
Ville Turunen

Mat-1.152

Special Course in Functional Analysis:

(Non-)Commutative Topology

Duration: 12 times 90-minute lectures, 6 times 90-minute exercise sessions.

What is this good for? You may learn something about functional an-
alytic framework of topology. And you will get an access to more advanced
literature on non-commutative geometry, a quite recent topic in mathematics
and mathematical physics.

What the reader is assumed to know? The prerequisite for this course
is some elementary understanding of Banach spaces. Of course, it helps if
the reader already knows some topology, but we shall explicitly introduce
every major mathematical tool we need. We have carefully tried to keep the
presentation as simple as possible. Well, the introducing section may contain
many unfamiliar concepts, but do not worry: everything will be made precise.
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1 Informal introduction

These lecture notes present a fundamental relationship between topology,
measure theory and algebra. Briefly, if we want to study properties of a space
X, we may alternatively examine some algebra of functions on X. With suit-
able topological restrictions, there will be a bijective correspondence between
spaces and algebras (equivalence of categories, if you insist). Topology and
measure theory of X can then be stated in the terms of a topological function
algebra. And it will turn out that the tools that are developed for the study
of function algebras work as well for non-commutative algebras.

Let us begin with a trivial example. Let X be a finite set. Let A = F(X)
be the set of the complex-valued functions f : X → C. Then A is naturally
a C-vector space:

(f + g)(x) := f(x) + g(x), (λf)(x) := λ f(x)

for every f, g ∈ A and λ ∈ C. Moreover, A is an algebra when endowed with
the product

(fg)(x) := f(x) g(x)

and with the unit element 1 = 1A, which is the constant function 1(x) ≡ 1.
Let Hom(A,C) denote the set of algebra homomorphisms A → C. When
x ∈ X, the evaluation mapping

(f 7→ f(x)) : A → C

is a homomorphism. Hence we may think that X is a subset of Hom(A,C).
Actually, it turns out that the evaluation mappings are the only homomor-
phisms A → C. Therefore we may even claim

X = Hom(A,C).

It can be proven that every isomorphism A → A arises from a bijection
X → X. And if ∅ 6= I ⊂ X, it is easy to see that

I := {f ∈ A | ∀x ∈ I : f(x) = 0}

is an ideal of the algebra A, and that there are no other ideals; thus the
non-empty subsets of X are in bijective correspondence with the ideals of A.
Any λ : X → C defines a linear functional Λ : A → C by

Λf :=
∑
x∈X

f(x) λ(x),
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which can be thought as an integral with respect to the λ-weighted counting
measure on X; conversely, any linear functional on A arises this way.

From analysis point of view, the discrete topology is the most reason-
able topology for a finite set X, and the counting measure is the natural
choice for measure theory. We should not endow an infinite set with the
discrete topology nor with the counting measure. Instead, non-trivial topol-
ogy and measure theory will be necessary. The framework is the theory of
commutative C∗-algebras (“C-star-algebra”), an extremely beautiful branch
of functional analysis. In essence, this theory boils down to the following:

Theorem. Compact Hausdorff spaces X and Y are homeomorphic if and
only if the function algebras C(X) and C(Y ) of complex-valued continuous
functions are isomorphic.

Thus the topological and measure theoretic information of some topolog-
ical space X is equivalent to the topologic-algebraic information of C(X).
The same phenomenon occurs also for differentiability properties. We may
study directly the geometry of a space, but as well we may study algebras
of functions on it! This is called “commutative geometry”, as function
algebras are commutative. Now this remark almost forces us to generalize:
We may study certain non-commutative algebras using similar tools as in the
commutative case. Hence the name “non-commutative geometry”.

