

when ‖I −A‖ < 1 (notice that I and A commute). Now

ln(ex) = −
∞∑
l=1

1
l
(1− ex)l = −

∞∑
l=1

1
l

(
1−

∞∑
k=0

1
k!
xk

)l
= x,

when |1− ex| < 1, i.e. x < ln(2), so that if X ∈ Cn×n and ‖X‖L(C) < ln(2)
then

log(exp(X)) = −
∞∑
l=1

1
l
(I − exp(X))l = −

∞∑
l=1

1
l

(
I −

∞∑
k=0

1
k!
Xk

)l
= X.

�

Corollary 3.1.6. Let B :=
{
X ∈ Cn×n : ‖X‖L(Cn) < ln(2)

}
. Then (X 7→

exp(X)) : B → exp(B) is a diffeomorphism (i.e. a bijective C∞-smooth
mapping).

Proof. As exp and log are defined by power series, they are not just
C∞-smooth but also analytic. �

Lemma 3.1.7. Let X,Y ∈ Cn×n. Then

exp(X + Y ) = lim
m→∞

(exp(X/m) exp(Y/m))m

and
exp([X,Y ]) = lim

m→∞
{exp(X/m), exp(Y/m)}m

2

,

where [X,Y ] := XY − Y X and {a, b} := aba−1b−1.
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Proof. As t→ 0,

exp(tX) exp(tY ) =
(
I + tX +

t2

2
X2 +O(t3)

)
(
I + tY +

t2

2
Y 2 +O(t3)

)
= I + t(X + Y ) +

t2

2
(X2 + 2XY + Y 2) +O(t3),

so that

{exp(tX), exp(tY )}

=
(
I + t(X + Y ) +

t2

2
(X2 + 2XY + Y 2) +O(t3)

)
(
I − t(X + Y ) +

t2

2
(X2 + 2XY + Y 2) +O(t3)

)
= I + t2(XY − Y X) +O(t3)
= I + t2[X,Y ] +O(t3).

Since exp is an injection in a neighbourhood of the origin 0 ∈ Cn×n, we
have

exp(tX) exp(tY ) = exp
(
t(X + Y ) +O(t2)

)
,

{exp(tX), exp(tY )} = exp
(
t2[X,Y ] +O(t3)

)
as t → 0. Notice that exp(X)m = exp(mX) for every m ∈ N. Therefore
we get

lim
m→∞

(exp(X/m) exp(Y/m))m = lim
m→∞

exp
(
X + Y +O(m−1)

)
= exp(X + Y ),

lim
m→∞

{exp(X/m), exp(Y/m)}m
2

= lim
m→∞

exp
(
[X,Y ] +O(m−1)

)
= exp([X,Y ]).

�
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3.2 No small subgroups for Lie, please

A topological group is said to have the “no small subgroups” property
if there exists a neighbourhood of the neutral element containing no non-
trivial subgroups. Next we show that this property characterizes Lie groups
among compact groups.
Example. Let {Gj}j∈J be an infinite family of compact groups each having
more than one element. Let us consider the compact product group G :=∏
j∈J Gj . If

Hj := {x ∈ G | ∀i ∈ J \ {j} : xi = eGi}
then Gj ∼= Hj < G; Hj is a non-trivial subgroup of G. If V ⊂ G is a
neighbourhood of e ∈ G then it contains all but perhaps finitely many Hj ,
due to the definition of the product topology. Hence in this case G “has
small subgroups” (i.e. has not “no small subgroups” property).

Theorem 3.2.1. Let G be a compact group and V ⊂ G open such that e ∈ V .
Then there exists n ∈ Z+ and φ ∈ HOM(G,U(n)) such that Ker(φ) ⊂ V .

Proof. First, {e} ⊂ G and G \ V ⊂ G are disjoint closed subsets of a
compact Hausdorff space G (case V = G is also ok). By Urysohn’s Lemma,
there exists f ∈ C(G) such that f(e) = 1 and f(G \ V ) = {0}. Since
trigonometric polynomials are dense in C(G), we may take p ∈ TrigPol(G)
such that ‖p− f‖C(G) < 1/2. Then

H := span {πR(x)p | x ∈ G} ⊂ L2(µG)

is a finite-dimensional vector space, and H inherits the inner product from
L2(µG). Let A : H → Cn be a linear isometry, where n = dim(H). Let us
identify U(Cn) with U(n). Define φ ∈ Hom(G,U(n)) by

φ(x) := A πR(x)|H A−1.

Then φ is clearly a continuous unitary representation. For every x ∈ G\V ,

|p(x)− 0| = |p(x)− f(x)| ≤ ‖p− f‖C(G) < 1/2,

so that p(x) 6= p(e), because

|p(e)− 1| = |p(e)− f(e)| ≤ ‖p− f‖C(G) < 1/2;

consequently πR(x)p 6= p. Thus Ker(φ) ⊂ V . �

Corollary 3.2.2. Let G be a compact group. Then G has no small subgroups
if and only if it is isomorphic to a linear Lie group.
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Proof. Let G be a compact group without small subgroups. By Theo-
rem 3.2.1, there exists injective φ ∈ HOM(G,U(n)) for some n ∈ Z+.
Then (x 7→ φ(x)) : G → φ(G) is an isomorphism and a homeomor-
phism, because φ is continuous, G is compact and U(n) is Hausdorff. Thus
φ(G) < U(n) < GL(n,C) is a compact linear Lie group.

Conversely, suppose G < GL(n,C) is closed. Recall that (X 7→
exp(X)) : B→ exp(B) is a homeomorphism, where

B =
{
X ∈ Cn×n : ‖X‖L(Cn) < ln(2)

}
.

Thereby V := exp(B/2)∩G is a neighbourhood of I ∈ G. In the search of
a contradiction, suppose there exists H < G such that I 6= A ∈ H ⊂ V .
Then 0 6= log(A) ∈ B/2, so that m log(A) ∈ B \ (B/2) for some m ∈ Z+.
Then

exp(m log(A)) = exp(log(A))m = Am ∈ H ⊂ V ⊂ exp(B/2),

but also

exp(m log(A)) ∈ exp(B \ (B/2)) = exp(B) \ exp(B/2);

this is a contradiction. �

Remark 3.2.3. Actually, it is shown above that Lie groups have no small
subgroups; compactness played no role in this part of the proof.

Exercise 3.2.4. Use the Peter–Weyl Theorem 2.5.13 to provide an alter-
native proof for Theorem 3.2.1. Hint: For each x ∈ G \ V there exists
φx ∈ HOM(G,U(nx)) such that x 6∈ Ker(φx), because. . .

3.3 Lie groups and Lie algebras

This section deals with representation theory of Lie groups. We introduce
Lie algebras, which sometimes still bear the archaic label “infinitesimal
groups”, quite adequately describing their essence: a Lie algebra is a sort
of “locally linearized” version of a Lie group.

Definition 3.3.1. A K-Lie algebra is a K-vector space V endowed with a
bilinear mapping ((a, b) 7→ [a, b]V = [a, b]) : V × V → V satisfying

[a, a] = 0 and [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0
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for every a, b, c ∈ V ; the second identity is called the Jacobi identity.
Notice that here [a, b] = −[b, a] for every a, b ∈ V . A vector subspace
W ⊂ V of a Lie algebra V is called a Lie subalgebra if [a, b] ∈ W for
every a, b ∈ W (and thus W is a Lie algebra in its own right). A linear
mapping A : V1 → V2 between Lie algebras V1, V2 is called a Lie algebra
homomorphism if [Aa,Ab]V2 = A[a, b]V1 for every a, b ∈ V1.

Example. 1. For a K-vector space V , the trivial Lie product [a, b] := 0
begets a trivial Lie algebra.

2. A K-algebra A can be endowed with the canonical Lie product

(a, b) 7→ [a, b] := ab− ba;

this Lie algebra is denoted by LieK(A). Important special cases of
such Lie algebras are

LieK(Cn×n) ∼= LieK(End(Cn)), LieK(End(V )), LieK(L(X)),

where X is a normed space and End(V ) is the algebra of linear op-
erators V → V on a vector space V . For short, let

gl(V ) := LieR(End(V )).

3. Let D(A) be the K-vector space of derivations of a K-algebra A;
that is, D ∈ D(A) is a linear mapping A → A satisfying the Leibniz
property

D(ab) = D(a) b+ a D(b)

for every a, b ∈ A. Then D(A) has a Lie algebra structure given
by [D,E] := DE − ED. An important special case is A = C∞(M),
where M is a C∞-manifold; if C∞(M) is endowed with the usual test
function topology then D ∈ D(C∞(M)) is continuous if and only
if it is a linear first-order partial differential operator with smooth
coefficients (alternatively, a smooth vector field on M).

4. The following theorem introduces the Lie algebra of a Lie group.

Theorem 3.3.2. Let G < GL(n,C) be closed. The R-vector space

Lie(G) = g :=
{
X ∈ Cn×n | ∀t ∈ R : exp(tX) ∈ G

}
is a Lie subalgebra of the R-Lie algebra LieR(Cn×n) ∼= gl(Cn); g is called
the Lie algebra of G.
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Proof. Let X,Y ∈ g and λ ∈ R. Trivially, exp(tλX) ∈ G for every t ∈ R,
yielding λX ∈ g. Since G is closed and exp is continuous,

G 3 (exp(tX/m) exp(tY/m))m −−−−→
m→∞

exp (t(X + Y )) ∈ G

G 3 {exp(tX/m), exp(tY/m)}m
2

−−−−→
m→∞

exp (t[X,Y ]) ∈ G

by the known properties of the exponential map. TherebyX+Y, [X,Y ] ∈ g.
�

Definition 3.3.3. Let G be a linear Lie group and g = Lie(G). Notice that

HOM(R, G) = {t 7→ exp(tX) | X ∈ g} .

Mapping (X 7→ exp(X)) : g → G is a diffeomorphism in a small neigh-
bourhood of 0 ∈ g. Hence, given a vector space basis for g ∼= Rk, a small
neighbourhood of exp(0) = I ∈ G is endowed with so called exponential
coordinates. The dimension of G is dim(G) := dim(g) = k. If G is compact
and connected then exp(g) = G, so that the exponential map may “wrap
g around G”; we do not prove this.

Remark 3.3.4. Informally speaking, if X,Y ∈ g are “near 0 ∈ g”, x :=
exp(X) and y := exp(Y ) then x, y ∈ G are “near I ∈ G” and

exp(X + Y ) ≈ xy, exp([X,Y ]) ≈ {x, y} = xyx−1y−1.

In a sense, the Lie algebra g is the “infinitesimal linearized G nearby I ∈
G”.
Remark 3.3.5. Interpreting the Lie algebra: The Lie algebra g can be iden-
tified with the tangent space of G at I ∈ G. Using left-translations (resp.
right-translations), g can be identified with the set of left-invariant (resp.
right-invariant) vector fields on G, and vector fields have a natural in-
terpretation as first-order partial differential operators on G: For x ∈ G,
X ∈ g and f ∈ C∞(G), define

LXf(x) :=
d
dt
f (x exp(tX)) |t=0,

RXf(x) :=
d
dt
f (exp(tX) x) |t=0.

Then πL(y)LXf = LXπL(y)f and πR(y)RXf = RXπR(y)f for every
y ∈ G, where πL, πR are the left and right regular representations of G,
respectively.
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Definition 3.3.6. Notations: gl(n,K) = Lie(GL(n,K)), sl(n,K) = Lie(SL(n,K)),
o(n) = Lie(O(n)), so(n) = Lie(SO(n)), u(n) = Lie(U(n)), su(n) = Lie(SU(n))
etc.

Exercise 3.3.7. Calculate the dimensions of the linear Lie groups mentioned
in Definition 3.3.6.

Proposition 3.3.8. Let G,H be linear Lie groups having the respective Lie
algebras g, h. Let ψ ∈ HOM(G,H). Then for every X ∈ g there exists a
unique Y ∈ h such that ψ(exp(tX)) = exp(tY ) for every t ∈ R.