The reader may wonder why these themes should be relevant. We have
already expressed the nice connections between different branches of math-
ematics. Let us go back in the history: In 1925, Werner Heisenberg (1901-
1976) and Erwin Schrödinger (1887-1961) initiated the quantum mechanics.
Heisenberg applied matrix algebras, while Schrödinger practically studied
Fourier analysis, but their theories were essentially equivalent. However, a
precise mathematical foundation for quantum physics was lacking. This was
the main reason for János von Neumann (1903-1957) to develop the Hilbert
spaces and the spectral theory of normal operators in 1929-1930. In this
context, a quantum mechanical system is presented as a partial differential
equation (Schrödinger equation) on a Hilbert space H, where unit vectors
φ ∈ H (‖φ‖ = 1) are states of the system. The measurable quantities, or
observables, of the system are the self-adjoint linear operators (A∗ = A) on
H. Also the unbounded operators are interesting, for instance the location
and momentum operators on L2(Rn). When we measure a quantity, the re-
sult is not the full information about the observable but merely a value from
the spectrum of the operator (e.g. try to locate a particle in the space). The
interesting thing is then to find a spectral decomposition of an observable,
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analogous to the diagonalization of a Hermitian matrix.
Well, this is not a physical Theory of Everything. Anyhow, L(H) is the

natural first stage in developing the operator algebras. In 1936, the next
ingenious step was the theory of von Neumann algebras, capturing some
measure theoretic properties of classical L∞-type spaces. These algebras
were a special case of C∗-algebras, whose theory emerged in the early of
1940s mainly by Israil Gelfand (1913-).

Practical definition. A C∗-algebra A is a norm closed involutive subal-
gebra of L(H) for some Hilbert space H.

Equivalent abstract definition. A C∗-algebra A is a Banach space and
a C-algebra with involution x 7→ x∗ such that

‖xy‖ ≤ ‖x‖ ‖y‖, ‖1A‖ = 1, ‖x∗x‖ = ‖x‖2

for every x, y ∈ A.

Gelfand’s idea was to look at a “mirror reflection” of a commutative
algebra. Actually, this approach can be dated back at least to Hilbert’s
Nullstellensatz in algebraic geometry, in 1893. Let A be a commutative C∗-
algebra. Let X = Hom(A,C) be the set of algebra homomorphisms A → C.

The Gelfand transform of an element f ∈ A is the function f̂ : X → C
defined by

f̂(x) := x(f),

where x ∈ X = Hom(A,C). This seems astonishingly simple, but is fun-
damental. Now Gelfand proved that X is a compact Hausdorff space in
the natural topology inherited from the weak∗-topology of the dual space
A′ = L(A,C). Moreover:

Gelfand–Naimark Theorem (1943). Any commutative C∗-algebra is
isometrically isomorphic to the algebra C(X) for some compact Hausdorff
space X.

Gelfand–Naimark Theorem is the starting point of the non-commutative
geometry, which was initiated by Alain Connes in the 1980s. By now, this
huge subject contains such topics as Hopf algebras and quantum groups, K-
theory for operator algebras, non-commutative integrodifferential calculus,
non-commutative manifolds, and so on. This machinery has been applied
e.g. in particle physics, quantum field theory and string theory.
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However, within the limited time we have, we only present some of the
early fundamental results of topology and operator algebras. This hopefully
provides a solid background for the reader to investigate non-commutative
geometry further.

To distill some of the essential results that will be obtained in these
lecture notes, we present a “dictionary” relating topology, measure theory
and algebra; here X is a compact Hausdorff space:

Topology / Measure theory ↔ Algebra
C(X) ↔ commutative C∗-algebra A

homeomorphism X → X ↔ isomorphism A → A
point ∈ X ↔ maximal ideal ∈ A or

homomorphism A → C
non-empty closed subset ⊂ X ↔ closed ideal ⊂ A or

quotient algebra A/ideal
range of f ∈ C(X) ↔ spectrum of an element ∈ A

X metrizable ↔ A separable
X disconnected ↔ ∃f ∈ A : f 2 = f , 0 6= f 6= 1

complex measure on X ↔ bounded linear
functional A → C

positive measure on X ↔ positive linear
functional A → C

... ↔ ...
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Appendix on set theoretical notation

When X is a set, P(X) denotes the family of all subsets of X (the power set,
sometimes denoted by 2X). The cardinality of X is denoted by |X|. If J is
a set and Sj ⊂ X for every j ∈ J , we write⋃

{Sj | j ∈ J} =
⋃
j∈J

Sj,
⋂
{Sj | j ∈ J} =

⋂
j∈J

Sj.