Proof. Let X ∈ g. Then φ := (t 7→ ψ(exp(tX))) : R→ H is a continuous
homomorphism, so that φ = (t 7→ exp(tY )), where Y = φ′(0) ∈ h. �

Proposition 3.3.9. Let F,G,H be closed subgroups of GL(n,C), with the
respective Lie algebras f, g, h. Then
(a) H < G⇒ h ⊂ g,
(b) the Lie algebra of F ∩G is f ∩ g,
(c) the Lie algebra cI of the component CI < G of the neutral element I
is g.

Proof.

(a): If H < G and X ∈ h then exp(tX) ∈ H ⊂ G for every t ∈ R, so that
X ∈ g.
(b): Let e be the Lie algebra of F ∩G. By (a), e ⊂ f∩ g. If X ∈ f∩ g then
exp(tX) ∈ F ∩G for every t ∈ R, so that X ∈ a. Hence e = f ∩ g.
(c): By (a), cI ⊂ g. Let X ∈ g. Now the connectedness of R and the
continuity of t 7→ exp(tX) imply the connectedness of {exp(tX) : t ∈
R} 3 exp(0) = I. Thereby {exp(tX) : t ∈ R} ⊂ CI , so that X ∈ cI . �

Example. Let us compute the Lie algebra sl(n,K) of

SL(n,K) = {A ∈ GL(n,K) | Det(A) = 1} .

Now

sl(n,K) :=
{
X ∈ Cn×n | ∀t ∈ R : exp(tX) ∈ SL(n,K)

}
=

{
X ∈ Cn×n | ∀t ∈ R : exp(tX) ∈ Kn×n, Det(exp(tX)) = 1

}
.



80 Chapter 3. Linear Lie groups

Let {λj}nj=1 ⊂ C be the set of the eigenvalues of X ∈ Kn×n. The charac-
teristic polynomial (z 7→ Det(zI −X)) : C→ C of X satisfies

Det(zI −X) =
n∏
j=1

(z − λj)

= zn − zn−1
n∑
j=1

λj + . . .+ (−1)n
n∏
j=1

λj

= zn − zn−1Tr(X) + . . .+ (−1)nDet(X),

We know that X is similar to an upper triangular matrix Y = PXP−1 for
some P ∈ GL(n,K). Since

Det(zI − PXP−1) = Det(P (zI −X)P−1)
= Det(P ) Det(zI −X) Det(P−1)
= Det(zI −X),

the eigenvalues of X and Y are the same, and they are on the diagonal of
Y . Evidently, {eλj}nj=1 ⊂ C is the set of the eigenvalues of both exp(Y )
and exp(X) = P−1 exp(Y )P . Since the determinant is the product of the
eigenvalues and the trace is the sum of the eigenvalues, we have

Det(exp(X)) =
n∏
j=1

eλj = e
Pn
j=1 λj = eTr(X).

Therefore X ∈ sl(n,K) if and only if Tr(X) = 0 and exp(tX) ∈ Kn×n for
every t ∈ R. Thus

sl(n,K) =
{
X ∈ Kn×n | Tr(X) = 0

}
as the reader may check.
Remark 3.3.10. Differentiating homomorphisms: Next we ponder the re-
lationship between Lie group and Lie algebra homomorphisms. Let G,H
be linear Lie groups with respective Lie algebras g, h. The differential ho-
momorphism of ψ ∈ HOM(G,H) is ψ′ = Lie(ψ) : g→ h defined by

ψ′(X) :=
d
dt
ψ(exp(tX))|t=0;

this is well-defined since f := (t 7→ ψ(exp(tX))) ∈ HOM(R, H) is of the
form t 7→ exp(tY ) for some Y ∈ h. Moreover, Y = f ′(0) = ψ′(X) holds, so
that

ψ(exp(tX)) = exp(tψ′(X)).
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Theorem 3.3.11. Let F,G,H be linear Lie groups with respective Lie alge-
bras f, g, h. Let φ ∈ HOM(F,G) and ψ ∈ HOM(G,H). Mapping ψ′ : g→ h
defined above in Remark 3.3.10 is a Lie algebra homomorphism. Moreover,

(ψ ◦ φ)′ = ψ′φ′ and Id′G = Idg,

where IdG = (x 7→ x) : G→ G and Idg = (X 7→ X) : g→ g.

Proof. Let X,Y ∈ g and λ ∈ R. Then

ψ′(λX) =
d
dt
ψ(exp(tλX))|t=0

= λ
d
dt
ψ(exp(tX))|t=0

= λψ′(X).

If t ∈ R then

exp (tψ′(X + Y )) = ψ (exp(tX + tY ))

= ψ
(

lim
m→∞

(exp(tX/m) exp(tY/m))m
)

= lim
m→∞

(ψ(exp(tX/m)) ψ(exp(tY/m)))m

= lim
m→∞

(exp(tψ′(X)/m) exp(tψ′(Y )/m))m

= exp(t(ψ′(X) + ψ′(Y ))),

so that tψ′(X+Y ) = t (ψ′(X) + ψ′(Y )) for “small enough” |t|, as we recall
that exp is injective in a small neighbourhood of 0 ∈ g. Consequently,
ψ′ : g→ h is linear. Next,

exp (tψ′([X,Y ])) = ψ (exp(t[X,Y ]))

= ψ
(

lim
m→∞

{exp(tX/m), exp(tY/m)}m
2
)

= lim
m→∞

{exp(tψ′(X)/m), exp(tψ′(Y )/m)}m
2

= exp (t[ψ′(X), ψ′(Y )]) ,

so that we get ψ′([X,Y ]) = [ψ′(X), ψ′(Y )]. Thus ψ′ : g→ h is a Lie algebra
homomorphism.
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If Z ∈ f then

(ψ ◦ φ)′(Z) =
d
dt
ψ (φ(exp(tZ))) |t=0

=
d
dt
ψ (exp(tφ′(Z))) |t=0

= ψ′(φ′(Z)).

Finally, d
dt exp(tX)|t=0 = X, yielding Id′G = Idg. �

Remark 3.3.12. Now we know that a continuous Lie group homomorphism
ψ can naturally be “linearized” to get a Lie algebra homomorphism ψ′, so
that we have a commutative diagram

G
ψ−−−−→ H,

exp

x xexp

g
ψ′−−−−→ h.

What if we are given a Lie algebra homomorphism f : g → h, does there
exists φ ∈ HOM(G,H) such that φ′ = f? The answer is affirmative for
simply connected G; this is a demanding but feasible exercise. But in
general there can be other sorts of Lie algebra homomorphisms, too.

Notice also that isomorphic linear Lie groups must have isomorphic
Lie algebras.

Lemma 3.3.13. Let g be the Lie algebra of a linear Lie group G, and

S :=
{

exp(X1) · · · exp(Xm) | m ∈ Z+, {Xj}mj=1 ⊂ g
}
.

Then S = CI , the component of I ∈ G.

Proof. Now S < G is path-connected, since

(t 7→ exp(tX1) · · · exp(tXm)) : [0, 1]→ S

is continuous, connecting I ∈ S to the point exp(X1) · · · exp(Xm) ∈ S. For
a “small enough” neighbourhood U ⊂ g of 0 ∈ g, we have a homeomor-
phism (X 7→ exp(X)) : U → exp(U). Because of

exp(X1) · · · exp(Xm) ∈ exp(X1) · · · exp(Xm) exp(U) ⊂ S,
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it follows that S < G is open. But open subgroups are always closed, as
the reader easily verifies. Thus S 3 I is connected, closed and open, so
that S = CI , the component of I ∈ G. �

Corollary 3.3.14. Let G,H be linear Lie groups and φ, ψ ∈ HOM(G,H).
Then:
(a) Lie(Ker(ψ)) = Ker(ψ′).
(b) If G is connected and φ′ = ψ′ then φ = ψ.
(c) Let H be connected; then ψ′ is surjective if and only if ψ is surjective.

Proof.
(a) Ker(ψ) < G < GL(n,C) is a closed subgroup, since ψ is a continuous
homomorphism. Thereby

Lie(Ker(ψ)) =
{
X ∈ Cn×n | ∀t ∈ R : exp(tX) ∈ Ker(ψ)

}
=

{
X ∈ Cn×n | ∀t ∈ R : exp(tψ′(X)) = ψ(exp(tX)) = I

}
=

{
X ∈ Cn×n | ψ′(X) = 0

}
= Ker(ψ′).

(b) Take A ∈ G. Then A = exp(X1) · · · exp(Xm) for some {Xj}mj=1 ⊂ g
by Lemma 3.3.13, so that

φ(A) = exp (φ′(X1)) · · · exp (φ′(Xm))
= exp (ψ′(X1)) · · · exp (ψ′(Xm))
= ψ(A).

(c) Suppose ψ′ : g→ h is surjective. Let B ∈ H. Now H is connected, so
that Lemma 3.3.13 says that B = exp(Y1) · · · exp(Ym) for some {Yj}mj=1 ⊂
h. Exploit the surjectivity of ψ′ to obtain Xj ∈ g such that ψ′(Xj) = Yj .
Then

ψ (exp(X1) · · · exp(Xm)) = ψ (exp(X1)) · · ·ψ (exp(Xm))
= exp(Y1) · · · exp(Ym)
= B.

Conversely, suppose ψ : G → H is surjective. Trivially, ψ′(0) = 0 ∈ h; let
0 6= Y ∈ h. Let r := ln(2)/‖Y ‖; recall that if |t| < r then log(exp(tY )) =
tY . The surjectivity of ψ guarantees that for every t ∈ R there exists
At ∈ G such that ψ(At) = exp(tY ). The set R := {At : 0 < t < r} is
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uncountable, so that it has an accumulation point x ∈ Cn×n; and x ∈ G,
because R ⊂ G and G ⊂ Cn×n is closed. Let ε > 0. Then there exist
s, t ∈]0, r[ such that s 6= t and

‖As − x‖ < ε, ‖At − x‖ < ε,
∥∥A−1

s − x−1
∥∥ < ε.

Thereby ∥∥A−1
s At − I

∥∥ =
∥∥A−1

s (At −As)
∥∥

≤
∥∥A−1

s

∥∥ (‖At − x‖+ ‖x−As‖)
≤

(
‖x−1‖+ ε

)
2ε.

Hence we demand ‖A−1
s At − I‖ < 1 and ‖ψ(A−1

s At)− I‖ < 1, yielding

ψ(A−1
s At) = ψ(As)−1ψ(At) = exp((t− s)Y ).

Consequently
ψ′
(
log(A−1

s At)
)

= (t− s)Y.

Therefore ψ′
(

1
t−s log(A−1

s At)
)

= Y . �

Definition 3.3.15. The adjoint representation of a linear Lie group G is
mapping Ad ∈ HOM(G,Aut(g)) defined by

Ad(A)X := AXA−1 (A ∈ G, X ∈ g).

Indeed, Ad : G→ Aut(g), because

exp (tAd(A)X) = exp
(
tAXA−1

)
= A exp (tX)A−1

belongs to G if A ∈ G, X ∈ g and t ∈ R. It is a homomorphism, since

Ad(AB)X = ABXB−1A−1 = Ad(A)(BXB−1) = Ad(A) Ad(B) X,

and it is trivially continuous.

Exercise 3.3.16. Let g be a Lie algebra. Consider Aut(g) as a linear Lie
group. Show that Lie(Aut(g)) and gl(g) are isomorphic as Lie algebras.

Definition 3.3.17. The adjoint representation of the Lie algebra g of a linear
Lie group G is the differential representation

ad = Ad′ : g→ Lie(Aut(g)) ∼= gl(g),
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that is ad(X) := Ad′(X), so that

ad(X)Y =
d
dt

(exp(tX)Y exp(−tX)) |t=0

=
((

d
dt

exp(tX)
)
Y exp(−tX) + exp(tX)Y

d
dt

exp(−tX)
)
|t=0

= XY − Y X
= [X,Y ].

Remark 3.3.18. Higher order partial differential operators: Let g be the
Lie algebra of a linear Lie group G. Next we construct a natural associative
algebra U(g) generated by g modulo an ideal, enabling embedding g into
U(g). Recall that g can be interpreted as the vector space of first-order
left (or right) -translation invariant partial differential operators on G.
Consequently, U(g) can be interpreted as the vector space of finite-order
left (or right) -translation invariant partial differential operators on G.

Definition 3.3.19. Let g be a K-Lie algebra. Let

T :=
∞⊕
m=0

⊗mg

be the tensor product algebra of g, where ⊗mg denotes the m-fold tensor
product g⊗· · ·⊗g; that is, T is the linear span of the elements of the form

λ001 +
M∑
m=1

Km∑
k=1

λmk Xmk1 ⊗ · · · ⊗Xmkm,

where 1 is the formal unit element of T , λmj ∈ K, Xmkj ∈ g and M,Km ∈
Z+; the product of T is begotten by the tensor product, i.e.

(X1 ⊗ · · · ⊗Xp)(Y1 ⊗ · · · ⊗ Yq) := X1 ⊗ · · · ⊗Xp ⊗ Y1 ⊗ · · · ⊗ Yq

is extended to a unique bilinear mapping T × T → T . Let J be the
(two-sided) ideal in T spanned by the set

O := {X ⊗ Y − Y ⊗X − [X,Y ] : X,Y ∈ g} ;

i.e. J ⊂ T is the smallest vector subspace such that O ⊂ J and DE,ED ∈
J for every D ∈ J and E ∈ T (in a sense, J is a “huge zero” in T ). The
quotient algebra

U(g) := T /J
is called the universal enveloping algebra of g.
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Let ι : T → U(g) = T /J be the canonical projection t 7→ t + J . A
natural interpretation is that g ⊂ T . The restricted mapping ι|g : g→ U(g)
is called the canonical mapping of g. It is easy to verify that ι|g : g →
LieK(U(g)) is a Lie algebra homomorphism: it is linear and

ι|g([X,Y ]) = ι([X,Y ])
= ι(X ⊗ Y − Y ⊗X)
= ι(X)ι(Y )− ι(Y )ι(X)
= ι|g(X)ι|g(Y )− ι|g(Y )ι|g(X)
= [ι|g(X), ι|g(Y )].

Theorem 3.3.20. (Universality of U(g).) Let g be a K-Lie algebra, ι|g : g→
U(g) its canonical mapping, A an associative K-algebra, and

σ : g→ LieK(A)

a Lie algebra homomorphism. Then there exists an algebra homomorphism

σ̃ : U(g)→ A
satisfying σ̃ (ι|g(X)) = σ(X) for every X ∈ g, i.e.

U(g) σ̃−−−−→ A

ι|g
x ∥∥∥
g

σ−−−−→ LieK(A).

Proof. Let us define a linear mapping σ0 : T → A by

σ0(X1 ⊗ · · · ⊗Xm) := σ(X1) · · ·σ(Xm).

Then σ0(J ) = {0}, since

σ0(X ⊗ Y − Y ⊗X − [X,Y ]) = σ(X)σ(Y )− σ(Y )σ(X)− σ([X,Y ])
= σ(X)σ(Y )− σ(Y )σ(X)− [σ(X), σ(Y )]
= 0.

Hence if t, u ∈ T and t−u ∈ J then σ0(t) = σ0(u). Thereby we may define
σ̃ := (t + J 7→ σ0(t)) : U(g) → A. Finally, it is clear that σ̃ is an algebra
homomorphism making the diagram above commute. �

Corollary 3.3.21. (The Ado–Iwasawa Theorem.) Let g be the Lie algebra
of a linear Lie group G. Then the canonical mapping ι|g : g → U(g) is
injective.
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Proof. Let σ = (X 7→ X) : g → gl(n,C). Due to the universality of
U(g) there exists an R-algebra homomorphism σ̃ : U(g)→ Cn×n such that
σ(X) = σ̃ (ι|g(X)) for every X ∈ G. Then ι|g is injective because σ is
injective. �

Remark 3.3.22. By the Ado–Iwasawa Theorem 3.3.21, the Lie algebra g
of a linear Lie group can be considered as a Lie subalgebra of LieR (U(g)).
Remark 3.3.23. Let g be a K-Lie algebra. Let us define the linear mapping
ad : g→ End(g) by ad(X)Z := [X,Z]. Since

0 = [[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ]
= [[X,Y ], Z]− ([X, [Y,Z]]− [Y, [X,Z]])
= ad([X,Y ])Z − [ad(X), ad(Y )]Z;

we notice that
ad([X,Y ]) = [ad(X), ad(Y )],

i.e. ad is a Lie algebra homomorphism g→ gl(g). The Killing form of the
Lie algebra g is the bilinear mapping B : g× g→ K, defined by

B(X,Y ) := Tr (ad(X) ad(Y ))

(recall that by Exercise 5.8.4, on a finite-dimensional vector space the trace
can be defined independent of any inner product). A (R- or C-)Lie algebra
g is semisimple if its Killing form is non-degenerate, i.e. if

∀X ∈ g \ {0} ∃Y ∈ g : B(X,Y ) 6= 0;

equivalently, B is non-degenerate if (B(Xi, Xj))
n
i,j=1 ∈ GL(n,K), where

{Xj}nj=1 ⊂ g is a vector space basis. A connected linear Lie group is called
semisimple if its Lie algebra is semisimple.
Remark 3.3.24. Since Tr(ab) = Tr(ba), we have

B(X,Y ) = B(Y,X).

We have also
B(X, [Y,Z]) = B([X,Y ], Z),

because

Tr(a(bc− cb)) = Tr(abc)− Tr(acb) = Tr(abc)− Tr(bac) = Tr((ab− ba)c)
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yields

B(X, [Y,Z]) = Tr (ad(X) ad([Y, Z]))
= Tr (ad(X) [ad(Y ), ad(Z)])
= Tr ([ad(X), ad(Y )] ad(Z))
= Tr (ad([X,Y ]) ad(Z))
= B([X,Y ], Z).

It can be proven that the Killing form of a compact Lie group is negative
semi-definite, i.e. B(X,X) ≤ 0. On the other hand, if the Killing form of
a Lie group is negative definite, i.e. X 6= 0 ⇒ B(X,X) < 0, then the
group is compact.

Definition 3.3.25. Let g be a semisimple K-Lie algebra with a vector space
basis {Xj}nj=1 ⊂ g. Let B : g× g→ K be the Killing form of g, and define
R = (Rij)ni,j=1 := (B(Xi, Xj))

n
i,j=1. Let us write R−1 =

(
(R−1)ij

)n
i,j=1

.
Then the Casimir element Ω ∈ U(g) of g is defined by

Ω :=
n∑

i,j=1

(R−1)ijXiXj .

Theorem 3.3.26. The Casimir element of a finite-dimensional semisim-
ple K-Lie algebra g is independent of the choice of the vector space basis
{Xj}nj=1 ⊂ g. Moreover,

∀D ∈ U(g) : DΩ = ΩD.

Proof. To simplify notation, we consider only the case K = R. Let
{Yi}ni=1 ⊂ g be a vector space basis of g. Then there exists A = (Aij)ni,j=1 ∈
GL(n,R) such that Yi :=

n∑
j=1

AijXj


n

i=1

.
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Then

S := (B(Yi, Yj))
n
i,j=1

=

(
B
( n∑
k=1

AikXk,

n∑
l=1

AjlXl

))n
i,j=1

=

 n∑
k,l=1

Aik B(Xk, Xl) Ajl

n

i,j=1

= ARAT;

hence
S−1 = ((S−1)ij)ni,j=1 = (AT)−1R−1A−1.

Let us now compute the Casimir element of g with respect to the basis
{Yj}nj=1:

n∑
i,j=1

(S−1)ijYiYj =
n∑

i,j=1

(S−1)ij
n∑
k=1

AikXk

n∑
l=1

AjlXl

=
n∑

k,l=1

XkXl

n∑
i,j=1

Aik(S−1)ijAjl

=
n∑

k,l=1

XkXl

n∑
i,j=1

(AT)ki((AT)−1R−1A−1)ijAjl

=
n∑

k,l=1

XkXl(R−1)kl;

thus the definition of the Casimir element does not depend of the choice
of a vector space basis!

We still have to prove that Ω commutes with every D ∈ U(g). First,
using the Killing form, we construct a nice inner product for g: Let Xi :=∑n
j=1(R−1)ijXj , so that {Xi}ni=1 is also a vector space basis for g. Then

Ω =
n∑
i=1

XiX
i,

and

B(Xi, Xj) =
n∑
k=1

(R−1)ikB(Xk, Xj) =
n∑
k=1

(R−1)ikRkj = δij .
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Hence (Xi, Xj) 7→ 〈Xi, Xj〉g := B(Xi, Xj) can uniquely be extended to an
inner product

((X,Y ) 7→ 〈X,Y 〉g) : g× g→ R,
and {Xi}ni=1 is an orthonormal basis for g with respect to this inner prod-
uct. For the Lie product (x, y) 7→ [x, y] := xy − yx of LieR(U(g)) we have

[x, yz] = [x, y]z + y[x, z],

so that for D ∈ g we get

[D,Ω] = [D,
n∑
i=1

XiX
i] =

n∑
i=1

(
[D,Xi]Xi +Xi[D,Xi]

)
.

Let cij , dij ∈ R be defined by

[D,Xi] =
n∑
j=1

cijXj , [D,Xi] =
n∑
j=1

dijX
j .

Then

cij = 〈Xj , [D,Xi]〉g
= B(Xj , [D,Xi])
= B([Xj , D], Xi)
= B(−[D,Xj ], Xi)

= B(−
n∑
k=1

djkX
k, Xi)

= −
n∑
k=1

djkB(Xk, Xi)

= −
n∑
k=1

djk〈Xk, Xi〉g

= −dji,

so that

[D,Ω] =
n∑

i,j=1

(cijXjX
i + dijXiX

j)

=
n∑

i,j=1

(cij + dji)XjX
i

= 0,
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i.e. DΩ = ΩD for every D ∈ g. By induction, we may prove that

[D1D2 · · ·Dm,Ω] = D1[D2 · · ·Dm,Ω] + [D1,Ω]D2 · · ·Dm = 0

for every {Dj}mj=1 ⊂ g, so that DΩ = ΩD for every D ∈ U(g). �

Remark 3.3.27. The Casimir element Ω ∈ U(g) for the Lie algebra g of
a compact semisimple linear Lie group G can be considered as an elliptic
linear second-order (left and right) translation invariant partial differential
operator. In a sense, the Casimir operator is an analogy of the Euclidean
Laplace operator

∆ =
n∑
j=1

∂2

∂x2
j

: C∞(Rn)→ C∞(Rn).

Such a “Laplace operator” can be constructed for any compact Lie group
G, and with it we may define Sobolev spaces on G nicely, etc.

We have seen only some basic features of the theory of Lie groups and
Lie algebras. Unfortunately, we have to abandon the Lie theory, and move
on to finish the course with elements of Hopf algebra theory, as presented
in the next section.
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Chapter 4

Hopf algebras

Instead of studying a compact group G, we may consider the algebra C(G)
of continuous functions G → C. The structure of the group is encoded in
the function algebra, but we shall see that this approach paves way for
a more general functional analytic theory of Hopf algebras, which possess
nice duality properties.

4.1 Commutative C∗-algebras

Let X be a compact Hausdorff space and A := C(X). Without proofs, we
present some fundamental results:

• All the algebra homomorphisms A → C are of the form

f 7→ f(x),

where x ∈ X.

• All the closed ideals of A are of the form

I(K) := {f ∈ A | f(K) = {0}} ,

where K ⊂ X (with convention I(∅) := C(X)). Moreover, K =
V (I(K)), where

V (J) =
⋂
f∈J

f−1({0});

these results follow by Urysohn’s Lemma.
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• Probability functionals A → C are of the form

f 7→
∫
X

f dµ,

where µ is a Borel-regular probability measure on X; this is called
the Riesz Representation Theorem.

All in all, we might say that the topology and measure theory of a compact
Hausdorff space X is encoded in the algebra A = C(X), with a “dictio-
nary”:

Space X Algebra A = C(X)
point algebra functional

closed set closed ideal
Borel-regular probability measure probability functional

...
...

Remark 4.1.1. noncommgeometry In the light of the “dictionary” above,
one is bound to ask:

1. If X is a group, how this is reflected in C(X)?

2. Could we study non-commutative algebras just like the commutative
ones?

We might call the traditional topology and measure theory by the name
“commutative geometry”, referring to the commutative function algebras;
“non-commutative geometry” would refer to the study of non-commutative
algebras.