If f : X → Y , U ⊂ X, and V ⊂ Y , we define

f(U) := {f(x) | x ∈ U} (image),

f−1(V ) := {x ∈ X | f(x) ∈ V } (preimage).
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Appendix on Axiom of Choice

It may be surprising, but the Zermelo-Fraenkel axiom system does not imply
the following statement (nor its negation):

Axiom of Choice for Cartesian Products: The Cartesian product of
non-empty sets is non-empty.

Nowadays there are hundreds of equivalent formulations for the Axiom
of Choice. Next we present other famous variants: the classical Axiom of
Choice, the Law of Trichotomy, the Well-Ordering Axiom, the Hausdorff
Maximal Principle and Zorn’s Lemma. Their equivalence is shown in [14].

Axiom of Choice: For every non-empty set J there is a function f :
P(J)→ J such that f(I) ∈ I when I 6= ∅.

Let A,B be sets. We write A ∼ B if there exists a bijection f : A→ B,
and A ≤ B if there is a set C ⊂ B such that A ∼ C. Notion A < B means
A ≤ B such that not A ∼ B.

Law of Trichotomy: Let A,B be sets. Then A < B, A ∼ B or B < A.

A set X is partially ordered with an order relation R ⊂ X × X if R
is reflexive ((x, x) ∈ R), antisymmetric ((x, y), (y, x) ∈ R ⇒ x = y) and
transitive ((x, y), (y, z) ∈ R ⇒ (x, z) ∈ R). A subset C ⊂ X is a chain if
(x, y) ∈ R or (y, x) ∈ R for every x, y ∈ C. An element x ∈ X is maximal if
(x, y) ∈ R implies y = x.

Well-Ordering Axiom: Every set is a chain for some order relation.

Hausdorff Maximal Principle: Any chain is contained in a maximal
chain.

Zorn’s Lemma: A non-empty partially ordered set where every chain has
an upper bound has a maximal element.
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2 Algebras

Algebra. A vector space A over the field C is an algebra if there exists an
element 1A ∈ A \ {0} and a mapping A×A → A, (x, y) 7→ xy, satisfying

x(yz) = (xy)z,

x(y + z) = xy + xz, (x+ y)z = xz + yz,

λ(xy) = (λx)y = x(λy),

1Ax = x = x1A

for every x, y, z ∈ A and λ ∈ C. We briefly write xyz := x(yz). The element
1 := 1A is called the unit of A, and an element x ∈ A is called invertible
(with the unique inverse x−1) if there exists x−1 ∈ A such that

x−1x = 1 = xx−1.

If xy = yx for every x, y ∈ A then A is called commutative.

Warnings: In some books the algebra axioms allow 1A to be 0, but then
the resulting algebra is simply {0}; we have omitted such a triviality. In
some books the existence of a unit is omitted from the algebra axioms; what
we have called an algebra is there called a unital algebra.

Examples of algebras.

1. C is the most important algebra. The operations are the usual ones for
complex numbers, and the unit element is 1C = 1 ∈ C. Clearly C is a
commutative algebra.

2. The algebra F(X) := {f | f : X → C} of complex valued functions on
a (finite or infinite) set X is endowed with the same algebra structure
as in the example in “Informal introduction” section (pointwise opera-
tions). Function algebras are commutative, because C is commutative.

3. The algebra L(V ) := {A : V → V | A is linear} of linear operators on
a vector space V 6= {0} over C is endowed with the usual vector space
structure and with the multiplication (A,B) 7→ AB (composition of
operators); the unit element is 1L(V ) = (v 7→ v) : V → V , the identity
operator on V . This algebra is non-commutative if V is at least two-
dimensional.
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Exercise. Let A be an algebra and x, y ∈ A. Prove the following claims:
(a) If x, xy are invertible then y is invertible.
(b) If xy, yx are invertible then x, y are invertible.