Answering problem 1. Let G be a compact group. By Urysohn’s Lemma,
C(G) separates the points of X, so that the associativity of the group
operation ((x, y) 7→ xy) : G×G→ G is encoded by

∀x, y, z ∈ G ∀f ∈ C(G) : f((xy)z) = f(x(yz)).

Similarly,

∃e ∈ G ∀x ∈ G ∀f ∈ C(G) : f(xe) = f(x) = f(ex)

encodes the neutral element e ∈ G. Finally,

∀x ∈ G ∃x−1 ∈ G ∀f ∈ C(G) : f(x−1x) = f(e) = f(xx−1)
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encodes the inversion (x 7→ x−1) : G → G. Thereby let us define linear
operators

∆̃ : C(G)→ C(G×G), ∆̃f(x, y) := f(xy),
ε̃ : C(G)→ C, ε̃f := f(e),

S̃ : C(G)→ C(G), S̃f(x) := f(x−1);

the interactions of these algebra homomorphisms contain all the informa-
tion about the structure of the underlying group! This is a key ingredient
in the Hopf algebra theory.

Answering problem 2. Our algebras always have a unit element 1. An
involutive C-algebra A is a C∗-algebra if it has a Banach space norm sat-
isfying

‖ab‖ ≤ ‖a‖ ‖b‖ and ‖a∗a‖ = ‖a‖2

for every a, b ∈ A. By Gelfand and Naimark (1943), up to an isometric ∗-
isomorphism a C∗-algebra is a closed involutive subalgebra of L(H), where
H is a Hilbert space; moreover, if A is a commutative unital C∗-algebra
then A ∼= C(X) for a compact Hausdorff space X, as explained below:

The spectrum of A is the set Spec(A) of the algebra homomorphisms
A → C (automatically bounded functionals!), endowed with the Gelfand
topology, which is the relative weak∗-topology of L(A,C). It turns out that
Spec(A) is a compact Hausdorff space. For a ∈ A we define the Gelfand
transform

â : Spec(A)→ C, â(x) := x(a).

It turns out that â is continuous, and that

(a 7→ â) : A → C(Spec(A))

is isometric ∗-algebra isomorphism!
If B is a non-commutative C∗-algebra, it still has plenty of interesting

commutative C∗-subalgebras so that the Gelfand transform enables the
nice tools of classic analysis on compact Hausdorff spaces in the study of
the algebra. Namely, if a ∈ B is normal, i.e. a∗a = aa∗, then closure of the
algebraic span (polynomials) of {a, a∗} is a commutative C∗-subalgebra.
E.g. b∗b ∈ B is normal for every b ∈ B.
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Synthesis of problems 1 and 2. By Gelfand and Naimark, the archetypal
commutative C∗-algebra is C(X) for a compact Hausdorff space X. In the
sequel, we introduce Hopf algebras. In a sense, they are a not-necessarily-
commutative analogy of C(G), where G is a compact group. We begin
by formally dualizing the category of algebras, to obtain the category of
co-algebras. By marrying these concepts in a subtle way, we obtain the
category of Hopf algebras.

4.2 Hopf algebras

The definition of a Hopf algebra is a lengthy one, yet quite natural. In the
sequel, notice the evident dualities in the commutative diagrams.

For C-vector spaces V,W , we define τV,W : V ⊗W →W ⊗ V by the
linear extension of

τV,W (v ⊗ w) := w ⊗ v.

Moreover, in the sequel the identity operation (v 7→ v) : V → V for any
vector space V is denoted by I. We constantly identify C-vector spaces V
and C ⊗ V (and respectively V ⊗ C), since (λ ⊗ v) 7→ λv defines a linear
isomorphism C⊗ V → V .

In the usual definition of an algebra, the multiplication is regarded
as a bilinear map. In order to use dualization techniques for algebras, we
want to linearize the multiplication. Let us therefore give a new, equivalent
definition for an algebra:

Definition 4.2.1. The triple
(A,m, η)

is an algebra (more precisely, an associative unital C-algebra) if A is a
C-vector space, and

m : A⊗A → A,
η : C→ A

are linear mappings such that the following diagrams commute: the asso-
ciativity diagram

A⊗A⊗A I⊗m−−−−→ A⊗A

m⊗I
y ym

A⊗A m−−−−→ A
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and the unit diagrams

A⊗ C I⊗η−−−−→ A⊗A

a⊗λ7→λa
y ym
A A,

A⊗A η⊗I←−−−− C⊗A

m

y yλ⊗a 7→λa
A A.

The mapping m is called the multiplication and η the unit mapping; the
algebra A is commutative if mτA,A = m. The unit of an algebra (A,m, η)
is

1A := η(1),

and the usual abbreviation for the multiplication is ab := m(a ⊗ b). For
algebras (A1,m1, η1) and (A2,m2, η2) the tensor product algebra (A1 ⊗
A2,m, η) is defined by

m := (m1 ⊗m2)(I ⊗ τA1,A2 ⊗ I)

i.e. (a1 ⊗ a2)(b1 ⊗ b2) = (a1b1)⊗ (a2b2), and

η(1) := 1A1 ⊗ 1A2 .

Remark 4.2.2. If an algebra A = (A,m, η) is finite-dimensional, we can
formally dualize its structural mappings m and η; this inspires the concept
co-algebra:

Definition 4.2.3. The triple
(C,∆, ε)

is a co-algebra (more precisely, a co-associative co-unital C-co-algebra) if C
is a C-vector space and

∆ : C → C ⊗ C,
ε : C → C

are linear mappings such that the following diagrams commute: the co-
associativity diagram (notice the duality to the associativity diagram)

C ⊗ C ⊗ C I⊗∆←−−−− C ⊗ C

∆⊗I
x x∆

C ⊗ C ∆←−−−− C
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and the co-unit diagrams (notice the duality to the unit diagrams)

C ⊗ C I⊗ε←−−−− C ⊗ C

λc 7→c⊗λ
x ∆

x
C C,

C ⊗ C ε⊗I−−−−→ C⊗ C

∆

x xλc 7→λ⊗c
C C.

The mapping ∆ is called the co-multiplication and ε the co-unit map-
ping; the co-algebra C is co-commutative if τC,C∆ = ∆. For co-algebras
(C1,∆1, ε1) and (C2,∆2, ε2) the tensor product co-algebra (C1⊗C2,∆, ε) is
defined by

∆ := (I ⊗ τC1,C2 ⊗ I)(∆1 ⊗∆2)

and
ε(c1 ⊗ c2) := ε1(c1)ε2(c2).

Example. A trivial co-algebra example: If (A,m, η) is a finite-dimensional
algebra then the vector space dual A′ = L(A,C) has a natural co-algebra
structure: Let us identify (A ⊗ A)′ and A′ ⊗ A′ naturally, so that m′ :
A′ → A′ ⊗A′ is the dual mapping to m : A⊗A → A. Let us identify C′
and C naturally, so that η′ : A′ → C is the dual mapping to η : C → A.
Then

(A′,m′, η′)

is a co-algebra (draw the commutative diagrams!). We shall give more
interesting examples of co-algebras after the definition of Hopf algebras.

Definition 4.2.4. Let (B,m, η) be an algebra and (B,∆, ε) be a co-algebra.
Let L(B) denote the vector space of linear operators B → B. Let us define
the convolution A ∗B ∈ L(B) of linear operators A,B ∈ L(B) by

A ∗B := m(A⊗B)∆.

Then we see that L(B) can be endowed with a structure of an algebra,
with unit element ηε, i.e. A ∗ ηε = A = εη ∗A!

Exercise 4.2.5. Show that L(B) above in Definition 4.2.4 is an algebra,
when endowed with the convolution product of operators.

Definition 4.2.6. A structure

(H,m, η,∆, ε, S)

is a Hopf algebra if
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• (H,m, η) is an algebra,

• (H,∆, ε) is a co-algebra,

• ∆ : H → H⊗H and ε : H → C are algebra homomorphisms, i.e.

∆(fg) = ∆(f)∆(g), ∆(1H) = 1H⊗H,

ε(fg) = ε(f)ε(g), ε(1H) = 1,

• and S : H → H is a linear mapping, called the antipode, satisfying

S ∗ I = ηε = I ∗ S;

i.e. I ∈ L(H) and S ∈ L(H) are inverses to each other in the convo-
lution algebra L(H).

For Hopf algebras (H1,m1, η1,∆1, ε1, S1) and (H2,m2, η2,∆2, ε2, S2) we
define the tensor product Hopf algebra (H1 ⊗H2,m, η,∆, ε, S) such that

(H1 ⊗H2,m, η)

is the usual tensor product algebra,

(H1 ⊗H2,∆, ε)

is the usual tensor product co-algebra, and

S := SH1 ⊗ SH2 .

Exercise 4.2.7. (Uniqueness of the antipode.) Let (H,m, η,∆, ε, Sj) be
Hopf algebras, where j ∈ {1, 2}. Show that S1 = S2.

Remark 4.2.8. Commutative diagrams for Hopf algebras: Notice that we
now have the multiplication and co-multiplication diagram

H⊗H ∆m−−−−→ H⊗H

∆⊗∆

y xm⊗m
H⊗H⊗H⊗H I⊗τH,H⊗I−−−−−−−→ H⊗H⊗H⊗H,

the co-multiplication and unit diagram

H η←−−−− C

∆

y ∥∥∥
H⊗H η⊗η←−−−− C⊗ C,
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the multiplication and co-unit diagram

H ε−−−−→ C

m

x ∥∥∥
H⊗H ε⊗ε−−−−→ C⊗ C

and the “everyone with the antipode” diagrams

H ηε−−−−→ H

∆

y xm
H⊗H I⊗S−−−−→

S⊗I
H⊗H.

Example. A monoid co-algebra example: Let G be a finite group and F(G)
be the C-vector space of functions G→ C. Notice that F(G)⊗F(G) and
F(G×G) are naturally isomorphic by

m∑
j=1

(fj ⊗ gj)(x, y) :=
m∑
j=1

fj(x)gj(y).

Then we can define mappings ∆ : F(G)→ F(G)⊗F(G) and ε : F(G)→ C
by

∆f(x, y) := f(xy), εf := f(e).

In the next example we show that (F(G),∆, ε) is a co-algebra. But there
is still more structure in the group to exploit: let us define an operator
S : F(G)→ F(G) by (Sf)(x) := f(x−1)...

Example. Hopf algebra for finite group: Let G be a finite group. Now F(G)
from the previous example has a structure of a commutative Hopf algebra;
it is co-commutative if and only if G is a commutative group. The algebra
mappings are given by

η(λ)(x) := λ, m(f ⊗ g)(x) := f(x)g(x)

for every λ ∈ C, x ∈ G and f, g ∈ F(G). Notice that F(G×G) ∼= F(G)⊗
F(G) gives interpretation (ma)(x) = a(x, x) for a ∈ F(G × G). Clearly
(F(G),m, η) is a commutative algebra. Let x, y, z ∈ G and f, g ∈ F(G).
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Then

((∆⊗ I)∆f)(x, y, z) = (∆f)(xy, z)
= f((xy)z)
= f(x(yz))
= (∆f)(x, yz)
= ((I ⊗∆)∆f)(x, y, z),

so that (∆⊗ I)∆ = (I ⊗∆)∆. Next, (ε⊗ I)∆ ∼= I ∼= (I ⊗ ε)∆, because

(m(ηε⊗ I)∆f)(x) = ((ηε⊗ I)∆f)(x, x)
= ∆f(e, x)
= f(ex) = f(x) = f(xe)
= . . . = (m(I ⊗ ηε)∆f)(x).

Thereby (F(G),∆, ε) is a co-algebra. Moreover,

ε(fg) = (fg)(e) = f(e)g(e) = ε(f)ε(g),

ε(1F(G)) = 1F(G)(e) = 1,

so that ε : F(G)→ C is an algebra homomorphism. The co-multiplication
∆ : F(G) → F(G) ⊗ F(G) ∼= F(G × G) is an algebra homomorphism,
because

∆(fg)(x, y) = (fg)(xy) = f(xy) g(xy) = (∆f)(x, y) (∆g)(x, y),

∆(1F(G))(x, y) = 1F(G)(xy) = 1 = 1F(G×G)(x, y) ∼= (1F(G)⊗1F(G))(x, y).