Exercise. Give an example of an algebra A and elements x, y ∈ A such
that xy = 1A 6= yx. Prove that then (yx)2 = yx 6= 0. (Hint: Such an algebra
is necessarily infinite-dimensional).

Spectrum. Let A be an algebra. The spectrum σ(x) of an element x ∈ A
is the set

σA(x) = σ(x) = {λ ∈ C : λ1− x is not invertible}.

Examples of invertibility and spectra.

1. An element λ ∈ C is invertible if and only if λ 6= 0; the inverse of an
invertible λ is the usual λ−1 = 1/λ. Generally, σC(λ) = {λ}.

2. An element f ∈ F(X) is invertible if and only if f(x) 6= 0 for every x ∈
X. The inverse of an invertible f is g with g(x) = f(x)−1. Generally,
σF(X)(f) = f(X) := {f(x) | x ∈ X}.

3. An element A ∈ L(V ) is invertible if and only if it is a bijection (if and
only if 0 6∈ σL(V )(A)).

Exercise. Let A be an algebra and x, y ∈ A. Prove the following claims:
(a) 1− yx is invertible if and only if 1− xy is invertible.
(b) σ(yx) ⊂ σ(xy) ∪ {0}.
(c) If x is invertible then σ(xy) = σ(yx).

Ideals. Let A be an algebra. An ideal J ⊂ A is a vector subspace J 6= A
satisfying

∀x ∈ A ∀y ∈ J : xy, yx ∈ J ,

i.e. xJ ,J x ⊂ J for every x ∈ A. A maximal ideal is an ideal not contained
in any other ideal.

Warning. In some books our ideals are called proper ideals, and there ideal
is either a proper ideal or the whole algebra.
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Remark. Let J ⊂ A be an ideal. Because x1 = x for every x ∈ A, we
notice that 1 6∈ J . Therefore an invertible element x ∈ A cannot belong to
an ideal (since x−1x = 1 6∈ J ).

Examples of ideals. Intuitively, an ideal of an algebra is a subspace re-
sembling a multiplicative zero; consider equations x0 = 0 = 0x.

1. Let A be an algebra. Then {0} ⊂ A is an ideal.

2. The only ideal of C is {0} ⊂ C.

3. Let X be a set, and ∅ 6= S ⊂ X. Now

I(S) := {f ∈ F(X) | ∀x ∈ S : f(x) = 0}

is an ideal of the function algebra F(X). If x ∈ X then I({x}) is
a maximal ideal of F(X), because it is of co-dimension 1 in F(X).
Notice that I(S) ⊂ I({x}) for every x ∈ S; an ideal may be contained
in many different maximal ideals (cf. Krull’s Theorem in the sequel).

4. Let X be an infinite-dimensional Banach space. The set

LC(X) := {A ∈ L(X) | A is compact}

of compact linear operators X → X is an ideal of the algebra L(X) of
bounded linear operators X → X.

Theorem (W. Krull). An ideal is contained in a maximal ideal.

Proof. Let J be an ideal of an algebra A. Let P be the set of those ideals
of A that contain J . The inclusion relation is the natural partial order on
P ; the Hausdorff Maximal Principle says that there is a maximal chain
C ⊂ P . Let M :=

⋃
C. Clearly J ⊂ M. Let λ ∈ C, x, y ∈ M and z ∈ A.

Then there exists I ∈ C such that x, y ∈ I, so that

λx ∈ I ⊂M, x+ y ∈ I ⊂M, xz, zx ∈ I ⊂M;

moreover,

1 ∈
⋂
I∈C

(A \ I) = A \
⋃
I∈C

I = A \M,

so thatM 6= A. We have proven thatM is an ideal. The maximality of the
chain C implies that M is maximal �
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Quotient algebra. Let A be an algebra with an ideal J . For x ∈ A, let
us denote

[x] := x+ J = {x+ j | j ∈ J }.