Finally,

((I ∗ S)f)(x) = (m(I ⊗ S)∆f)(x)
= ((I ⊗ S)∆f)(x, x)
= (∆f)(x, x−1)
= f(xx−1) = f(e) = εf

= . . . = ((S ∗ I)f)(x),

so that I ∗ S = ηε = S ∗ I. Thereby F(G) can be endowed with a Hopf
algebra structure.
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Example. Hopf algebra for a compact group: Let G be a compact group.
We shall endow the dense subalgebra H := TrigPol(G) ⊂ C(G) of trigono-
metric polynomials with a natural structure of a commutative Hopf alge-
bra; H will be co-commutative if and only if G is commutative. Notice
that F(G) = TrigPol(G) = C(G) for a finite group G; actually, for a
finite group, this trigonometric polynomial Hopf algebra coincides with
the Hopf algebra of the previous example. It can be shown that here
H⊗H ∼= TrigPol(G×G), where the isomorphism is given by

m∑
j=1

(fj ⊗ gj)(x, y) :=
m∑
j=1

fj(x)gj(y).

The algebra structure
(H,m, η)

is the usual one for the trigonometric polynomials, i.e. m(f ⊗ g) := fg
and η(λ) = λ1, where 1(x) = 1 for every x ∈ G. By the Peter–Weyl
Theorem 2.5.13, the C-vector space H is spanned by{

φij : φ = (φij)
dim(φ)
i,j , [φ] ∈ Ĝ

}
.

Let us define the co-multiplication ∆ : H → H⊗H by

∆φij :=
dim(φ)∑
k=1

φik ⊗ φkj ;

we see that then

(∆φij)(x, y) =
dim(φ)∑
k=1

(φik ⊗ φkj)(x, y)

=
dim(φ)∑
k=1

φik(x)φkj(y)

= φij(xy).

The co-unit ε : H → C is defined by

εf := f(e),

and the antipode S : H → H by

(Sf)(x) := f(x−1).
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Exercise 4.2.9. In the Example above, check the validity of the Hopf alge-
bra axioms.

Theorem 4.2.10. Let H be a commutative C∗-algebra. If (H,m, η,∆, ε, S)
is a finite-dimensional Hopf algebra then there exists a Hopf algebra iso-
morphism H ∼= C(G), where G is a finite group and C(G) is endowed with
the Hopf algebra structure given above.

Proof. Let G := Spec(H). As H is a commutative C∗-algebra, it is iso-
metrically ∗-isomorphic to the C∗-algebra C(G) via the Gelfand transform

(f 7→ f̂) : H → C(G), f̂(x) := x(f).

The space G must be finite, because dim(C(G)) = dim(H) <∞.
Now

e := ε ∈ G,
because ε : H → C is an algebra homomorphism. This e ∈ G will turn out
to be the neutral element of our group.

Let x, y ∈ G. We identify the spaces C⊗C and C, and get an algebra
homomorphism x ⊗ y : H ⊗ H → C ⊗ C ∼= C. Now ∆ : H → H ⊗ H
is an algebra homomorphism, so that (x ⊗ y)∆ : H → C is an algebra
homomorphism! Let us denote

xy := (x⊗ y)∆,

so that xy ∈ G. This defines the group operation ((x, y) 7→ xy) : G×G→
G!

Inversion x 7→ x−1 will be defined via the antipode S : H → H. We
shall show that for a commutative Hopf algebra, the antipode is an algebra
isomorphism. First we prove that S(1H) = 1H:

S1H = m(1H ⊗ S1H)
= m(I ⊗ S)(1H ⊗ 1H)
= m(I ⊗ S)∆1H
= (I ∗ S)1H = ηε1H
= 1H.

Then we show that S(gh) = S(h)S(g), where g, h ∈ H, gh := m(g ⊗ h).
Let us use the so-called Sweedler notation

∆f =:
∑

f(1) ⊗ f(2) =: f(1) ⊗ f(2);
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consequently

(∆⊗ I)∆f = (∆⊗ I)(f(1) ⊗ f(2)) = f(1)(1) ⊗ f(1)(2) ⊗ f(2),

(I ⊗∆)∆f = (I ⊗∆)(f(1) ⊗ f(2)) = f(1) ⊗ f(2)(1) ⊗ f(2)(2),

and due to the co-associativity we may re-index as follows:

(∆⊗ I)∆f =: f(1) ⊗ f(2) ⊗ f(3) := (I ⊗∆)∆f

(notice that e.g. f(2) appears in different meanings above, this is just no-
tation!). Then

S(gh) = S(ε((gh)(1))(gh)(2))
= ε((gh)(1)) S((gh)(2))
= ε(g(1)h(1)) S(g(2)h(2))
= ε(g(1)) ε(h(1)) S(g(2)h(2))
= ε(g(1)) S(h(1)(1)) h(1)(2) S(g(2)h(2))
= ε(g(1)) S(h(1)) h(2) S(g(2)h(3))
= S(h(1)) ε(g(1)) h(2) S(g(2)h(3))
= S(h(1)) S(g(1)(1)) g(1)(2) h(2) S(g(2)h(3))
= S(h(1)) S(g(1)) g(2) h(2) S(g(3)h(3))
= S(h(1)) S(g(1)) (gh)(2) S((gh)(3))
= S(h(1)) S(g(1)) ε((gh)(2))
= S(h(1)) S(g(1)) ε(g(2)h(2))
= S(h(1)) S(g(1)) ε(g(2)) ε(h(2))
= S(h(1)ε(h(2))) S(g(1)ε(g(2)))
= S(h) S(g);

this computation can be compared to

(xy)−1 = e(xy)−1

= y−1y(xy)−1

= y−1ey(xy)−1

= y−1x−1xy(xy)−1

= y−1x−1e

= y−1x−1
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for x, y ∈ G! Since H is commutative, we have proven that S : H → H is
an algebra homomorphism. Thereby xS : H → C is an algebra homomor-
phism. Let us denote

x−1 := xS ∈ G;

this is the inverse of x ∈ G!
We leave it for the reader to show that (G, (x, y) 7→ xy, x 7→ x−1) is

indeed a group. �

Exercise 4.2.11. Finish the proof of Theorem 4.2.10.

Exercise 4.2.12. Let g be a Lie algebra and U(g) its universal enveloping
algebra. Let X ∈ g; extend definitions

∆X := X ⊗ 1U(g) + 1U(g) ⊗X, εX := 0, SX := −X

so that you obtain a Hopf algebra structure (U(g),m, η,∆, ε, S).

Exercise 4.2.13. Let (H,m, η,∆, ε, S) be a finite-dimensional Hopf algebra.
(a) Endow the dual H′ = L(H,C) with a natural Hopf algebra structure
via the duality

(f, φ) 7→ 〈f, φ〉H := φ(f)

where f ∈ H, φ ∈ H′.
(b) If G is a finite group and H = F(G), what are the Hopf algebra
operations for H′?
(c) With a suitable choice for H, give an example of a non-commutative
non-co-commutative Hopf algebra H⊗H′.

Exercise 4.2.14. Let (H,m, η) be the algebra spanned by the set {1, g, x, gx},
where 1 is the unit element and g2 = 1, x2 = 0 and xg = −gx. Let us
define algebra homomorphisms ∆ : H → H⊗H and ε : H → C by

∆(g) := g ⊗ g, ∆(x) := x⊗ 1 + g ⊗ x,

ε(g) := 1, ε(x) := 0.

Let us define a linear mapping S : H → H by

S(1) := 1, S(g) := g, S(x) := −gx, S(gx) := −x.

Show that (H,m, η,∆, ε, S) is a non-commutative non-co-commutative
Hopf algebra (this example is by M. E. Sweedler).
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Remark 4.2.15. In Exercise 4.2.14, a nice concrete matrix example can be
given. Let us define A ∈ C2×2 by

A :=
(

0 1
1 0

)
.

Let g, x ∈ C4×4 be given by

g :=
(
A 0
0 −A

)
, x :=

(
0 IC2

0 0

)
.

Then it is easy to see that H = span{IC4 , g, x, gx} is a four-dimensional
subalgebra of C4×4 such that g2 = IC4 , x2 = 0 and xg = −gx.
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Appendices

5.1 Appendix on set theoretical notation

When X is a set, P(X) denotes the family of all subsets of X (the power
set, sometimes denoted by 2X). The cardinality of X is denoted by |X|. If
J is a set and Sj ⊂ X for every j ∈ J , we write⋃

{Sj | j ∈ J} =
⋃
j∈J

Sj ,
⋂
{Sj | j ∈ J} =

⋂
j∈J

Sj .

If f : X → Y , U ⊂ X, and V ⊂ Y , we define

f(U) := {f(x) | x ∈ U} (image),

f−1(V ) := {x ∈ X | f(x) ∈ V } (preimage).

5.2 Appendix on Axiom of Choice

It may be surprising, but the Zermelo-Fraenkel axiom system does not
imply the following statement (nor its negation):

Axiom of Choice for Cartesian Products: The Cartesian product of non-
empty sets is non-empty.

Nowadays there are hundreds of equivalent formulations for the Ax-
iom of Choice. Next we present other famous variants: the classical Axiom
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of Choice, the Law of Trichotomy, the Well-Ordering Axiom, the Hausdorff
Maximal Principle and Zorn’s Lemma. Their equivalence is shown in [20].

Axiom of Choice: For every non-empty set J there is a function f :
P(J)→ J such that f(I) ∈ I when I 6= ∅.

LetA,B be sets. We writeA ∼ B if there exists a bijection f : A→ B,
and A ≤ B if there is a set C ⊂ B such that A ∼ C. Notion A < B means
A ≤ B such that not A ∼ B.

Law of Trichotomy: Let A,B be sets. Then A < B, A ∼ B or B < A.

A set X is partially ordered with an order relation R ⊂ X ×X if R
is reflexive ((x, x) ∈ R), antisymmetric ((x, y), (y, x) ∈ R ⇒ x = y) and
transitive ((x, y), (y, z) ∈ R ⇒ (x, z) ∈ R). A subset C ⊂ X is a chain if
(x, y) ∈ R or (y, x) ∈ R for every x, y ∈ C. An element x ∈ X is maximal
if (x, y) ∈ R implies y = x.

Well-Ordering Axiom: Every set is a chain for some order relation.

Hausdorff Maximal Principle: Any chain is contained in a maximal chain.

Zorn’s Lemma: A non-empty partially ordered set where every chain has
an upper bound has a maximal element.

5.3 Appendix on algebras

A K-vector space A with an element 1A ∈ A \ {0} and endowed with
a bilinear mapping A × A → A, (x, y) 7→ xy is called an algebra (more
precisely, an associative unital K-algebra) if x(yz) = (xy)z and if 1Ax =
x = x1A for every x, y, z ∈ A. Then 1A is called the unit of A, and we write
xyz := (xy)z. An algebra A is commutative if xy = yx for every x, y ∈ A.
An element x ∈ A is invertible with inverse x−1 ∈ A if x−1x = 1A = xx−1.

An algebra homomorphism φ : A → B is a linear mapping between
algebras A,B satisfying φ(xy) = φ(x)φ(y) and φ(1A) = 1B for every
x, y ∈ A. If x ∈ A is invertible then φ(x) ∈ B is also invertible, since
φ(x−1)φ(x) = 1B = φ(x)φ(x−1)!
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An ideal (more precisely, a two-sided ideal) in an algebra A is a vector
subspace J ⊂ A such that xj ∈ J and jx ∈ J for every x ∈ A and j ∈ J .
An ideal J of an algebra A is proper if J 6= A; in such a case, the vector
space A/J := {x + J | x ∈ A} becomes an algebra with the operation
(x+J , y+J ) 7→ xy+J and the unit element 1A/J := 1A+J . It is evident
that no proper ideal contains any invertible elements. It is also evident that
the kernel Ker(φ) := {x ∈ A | φ(x) = 0} of an algebra homomorphism
φ : A → B is an ideal of A.