Then the set A/J := {[x] | x ∈ A} can be endowed with a natural algebra
structure: Let us define

λ[x] := [λx], [x] + [y] := [x+ y], [x][y] := [xy], 1A/J := [1A];

first of all, these operations are well-defined, since if λ ∈ C and j, j1, j2 ∈ J
then

λ(x+ j) = λx+ λj ∈ [λx],

(x+ j1) + (y + j2) = (x+ y) + (j1 + j2) ∈ [x+ y],

(x+ j1)(y + j2) = xy + j1y + xj2 + j1j2 ∈ [xy].

Secondly, [1A] = 1A + J 6= J = [0], because 1A 6∈ J . Moreover,

(x+ j1)(1A + j2) = x+ j1 + xj2 + j1j2 ∈ [x],

(1A + j2)(x+ j1) = x+ j1 + j2x+ j2j1 ∈ [x].

Now the reader may verify that A/J is really an algebra; it is called the
quotient algebra of A modulo J .

Remarks: Notice that A/J is commutative if A is commutative. Also
notice that [0] = J is the zero element in the quotient algebra.

Homomorphisms. Let A and B be algebras. A mapping φ : A → B is
called a homomorphism if it is a linear mapping satisfying

φ(xy) = φ(x)φ(y)

for every x, y ∈ A (multiplicativity) and

φ(1A) = 1B.

The set of all homomorphisms A → B is denoted by

Hom(A,B).

A bijective homomorphism φ : A → B is called an isomorphism, denoted by
φ : A ∼= B.
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Examples of homomorphisms.

1. The only homomorphism C→ C is the identity mapping, Hom(C,C) =
{x 7→ x}.

2. Let x ∈ X. Let us define the evaluation mapping φx : F(X) → C by
f 7→ f(x). Then φx ∈ Hom(F(X),C).

3. Let J be an ideal of an algebra A, and denote [x] = x + J . Then
(x 7→ [x]) ∈ Hom(A,A/J ).

Exercise. Let φ ∈ Hom(A,B). If x ∈ A is invertible then φ(x) ∈ B is
invertible. For any x ∈ A, σB(φ(x)) ⊂ σA(x).

Exercise. Let A be the set of matrices(
α β
0 α

)
(α, β ∈ C).

Show that A is a commutative algebra. Classify (up to an isomorphism)
all the two-dimensional algebras. (Hint: Prove that in a two-dimensional
algebra either ∃x 6= 0 : x2 = 0 or ∃x 6∈ {1,−1} : x2 = 1.)

Proposition. Let A and B be algebras, and φ ∈ Hom(A,B). Then φ(A) ⊂ B
is a subalgebra, Ker(φ) := {x ∈ A | φ(x) = 0} is an ideal of A, and
A/Ker(φ) ∼= φ(A).

Exercise. Prove the previous Proposition.
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3 Topology (and metric), basics

The reader should know metric spaces; topological spaces are their general-
ization, which we soon introduce. Feel free to draw some clarifying schematic
pictures on the margins!

Metric space. A function d : X × X → [0,∞[ is called a metric on the
set X if for every x, y, z ∈ X we have

• d(x, y) = 0⇔ x = y;

• d(x, y) = d(y, x);

• d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Then (X, d) (or simply X when d is evident) is called a metric space. Some-
times a metric is called a distance function.

Topological space. A family of sets τ ⊂ P(X) is called a topology on the
set X if

1. ∅, X ∈ τ ;

2. U ⊂ τ ⇒
⋃
U ∈ τ ;

3. U, V ∈ τ ⇒ U ∩ V ∈ τ .

Then (X, τ) (or simply X when τ is evident) is called a topological space.
The sets U ∈ τ are called open sets, and their complements X \U are closed
sets.

Thus in a topological space, the empty set and the whole space are always
open, any union of open sets is open, and an intersection of finitely many
open sets is open. Equivalently, the whole space and the empty set are always
closed, any intersection of closed sets is closed, and a union of finitely many
closed sets is closed.

Metric topology. Let (X, d) be a metric space. We say that the open ball
of radius r > 0 centered at x ∈ X is

Bd(x, r) := {y ∈ X | d(x, y) < r}.

The metric topology τd of (X, d) is given by

U ∈ τd
definition⇔ ∀x ∈ U ∃r > 0 : Bd(x, r) ⊂ U.
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A topological space (X, τ) is called metrizable if there is a metric d on X
such that τ = τd.

Non-metrizable spaces. There are plenty of non-metrizable topological
spaces, the easiest example being X with more than one point and with
τ = {∅, X}. If X is an infinite-dimensional Banach space then the weak∗-
topology of X ′ := L(X,C) is not metrizable. The distribution spaces D′(Rn),
S ′(Rn) and E ′(Rn) are non-metrizable topological spaces. We shall later
prove that for the compact Hausdorff spaces metrizability is equivalent to
the existence of a countable base.

Base. Let (X, τ) be a topological space. A family B ⊂ τ of open sets is
called a base (or basis) for the topology τ if any open set is a union of some
members of B, i.e.

∀U ∈ τ ∃B′ ⊂ B : U =
⋃
B′.

Examples. Trivially a topology τ is a base for itself (∀U ∈ τ : U =
⋃
{U}).

If (X, d) is a metric space then

B := {Bd(x, r) | x ∈ X, r > 0}

constitutes a base for τd.

Neighborhoods. Let (X, τ) be a topological space. A neighborhood of
x ∈ X is any open set U ⊂ X containing x. The family of neighborhoods of
x ∈ X is denoted by

Vτ (x) := {U ∈ τ | x ∈ U}

(or simply V(x), when τ is evident).

The natural mappings (or the morphisms) between topological spaces are
continuous mappings.

Continuity at a point. Let (X, τX) and (Y, τY ) be topological spaces. A
mapping f : X → Y is continuous at x ∈ X if

∀V ∈ VτY (f(x)) ∃U ∈ VτX (x) : f(U) ⊂ V.
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Exercise. Let (X, dX) and (Y, dY ) be metric spaces. A mapping f : X → Y
is continuous at x ∈ X if and only if

∀ε > 0 ∃δ > 0 ∀y ∈ X : dX(x, y) < δ ⇒ dY (f(x), f(y)) < ε

if and only if

dX(xn, x)→n→∞ 0⇒ dY (f(xn), f(x))→n→∞ 0

for every sequence (xn)∞n=1 ⊂ X (that is, xn → x⇒ f(xn)→ f(x)).

Continuity. Let (X, τX) and (Y, τY ) be topological spaces. A mapping
f : X → Y is continuous, denoted by f ∈ C(X, Y ), if

∀V ∈ τY : f−1(V ) ∈ τX ,

where f−1(V ) = {x ∈ X | f(x) ∈ V }; i.e. f is continuous if preimages of
open sets are open (equivalently, preimages of closed sets are closed). In the
sequel, we briefly write

C(X) := C(X,C),

where C has the metric topology with the usual metric (λ, µ) 7→ |λ− µ|.

Proposition. Let (X, τX) and (Y, τY ) be topological spaces. A mapping
f : X → Y is continuous at every x ∈ X if and only if it is continuous.

Proof. Suppose f : X → Y is continuous, x ∈ X, and V ∈ VτY (f(x)).
Then U := f−1(V ) is open, x ∈ U , and f(U) = V , implying the continuity
at x ∈ X.

Conversely, suppose f : X → Y is continuous at every x ∈ X, and
let V ⊂ Y be open. Choose Ux ∈ VτX (x) such that f(Ux) ⊂ V for every
x ∈ f−1(V ). Then

f−1(V ) =
⋃

x∈f−1(V )

Ux

is open in X �

Exercise. Let X be a topological space. Show that C(X) is an algebra.

Exercise. Prove that if f : X → Y and g : Y → Z are continuous then
g ◦ f : X → Z is continuous.
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Topological equivalence: homeomorphism. Let (X, τX) and (Y, τY )
be topological spaces. A mapping f : X → Y is called a homeomorphism if
it is a bijection, f ∈ C(X, Y ) and f−1 ∈ C(Y,X). Then X and Y are called
homeomorphic or topologically equivalent, denoted by X ∼= Y or f : X ∼= Y ;
more specifically, f : (X, τX) ∼= (Y, τY ).