A proper ideal is maximal if it is not contained in any larger proper
ideal. The radical Rad(A) of an algebra A is the intersection of all the
maximal ideals of A; A is called semisimple if Rad(A) = {0}. In general,
any intersection of ideals is an ideal. Hence for any set S ⊂ A in an algebra
A there exists a smallest possible ideal J ⊂ A such that S ⊂ J ; this J is
called the ideal spanned by the set S.

The tensor product algebra of a K-vector space V is the K-vector
space

T :=
∞⊕
m=0

⊗mV,

where ⊗0V := K, ⊗m+1V := (⊗mV )⊗V ; the multiplication of this algebra
is given by

(x, y) 7→ xy := x⊗ y

with the identifications W ⊗K ∼= W ∼= K⊗W for a K-vector space W , so
that the unit element 1T ∈ T is the unit element 1 ∈ K.

5.4 Appendix on multilinear algebra

The basic idea in multilinear algebra is to “linearize” multilinear operators.

Definition 5.4.1. Let Xj (1 ≤ j ≤ r) and V be K-vector spaces (that is,
vector spaces over the field K). A mapping A : X1×X2 → V is 2-linear (or
bilinear) if x 7→ A(x, x2) and x 7→ A(x1, x) are linear mappings for each
xj ∈ Xj . The reader may guess what an r-linear mapping

X1 × · · · ×Xr → V

satisfies...

Definition 5.4.2. The (algebraic) tensor product of K-vector spacesX1, . . . , Xr

is a K-vector space V endowed with an r-linear mapping i such that for
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every K-vector space W and for every r-linear mapping

A : X1 × · · · ×Xr →W

there exists a (unique) linear mapping Ã : V → W satisfying Ãi = A.
(Draw a commutative diagram involving the vector spaces and mappings
i, A, Ã!) Any two tensor products for X1, . . . , Xr can easily be seen iso-
morphic, so that we may denote the tensor product of these vector spaces
by

X1 ⊗ · · · ⊗Xr.

In fact, such a tensor product always exists: Let X,Y be K-vector
spaces. We may formally define the set B := {x ⊗ y | x ∈ X, y ∈ Y },
where x⊗ y = a⊗ b if and only if x = a and y = b. Let Z be the K-vector
space with basis B, i.e.

Z =


n∑
j=0

λj(xj ⊗ yj) : n ∈ N, λj ∈ K, xj ∈ X, yj ∈ Y


= span {x⊗ y | x ∈ X, y ∈ Y } .

Let

[0⊗ 0] :=
span

{
α1β1(x1 ⊗ y1) + α1β2(x1 ⊗ y2) + α2β1(x2 ⊗ y1) + α2β2(x2 ⊗ y2)
−(α1x1 + α2x2)⊗ (β1y1 + β2y2) :
αj , βj ∈ K, xj ∈ X, yj ∈ Y

}
.

For z ∈ Z, let [z] := z+ [0⊗0]. The tensor product of X,Y is the K-vector
space

X ⊗ Y := Z/[0⊗ 0] = {[z] | z ∈ Z} ,
where ([z1], [z2]) 7→ [z1 + z2] and (λ, [z]) 7→ [λz] are well-defined mappings
(X ⊗ Y )× (X ⊗ Y )→ X ⊗ Y and K× (X ⊗ Y )→ X ⊗ Y , respectively.

Definition 5.4.3. Let X,Y, V,W be K-vector spaces, and let A : X → V
and B : Y → W be linear operators. The tensor product of A,B is the
linear operator A ⊗ B : X ⊗ Y → V ⊗ W , which is the unique linear
extension of the mapping x⊗ y 7→ Ax⊗By, where x ∈ X and y ∈ Y .

Example. Let X and Y be finite-dimensional K-vector spaces with bases
{xi}dim(X)

i=1 and {yj}dim(Y )
j=1 , respectively. Then X ⊗ Y has a basis

{xi ⊗ yj | 1 ≤ i ≤ dim(X), 1 ≤ j ≤ dim(Y )} .
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Let S be a finite set. Let F(S) be the K-vector space of functions S → K;
it has a basis {δx | x ∈ S}, where δx(y) = 1 if x = y, and δx(y) = 0
otherwise. Now it is easy to see that for finite sets S1, S2 the vector spaces
F(S1) ⊗ F(S2) and F(S1 × S2) are isomorphic; for fj ∈ F(Sj), we may
regard f1 ⊗ f2 ∈ F(S1)⊗F(S2) as a function f1 ⊗ f2 ∈ F(S1 × S2) by

(f1 ⊗ f2)(x1, x2) := f1(x1) f2(x2).

Definition 5.4.4. Suppose V,W are finite-dimensional inner product spaces
over K. The natural inner product for V ⊗W is obtained by extending

〈v1 ⊗ w1, v2 ⊗ w2〉V⊗W := 〈v1, v2〉V 〈w1, w2〉W .

Definition 5.4.5. The dual (V ⊗W )′ of a tensor product space V ⊗W is
canonically identified with V ′ ⊗W ′...

5.5 Topology (and metric), basics

The reader should know metric spaces; topological spaces are their gen-
eralization, which we soon introduce. Feel free to draw some clarifying
schematic pictures on the margins!

Definition 5.5.1. A function d : X ×X → [0,∞[ is called a metric on the
set X if for every x, y, z ∈ X we have

• d(x, y) = 0⇔ x = y;

• d(x, y) = d(y, x);

• d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Then (X, d) (or simply X when d is evident) is called a metric space.
Sometimes a metric is called a distance function.

Definition 5.5.2. A family of sets τ ⊂ P(X) is called a topology on the set
X if

1. ∅, X ∈ τ ;

2. U ⊂ τ ⇒
⋃
U ∈ τ ;

3. U, V ∈ τ ⇒ U ∩ V ∈ τ .

Then (X, τ) (or simply X when τ is evident) is called a topological space.
The sets U ∈ τ are called open sets, and their complements X \ U are
closed sets.
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Thus in a topological space, the empty set and the whole space are
always open, any union of open sets is open, and an intersection of finitely
many open sets is open. Equivalently, the whole space and the empty set
are always closed, any intersection of closed sets is closed, and a union of
finitely many closed sets is closed.

Definition 5.5.3. Let (X, d) be a metric space. We say that the open ball
of radius r > 0 centered at x ∈ X is

Bd(x, r) := {y ∈ X | d(x, y) < r} .

The metric topology τd of (X, d) is given by

U ∈ τd
definition⇔ ∀x ∈ U ∃r > 0 : Bd(x, r) ⊂ U.

A topological space (X, τ) is called metrizable if there is a metric d on X
such that τ = τd.

Example. There are plenty of non-metrizable topological spaces, the easiest
example being X with more than one point and with τ = {∅, X}. If X
is an infinite-dimensional Banach space then the weak∗-topology of X ′ :=
L(X,C) is not metrizable. The distribution spaces D′(Rn), S ′(Rn) and
E ′(Rn) are non-metrizable topological spaces. We shall later prove that for
the compact Hausdorff spaces metrizability is equivalent to the existence
of a countable base.

Definition 5.5.4. Let (X, τ) be a topological space. A family B ⊂ τ of open
sets is called a base (or basis) for the topology τ if any open set is a union
of some members of B, i.e.

∀U ∈ τ ∃B′ ⊂ B : U =
⋃
B′.

Example. Trivially a topology τ is a base for itself (∀U ∈ τ : U =
⋃
{U}).

If (X, d) is a metric space then

B := {Bd(x, r) | x ∈ X, r > 0}

constitutes a base for τd.

Definition 5.5.5. Let (X, τ) be a topological space. A neighbourhood of
x ∈ X is any open setU ⊂ X containing x. The family of neighbourhoods
of x ∈ X is denoted by

Vτ (x) := {U ∈ τ | x ∈ U}

(or simply V(x), when τ is evident).
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The natural mappings (or the morphisms) between topological spaces
are continuous mappings.

Definition 5.5.6. Let (X, τX) and (Y, τY ) be topological spaces. A mapping
f : X → Y is continuous at x ∈ X if

∀V ∈ VτY (f(x)) ∃U ∈ VτX (x) : f(U) ⊂ V.

Exercise 5.5.7. Let (X, dX) and (Y, dY ) be metric spaces. A mapping f :
X → Y is continuous at x ∈ X if and only if

∀ε > 0 ∃δ > 0 ∀y ∈ X : dX(x, y) < δ ⇒ dY (f(x), f(y)) < ε

if and only if

dX(xn, x) −−−−→
n→∞

0 ⇒ dY (f(xn), f(x)) −−−−→
n→∞

0

for every sequence (xn)∞n=1 ⊂ X (that is, xn → x⇒ f(xn)→ f(x)).

Definition 5.5.8. Let (X, τX) and (Y, τY )be topological spaces. A mapping
f : X → Y is continuous, denoted by f ∈ C(X,Y ), if

∀V ∈ τY : f−1(V ) ∈ τX ,

where f−1(V ) = {x ∈ X | f(x) ∈ V }; i.e. f is continuous if preimages of
open sets are open (equivalently, preimages of closed sets are closed). In
the sequel, we briefly write

C(X) := C(X,C),

where C has the metric topology with the usual metric (λ, µ) 7→ |λ− µ|.

Proposition 5.5.9. Let (X, τX) and (Y, τY ) be topological spaces. A mapping
f : X → Y is continuous at every x ∈ X if and only if it is continuous.

Proof. Suppose f : X → Y is continuous, x ∈ X, and V ∈ VτY (f(x)).
Then U := f−1(V ) is open, x ∈ U , and f(U) = V , implying the continuity
at x ∈ X.

Conversely, suppose f : X → Y is continuous at every x ∈ X, and
let V ⊂ Y be open. Choose Ux ∈ VτX (x) such that f(Ux) ⊂ V for every
x ∈ f−1(V ). Then

f−1(V ) =
⋃

x∈f−1(V )

Ux

is open in X. �
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Exercise 5.5.10. Let X be a topological space. Show that C(X) is an
algebra.

Exercise 5.5.11. Prove that if f : X → Y and g : Y → Z are continuous
then g ◦ f : X → Z is continuous.

Definition 5.5.12. Let (X, τX) and (Y, τY ) be topological spaces. A map-
ping f : X → Y is called a homeomorphism if it is a bijection, f ∈ C(X,Y )
and f−1 ∈ C(Y,X). Then X and Y are called homeomorphic or topolog-
ically equivalent, denoted by X ∼= Y or f : X ∼= Y ; more specifically,
f : (X, τX) ∼= (Y, τY ).

Note that from the topology point of view, homeomorphic spaces can
be considered equal.
Example. Of course (x 7→ x) : (X, τ) ∼= (X, τ). The reader may check that
(x 7→ x/(1 + |x|)) : R ∼=] − 1, 1[. Using algebraic topology, one can prove
that Rm ∼= Rn if and only if m = n (this is not trivial!).

Definition 5.5.13. Metrics d1, d2 on a set X are called equivalent if there
exists M <∞ such that

M−1 d1(x, y) ≤ d2(x, y) ≤M d1(x, y)

for every x, y ∈ X. An isometry between metric spaces (X, dX) and (Y, dY )
is a mapping f : X → Y satisfying dY (f(x), f(y)) = dX(x, y) for every
x, y ∈ X; f is called an isometric isomorphism if it is a surjective isometry
(hence a bijection with an isometric isomorphism as the inverse mapping).

Example. Any isometric isomorphism is a homeomorphism. Clearly the
unbounded R and the bounded ] − 1, 1[ are not isometrically isomorphic.
An orthogonal linear operator A : Rn → Rn is an isometric isomorphism,
when Rn is endowed with the Euclidean norm. The forward shift operator
on `p(Z) is an isometric isomorphism, but the forward shift operator on
`p(N) is only a non-surjective isometry.

Definition 5.5.14. A topological space (X, τ) is a Hausdorff space if any
two distinct points have some disjoint neighbourhoods, i.e.

∀x, y ∈ X ∃U ∈ V(x) ∃V ∈ V(y) : x 6= y ⇒ U ∩ V = ∅.

Example. 1. If τ1 and τ2 are topologies of X, τ1 ⊂ τ2, and (X, τ1) is a
Hausdorff space then (X, τ2) is a Hausdorff space.

2. (X,P(X)) is a Hausdorff space.
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3. If X has more than one point and τ = {∅, X} then (X, τ) is not
Hausdorff.