Note that from the topology point of view, homeomorphic spaces can be
considered equal.

Examples. Of course (x 7→ x) : (X, τ) ∼= (X, τ). The reader may check
that (x 7→ x/(1+ |x|)) : R ∼=]−1, 1[. Using algebraic topology, one can prove
that Rm ∼= Rn if and only if m = n (this is not trivial!).

Metric equivalence and isometries. Metrics d1, d2 on a set X are called
equivalent if there exists m <∞ such that

M−1 d1(x, y) ≤ d2(x, y) ≤M d1(x, y)

for every x, y ∈ X. An isometry between metric spaces (X, dX) and (Y, dY )
is a mapping f : X → Y satisfying dY (f(x), f(y)) = dX(x, y) for every
x, y ∈ X; f is called an isometric isomorphism if it is a surjective isometry
(hence a bijection with an isometric isomorphism as the inverse mapping).

Examples. Any isometric isomorphism is a homeomorphism. Clearly the
unbounded R and the bounded ]− 1, 1[ are not isometrically isomorphic. An
orthogonal linear operator A : Rn → Rn is an isometric isomorphism, when
Rn is endowed with the Euclidean norm. The forward shift operator on `p(Z)
is an isometric isomorphism, but the forward shift operator on `p(N) is only
a non-surjective isometry.

Hausdorff space. A topological space (X, τ) is a Hausdorff space if any
two distinct points have some disjoint neighborhoods, i.e.

∀x, y ∈ X ∃U ∈ V(x) ∃V ∈ V(y) : x 6= y ⇒ U ∩ V = ∅.

Examples.

1. If τ1 and τ2 are topologies of X, τ1 ⊂ τ2, and (X, τ1) is a Hausdorff
space then (X, τ2) is a Hausdorff space.

2. (X,P(X)) is a Hausdorff space.
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3. If X has more than one point and τ = {∅, X} then (X, τ) is not Haus-
dorff.

4. Clearly any metric space (X, d) is a Hausdorff space; if x, y ∈ X, x 6= y,
then Bd(x, r) ∩Bd(y, r) = ∅, when r ≤ d(x, y)/2.

5. The distribution spaces D′(Rn), S ′(Rn) and E ′(Rn) are non-metrizable
Hausdorff spaces.

Exercise. Let X be a Hausdorff space and x ∈ X. Then {x} ⊂ X is a
closed set.

Finite product topology. Let X, Y be topological spaces with bases
BX ,BY , respectively. Then a base for the product topology of X × Y =
{(x, y) | x ∈ X, y ∈ Y } is

{U × V | U ∈ BX , V ∈ BY }.

Exercise. Let X, Y be metrizable. Prove that X × Y is metrizable, and
that

(xn, yn)
X×Y→ (x, y) ⇔ xn

X→ x and yn
Y→ y.
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Closure and boundary. Let (X, τ) be a topological space. Let S ⊂ X;
its closure clτ (S) = S is the smallest closed set containing S. The set S is
dense in X if S = X. The boundary of S is ∂τS = ∂S := S ∩X \ S.

Exercise. Let (X, τ) be a topological space. Let S, S1, S2 ⊂ X. Show that
(a) ∅ = ∅,
(b) S ⊂ S,

(c) S = S,
(d) S1 ∪ S2 = S1 ∪ S2.

Exercise. Let X be a set, S, S1, S2 ⊂ X. Let c : P(X) → P(X) satisfy
Kuratowski’s closure axioms (a-d):
(a) c(∅) = ∅,
(b) S ⊂ c(S),
(c) c(c(S)) = c(S),
(d) c(S1 ∪ S2) = c(S1) ∪ c(S2).
Show that τ := {U ⊂ X | c(X \ U) = X \ U} is a topology of X, and that
clτ (S) = c(S) for every S ⊂ X.