4. Clearly any metric space (X, d) is a Hausdorff space; if x, y ∈ X,
x 6= y, then Bd(x, r) ∩Bd(y, r) = ∅, when r ≤ d(x, y)/2.

5. The distribution spacesD′(Rn), S ′(Rn) and E ′(Rn) are non-metrizable
Hausdorff spaces.

Exercise 5.5.15. Let X be a Hausdorff space and x ∈ X. Then {x} ⊂ X is
a closed set.

Definition 5.5.16. Let X,Y be topological spaces with bases BX ,BY , re-
spectively. Then a base for the product topology of X × Y = {(x, y) | x ∈
X, y ∈ Y } is

{U × V | U ∈ BX , V ∈ BY } .

Exercise 5.5.17. Let X,Y be metrizable. Prove that X × Y is metrizable,
and that

(xn, yn) X×Y→ (x, y) ⇔ xn
X→ x and yn

Y→ y.

Definition 5.5.18. Let (X, τ) be a topological space. Let S ⊂ X; its closure
clτ (S) = S is the smallest closed set containing S. The set S is dense in X
if S = X; X is separable if it has a countable dense subset. The boundary
of S is ∂τS = ∂S := S ∩X \ S.

Exercise 5.5.19. Let (X, τ) be a topological space. Let S, S1, S2 ⊂ X. Show
that
(a) ∅ = ∅,
(b) S ⊂ S,
(c) S = S,
(d) S1 ∪ S2 = S1 ∪ S2.

Exercise 5.5.20. Let X be a set, S, S1, S2 ⊂ X. Let c : P(X) → P(X)
satisfy Kuratowski’s closure axioms (a-d):
(a) c(∅) = ∅,
(b) S ⊂ c(S),
(c) c(c(S)) = c(S),
(d) c(S1 ∪ S2) = c(S1) ∪ c(S2).
Show that τ := {U ⊂ X | c(X \U) = X \U} is a topology of X, and that
clτ (S) = c(S) for every S ⊂ X.
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Exercise 5.5.21. Let (X, τ) be a topological space. Prove that
(a) x ∈ S ⇔ ∀U ∈ V(x) : U ∩ S 6= ∅.
(b) S = S ∪ ∂S.

Exercise 5.5.22. Let X,Y be topological spaces. Show that f : X → Y is
continuous if and only if f(S) ⊂ f(S) for every S ⊂ X.

Definition 5.5.23. A topological space (X, τ) is disconnected if X = U ∪ V
for some disjoint non-empty U, V ∈ τ ; otherwise X is called connected.
The component Cx of x ∈ X is the largest connected subset containing x,
i.e.

Cx =
⋃
{S ⊂ X | x ∈ S, S connected} .

Exercise 5.5.24. Show that X is disconnected if and only if there exists
f ∈ C(X) such that f2 = f , f 6≡ 0, f 6≡ 1.

Exercise 5.5.25. Prove that images of connected sets under continuous
mappings are connected.

Exercise 5.5.26. Show that if X,Y are connected then X×Y is connected.

Exercise 5.5.27. Show that components are always closed, but sometimes
they may fail to be open.

5.6 Compact Hausdorff spaces

In this section we mainly concentrate on compact Hausdorff spaces, though
some results deal with more general classes of topological spaces. Roughly,
Hausdorff spaces have enough open sets to distinguish between any two
points, while compact spaces “do not have too many open sets”. Com-
bining these two properties, compact Hausdorff spaces form an extremely
beautiful class to study.

Definition 5.6.1. Let X be a set and K ⊂ X. A family S ⊂ P(X) is called
a cover of K if

K ⊂
⋃
S;

if the cover S is a finite set, it is called a finite cover. A cover S of K ⊂ X
has a subcover S ′ ⊂ S if S ′ itself is a cover of K. Let (X, τ) be a topological
space. An open cover of X is a cover U ⊂ τ of X. A subset K ⊂ X is
compact (more precisely τ -compact) if every open cover of K has a finite
subcover, i.e.

∀U ⊂ τ ∃U ′ ⊂ U : K ⊂
⋃
U ⇒ K ⊂

⋃
U ′ and |U ′| <∞.
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We say that (X, τ) is a compact space if X itself is τ -compact. A topological
space (X, τ) is locally compact if for each x ∈ X has an neighbourhood
U ∈ Vτ (x) and a compact set K ⊂ X such that U ⊂ K.

Example. 1. If τ1 and τ2 are topologies of X, τ1 ⊂ τ2, and (X, τ2) is a
compact space then (X, τ1) is a compact space.

2. (X, {∅, X}) is a compact space.

3. If |X| =∞ then (X,P(X)) is not a compact space. Clearly any space
with a finite topology is compact. Even though a compact topology
can be of any cardinality, it is in a sense “not far away from being
finite”.

4. A metric space is compact if and only if it is sequentially compact
(i.e. every sequence contains a converging subsequence).

5. A subset X ⊂ Rn is compact if and only if it is closed and bounded
(Heine–Borel Theorem).

6. A theorem due to Frigyes Riesz asserts that a closed ball in a normed
vector space over C (or R) is compact if and only if the vector space
is finite-dimensional.

Exercise 5.6.2. A union of two compact sets is compact.

Proposition 5.6.3. An intersection of a compact set and a closed set is
compact.

Proof. Let K ⊂ X be a compact set, and C ⊂ X be a closed set. Let U
be an open cover of K ∩C. Then {X \C} ∪ U is an open cover of K, thus
having a finite subcover U ′. Then U ′ \ {X \C} ⊂ U is a finite subcover of
K ∩ C; hence K ∩ C is compact. �

Proposition 5.6.4. Let X be a compact space and f : X → Y continuous.
Then f(X) ⊂ Y is compact.

Proof. Let V be an open cover of f(X). Then U := {f−1(V ) | V ∈ V}
is an open cover of X, thus having a finite subcover U ′. Hence f(X) is
covered by {f(U) | U ∈ U ′} ⊂ V. �

Corollary 5.6.5. If X is compact and f ∈ C(X) then |f | attains its greatest
value on X (here |f |(x) := |f(x)|). �
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5.6.1 Compact Hausdorff spaces

Theorem 5.6.6. Let X be a Hausdorff space, A,B ⊂ X compact subsets,
and A ∩ B = ∅. Then there exist open sets U, V ⊂ X such that A ⊂ U ,
B ⊂ V , and U ∩ V = ∅. (In particular, compact sets in a Hausdorff space
are closed.)

Proof. The proof is trivial if A = ∅ or B = ∅. So assume x ∈ A and y ∈ B.
Since X is a Hausdorff space and x 6= y, we can choose neighbourhoods
Uxy ∈ V(x) and Vxy ∈ V(y) such that Uxy ∩ Vxy = ∅. The collection
P = {Vxy | y ∈ B} is an open cover of the compact set B, so that it has a
finite subcover

Px =
{
Vxyj | 1 ≤ j ≤ nx

}
⊂ P

for some nx ∈ N. Let

Ux :=
nx⋂
j=1

Uxyj .

Now O = {Ux | x ∈ A} is an open cover of the compact set A, so that it
has a finite subcover

O′ = {Uxi | 1 ≤ i ≤ m} ⊂ O.

Then define

U :=
⋃
O′, V :=

m⋂
i=1

⋃
Pxi .

It is an easy task to check that U and V have desired properties. �

Corollary 5.6.7. Let X be a compact Hausdorff space, x ∈ X, and W ∈
V(x). Then there exists U ∈ V(x) such that U ⊂W .

Proof. Now {x} and X \W are closed sets in a compact space, thus they
are compact. Since these sets are disjoint, there exist open disjoint sets
U, V ⊂ X such that x ∈ U and X \W ⊂ V ; i.e.

x ∈ U ⊂ X \ V ⊂W.

Hence x ∈ U ⊂ U ⊂ X \ V ⊂W . �

Proposition 5.6.8. Let (X, τX) be a compact space and (Y, τY ) a Hausdorff
space. A bijective continuous mapping f : X → Y is a homeomorphism.
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Proof. Let U ∈ τX . Then X \U is closed, hence compact. Consequently,
f(X \U) is compact, and due to the Hausdorff property f(X \U) is closed.
Therefore (f−1)−1(U) = f(U) is open. �

Corollary 5.6.9. Let X be a set with a compact topology τ2 and a Hausdorff
topology τ1. If τ1 ⊂ τ2 then τ1 = τ2.

Proof. The identity mapping (x 7→ x) : X → X is a continuous bijection
from (X, τ2) to (X, τ1). �

A more direct proof of the Corollary. Let U ∈ τ2. Since (X, τ2) is compact
and X \ U is τ2-closed, X \ U must be τ2-compact. Now τ1 ⊂ τ2, so that
X \U is τ1-compact. (X, τ1) is Hausdorff, implying that X \U is τ1-closed,
thus U ∈ τ1; this yields τ2 ⊂ τ1. �

5.6.2 Functional separation

A family F of mappings X → C is said to separate the points of the set
X if there exists f ∈ F such that f(x) 6= f(y) whenever x 6= y. Later in
these notes we shall discover that a compact space X is metrizable if and
only if C(X) is separable and separates the points of X.

Urysohn’s Lemma is the key result of this section:

Theorem 5.6.10. (Urysohn’s Lemma (1923?).) Let X be a compact Haus-
dorff space, A,B ⊂ X closed non-empty sets, A∩B = ∅. Then there exists
f ∈ C(X) such that

0 ≤ f ≤ 1, f(A) = {0}, f(B) = {1}.

Proof. The set Q ∩ [0, 1] is countably infinite; let φ : N→ Q ∩ [0, 1] be a
bijection satisfying φ(0) = 0 and φ(1) = 1. Choose open sets U0, U1 ⊂ X
such that

A ⊂ U0 ⊂ U0 ⊂ U1 ⊂ U1 ⊂ X \B.

Then we proceed inductively as follows: Suppose we have chosen open sets
Uφ(0), Uφ(1), . . . , Uφ(n) such that

φ(i) < φ(j)⇒ Uφ(i) ⊂ Uφ(j).
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Let us choose an open set Uφ(n+1) ⊂ X such that

φ(i) < φ(n+ 1) < φ(j)⇒ Uφ(i) ⊂ Uφ(n+1) ⊂ Uφ(n+1) ⊂ Uφ(j)

whenever 0 ≤ i, j ≤ n. Let us define

r < 0⇒ Ur := ∅, s > 1⇒ Us := X.

Hence for each q ∈ Q we get an open set Uq ⊂ X such that

∀r, s ∈ Q : r < s⇒ Ur ⊂ Us.

Let us define a function f : X → [0, 1] by

f(x) := inf {r : x ∈ Ur} .

Clearly 0 ≤ f ≤ 1, f(A) = {0} and f(B) = {1}.
Let us prove that f is continuous. Take x ∈ X and ε > 0. Take

r, s ∈ Q such that

f(x)− ε < r < f(x) < s < f(x) + ε;

then f is continuous at x, since x ∈ Us \ Ur and for every y ∈ Us \ Ur we
have |f(y)− f(x)| < ε. Thus f ∈ C(X). �

Corollary 5.6.11. Let X be a compact space. Then C(X) separates the
points of X if and only if X is Hausdorff.

Exercise 5.6.12. Prove Corollary 5.6.11.

5.7 Some results from analysis

The reader probably already knows the results in this section, but if not,
proving them provides nice challenges. Proofs can also be found in many
books on measure theory or functional analysis.

Theorem 5.7.1. (Lebesgue Dominated Convergence Theorem.) Let (X,M, µ)
be a measure space. Let fk, f : X → [−∞,∞] be M-measurable functions
such that fk →k→∞ f µ -almost everywhere, and let |fk| ≤ g µ -almost
everywhere, with g : X → [−∞,∞] being µ-integrable. Then∫

|fk − f | dµ −−−−→
k→∞

0.
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Proof. See e.g. [5] or [17]. �

Theorem 5.7.2. (Fubini Theorem.) Let (X,MX , µ), (Y,MY , ν) be com-
plete measure spaces. Let µ× ν be the complete product measure obtained
from the product outer measure of µ and ν, and let MX×Y be the cor-
responding σ-algebra of measurable sets. If A ∈ MX and B ∈ MY then
A×B ∈MX×Y and

(µ× ν)(A×B) = µ(A) ν(B).

If S ∈MX×Y is σ-finite with respect to µ× ν then

Sy := {x ∈ X : (x, y) ∈ S} ∈ MX for ν−almost every y ∈ Y,
Sx := {y ∈ Y : (x, y) ∈ S} ∈ MY for µ−almost every x ∈ X,

y 7→ µ(Sy) is MY−measurable,
x 7→ ν(Sx) is MX−measurable and

(µ× ν)(S) =
∫
X

ν(Sx) dµ(x)

=
∫
Y

µ(Sy) dν(y).

If f : X × Y → [−∞,∞] is (µ× ν)-integrable then

y 7→ f(x, y) is ν−integrable for µ−almost every x ∈ X,
x 7→ f(x, y) is µ−integrable for ν−almost every y ∈ Y,

x 7→
∫
Y

f(x, y) dν(y) is µ−integrable,

y 7→
∫
X

f(x, y) dµ(x) is ν−integrable and∫
X×Y

f d(µ× ν) =
∫
X

∫
Y

f(x, y) dν(y) dµ(x)

=
∫
Y

∫
X

f(x, y) dµ(x) dν(y).

Proof. See e.g. [5]. �

Theorem 5.7.3. (Riesz Representation Theorem [F. Riesz].) Let H be a
Hilbert space and F : H → C bounded and linear. Then there exists a
unique w ∈ H such that F (u) = 〈u,w〉H for every u ∈ H.



122 Chapter 5. Appendices

Proof. See e.g. [12] or [16]. �

Definition 5.7.4. The weak topology of a Hilbert space H is the smallest
topology for which (u 7→ 〈u, v〉H) : H → C is continuous whenever v ∈ H.

Theorem 5.7.5. (Banach–Alaoglu Theorem.) Let H be a Hilbert space. Its
closed unit ball

B = {v ∈ H : ‖v‖H ≤ 1}
is compact in the weak topology.

Proof. See e.g. [16]. �

Theorem 5.7.6. (Hilbert–Schmidt Spectral Theorem.) Let H be a Hilbert
space and A ∈ L(H) be a compact self-adjoint operator. Then the spectrum

σ(A) = {λ ∈ C : λI −A not invertible}

is at most countable and the only possible accumulation point of σ(A) is
0 ∈ C. Moreover, if 0 6= λ ∈ σ(A) then dim(Ker(λI −A)) <∞ and

H =
⊕

λ∈σ(A)

Ker(λI −A).

Proof. See [4]. �

5.8 Appendix on trace

Definition 5.8.1. Let H be a Hilbert space with orthonormal basis {ej | j ∈
J}. Let A ∈ L(H). Let us denote

‖A‖L1 :=
∑
j∈J
|〈Aej , ej〉H| ;

this is the trace norm of A, and the trace class is the (Banach) space

L1 = L1(H) := {A ∈ L(H) : ‖A‖L1 <∞} .

The trace is the linear functional Tr : L1(H)→ C,

A 7→
∑
j∈J
〈Aej , ej〉H.
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Exercise 5.8.2. Verify that the definition of the trace is independent of the
choice of the orthonormal basis for H. Consequently, if (aij)i,j∈J is the
matrix representation of A ∈ L1 with respect to the chosen basis, then
Tr(A) =

∑
j∈J ajj .

Exercise 5.8.3. Prove the following properties of the trace functional:

Tr(AB) = Tr(BA),
Tr(A∗) = Tr(A),

Tr(A∗A) ≥ 0,
Tr(A⊕B) = Tr(A) + Tr(B),

dim(H) <∞ ⇒

{
Tr(IH) = dim(H),
Tr(A⊗B) = Tr(A) Tr(B).

Exercise 5.8.4. Show that the trace on a finite-dimensional vector space
is independent of the choice of inner product. Thus, the trace of a square
matrix is defined to be the sum of its diagonal elements; moreover, the
trace is the sum of the eigenvalues (with multiplicities counted).

Exercise 5.8.5. Let H be finite-dimensional. Let f : L(H)→ C be a linear
functional satisfying 

f(AB) = f(BA),
f(A∗A) ≥ 0,
f(IH) = dim(H)

for every A,B ∈ L(H). Show that f = Tr.

Definition 5.8.6. The space of Hilbert–Schmidt operators is

L2 = L2(H) :=
{
A ∈ L(H) : A∗A ∈ L1(H)

}
,

and it can be endowed with a Hilbert space structure via the inner product

〈A,B〉L2 := Tr(AB∗).

The Hilbert–Schmidt norm is then

‖A‖L2 := 〈A,A〉1/2L2 .

Remark 5.8.7. In general, there are inclusions L1 ⊂ L2 ⊂ K ⊂ L∞, where
L∞ := L(H) and K ⊂ L∞ is the subspace of compact linear operators.
Moreover,

‖A‖L∞ ≤ ‖A‖L2 ≤ ‖A‖L1
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for every A ∈ L∞. One can show that the dual K′ = L(K,C) is isometri-
cally isomorphic to L1, and that (L1)′ is isometrically isomorphic to L∞.
In the latter case, it turns out that a bounded linear functional on L1 is of
the form A 7→ Tr(AB) for some B ∈ L∞. These phenomena are related to
properties of the sequence spaces `p = `p(Z+). In analogy to the operator
spaces, `1 ⊂ `2 ⊂ c0 ⊂ `∞, where c0 is the space of sequences converging
to 0, playing the counterpart of space K.

5.9 Appendix on polynomial approximation.

In this section we study densities of subalgebras in C(X) for a compact
Hausdorff space X. These results will be applied in characterizing function
algebras among Banach algebras. First we study continuous functions on
[a, b] ⊂ R:

Theorem 5.9.1. (Weierstrass Theorem (1885).) Polynomials are dense in
C([a, b]).

Proof. Evidently, it is enough to consider the case [a, b] = [0, 1]. Let
f ∈ C([0, 1]), and let g(x) = f(x)−(f(0)+(f(1)−f(0))x); then g ∈ C(R) if
we define g(x) = 0 for x ∈ R\ [0, 1]. For n ∈ N let us define kn : R→ [0,∞[
by

kn(x) :=


(1−x2)nR 1

−1(1−t2)n dt
, when |x| < 1,

0, when |x| ≥ 1.

Then define Pn := g ∗ kn (convolution of g and kn), that is

Pn(x) =
∫ ∞
−∞

g(x− t) kn(t) dt =
∫ ∞
−∞

g(t) kn(x− t) dt

=
∫ 1

0

g(t) kn(x− t) dt,

and from this last formula we see that Pn is a polynomial on [0, 1]. Notice
that Pn is real-valued if f is real-valued. Take any ε > 0. Function g is
uniformly continuous, so that there exists δ > 0 such that

∀x, y ∈ R : |x− y| < δ ⇒ |g(x)− g(y)| < ε.
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Let ‖g‖ = max
t∈[0,1]

|g(t)|. Take x ∈ [0, 1]. Then

|Pn(x)− g(x)| =
∣∣∣∣∫ ∞
−∞

g(x− t) kn(t) dt− g(x)
∫ ∞
−∞

kn(t) dt
∣∣∣∣

=
∣∣∣∣∫ 1

−1

(g(x− t)− g(x)) kn(t) dt
∣∣∣∣

≤
∫ 1

−1

|g(x− t)− g(x)| kn(t) dt

≤
∫ −δ
−1

2‖g‖ kn(t) dt+
∫ δ

−δ
ε kn(t) dt+

∫ 1

δ

2‖g‖ kn(t) dt

≤ 4‖g‖
∫ 1

δ

kn(t) dt+ ε.

The reader may verify that
∫ 1

δ
kn(t) dt →n→∞ 0 for every δ > 0. Hence

‖Qn − f‖ →n→∞ 0, where Qn(x) = Pn(x) + f(0) + (f(1)− f(0))x. �

Exercise 5.9.2. Show that the last claim in the proof of the Weierstrass
Theorem 5.9.1 is true.

For f : X → C let us define f∗ : X → C by f∗(x) := f(x), and
define |f | : X → C by |f |(x) := |f(x)|. A subalgebra A ⊂ F(X) is called
involutive if f∗ ∈ A whenever f ∈ A. Notice that our definition of an
algebra contains the existence of the unit element 1.

Theorem 5.9.3. (Stone–Weierstrass Theorem (1937).) Let X be a compact
space. Let A ⊂ C(X) be an involutive subalgebra separating the points of
X. Then A is dense in C(X).

Proof. If f ∈ A then f∗ ∈ A, so that the real part <f =
f + f∗

2
belongs

to A. Let us define
AR := {<f | f ∈ A};

this is a R-subalgebra of the R-algebra C(X,R) of continuous real-valued
functions on X. Then

A = {f + ig | f, g ∈ AR} ,

so that AR separates the points of X. If we can show that AR is dense in
C(X,R) then A would be dense in C(X).
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First we have to show that AR is closed under taking maximums and
minimums. For f, g ∈ C(X,R) we define

max(f, g)(x) := max(f(x), g(x)), min(f, g)(x) := min(f(x), g(x)).

Notice that AR is an algebra over the field R. Since

max(f, g) =
f + g

2
+
|f − g|

2
, min(f, g) =

f + g

2
− |f − g|

2
,

it is enough to prove that |h| ∈ AR whenever h ∈ AR. Let h ∈ AR. By the
Weierstrass Theorem 5.9.1 there is a sequence of polynomials Pn : R→ R
such that

Pn(x) −−−−→
n→∞

|x|

uniformly on the interval [−‖h‖, ‖h‖]. Thereby

‖|h| − Pn(h)‖ −−−−→
n→∞

0,

where Pn(h)(x) := Pn(h(x)). Since Pn(h) ∈ AR for every n, this implies
that |h| ∈ AR. Now we know that max(f, g),min(f, g) ∈ AR whenever
f, g ∈ AR.

Now we are ready to prove that f ∈ C(X,R) can be approximated by
elements of AR. Take ε > 0 and x, y ∈ X, x 6= y. Since AR separates the
points of X, we may pick h ∈ AR such that h(x) 6= h(y). Let gxx = f(x)I,
and let

gxy(z) :=
h(z)− h(y)
h(x)− h(y)

f(x) +
h(z)− h(x)
h(y)− h(x)

f(y).

Here gxx, gxy ∈ AR, since AR is an algebra. Furthermore,

gxy(x) = f(x), gxy(y) = f(y).

Due to the continuity of gxy, there is an open set Vxy ∈ V(y) such that

z ∈ Vxy ⇒ f(z)− ε < gxy(z).

Now {Vxy | y ∈ X} is an open cover of the compact space X, so that there
is a finite subcover {Vxyj | 1 ≤ j ≤ n}. Define

gx := max
1≤j≤n

gxyj ;
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gx ∈ AR, because AR is closed under taking maximums. Moreover,

∀z ∈ X : f(z)− ε < gx(z).

Due to the continuity of gx (and since gx(x) = f(x)), there is an open set
Ux ∈ V(x) such that

z ∈ Ux ⇒ gx(z) < f(z) + ε.

Now {Ux | x ∈ X} is an open cover of the compact space X, so that there
is a finite subcover {Uxi | 1 ≤ i ≤ m}. Define

g := min
1≤i≤m

gxi ;

g ∈ AR, because AR is closed under taking minimums. Moreover,

∀z ∈ X : g(z) < f(z) + ε.

Thus
f(z)− ε < min

1≤i≤m
gxi(z) = g(z) < f(z) + ε,

that is |g(z) − f(z)| < ε for every z ∈ X, i.e. ‖g − f‖ < ε. Hence AR is
dense in C(X,R) implying that A is dense in C(X). �

Remark 5.9.4. Notice that under the assumptions of the Stone–Weierstrass
Theorem 5.9.3, the compact space is actually a compact Hausdorff space,
since continuous functions separate the points.
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Let us give a non-comprehensive list of sources that have had a pos-
itive impact in forming these lecture notes. I hope studying the earlier
versions of the text has not caused permanent damage; I want to express
my gratitude to Lauri Harhanen, Tapio Helin, Teemu Lukkari, Mathias
Masson, and many other unnamed students. I hope the reader may find
the following references useful.
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