Exercise. Let (X, τ) be a topological space. Prove that
(a) x ∈ S ⇔ ∀U ∈ V(x) : U ∩ S 6= ∅.
(b) S = S ∪ ∂S.
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4 Topological algebras

Topological algebra. A topological space and an algebra A is called a
topological algebra if

1. {0} ⊂ A is a closed subset, and

2. the algebraic operations are continuous, i.e. the mappings

((λ, x) 7→ λx) : C×A → A,
((x, y) 7→ x+ y) : A×A → A,

((x, y) 7→ xy) : A×A → A

are continuous.

Remark 1. Similarly, a topological vector space is a topological space and a
vector space, in which {0} is a closed subset and the vector space operations
(λ, x) 7→ λx and (x, y) 7→ x + y are continuous. And the reader might now
guess how to define for instance a topological group...

Remark 2. Some books omit the assumption that {0} should be a closed
set; then e.g. any algebra A with a topology τ = {∅,A} would become a
topological algebra. However, such generalizations are seldom useful. And it
will turn out soon, that actually our topological algebras are indeed Hausdorff
spaces! {0} being a closed set puts emphasis on closed ideals and continuous
homomorphisms, as we shall see later in this section.

Examples of topological algebras.

1. The commutative algebra C endowed with its usual topology (given by
the absolute value norm x 7→ |x|) is a topological algebra.

2. If (X, x 7→ ‖x‖) is a normed space, X 6= {0}, then L(X) is a topological
algebra with the norm

A 7→ ‖A‖ := sup
x∈X:‖x‖≤1

‖Ax‖.

Notice that L(C) ∼= C, and L(X) is non-commutative if dim(X) ≥ 2.

3. Let X be a set. Then

Fb(X) := {f ∈ F(X) | f is bounded}
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is a commutative topological algebra with the supremum norm

f 7→ ‖f‖ := sup
x∈X
|f(x)|.

Similarly, if X is a topological space then the algebra

Cb(X) := {f ∈ C(X) | f is bounded}

of bounded continuous functions on X is a commutative topological
algebra when endowed with the supremum norm.

4. If (X, d) is a metric space then the algebra

Lip(X) := {f : X → C | f is Lipschitz continuous and bounded}

is a commutative topological algebra with the norm

f 7→ ‖f‖ := max

{
sup
x∈X
|f(x)|, sup

x 6=y

|f(x)− f(y)|
d(x, y)

}
.

5. E(R) := C∞(R) is a commutative topological algebra with the metric

(f, g) 7→
∞∑
m=1

2−m
pm(f − g)

1 + pm(f − g)
, where pm(f) := max

|x|≤m,k≤m
|f (k)(x)|.

This algebra is not normable.

6. The topological dual E ′(R) of E(R), the so called space of compactly
supported distributions. There the multiplication is the convolution,
which is defined for nice enough f, g by

(f, g) 7→ f ∗ g, (f ∗ g)(x) :=

∫ ∞
−∞

f(x− y) g(y) dy.

The unit element of E(R) is the Dirac delta distribution δ0 at the origin
0 ∈ R. This is a commutative topological algebra with the weak∗-
topology, but it is not metrizable.

7. Convolution algebras of compactly supported distributions on Lie groups
are non-metrizable topological algebras; such an algebra is commuta-
tive if and only if the group is commutative.

Remark. Let A be a topological algebra, U ⊂ A open, and S ⊂ A. Due
to the continuity of ((λ, x) 7→ λx) : C×A → A the set λU = {λu | u ∈ U}
is open if λ 6= 0. Due to the continuity of ((x, y) 7→ x+ y) : A×A → A the
set U + S = {u+ s | u ∈ U, s ∈ S} is open.
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Exercise. Topological algebras are Hausdorff spaces.

Remark. Notice that in the previous exercise you actually need only the
continuities of the mappings (x, y) 7→ x + y and x 7→ −x, and the fact that
{0} is a closed set. Indeed, the commutativity of the addition operation is
not needed, so that you can actually prove a proposition “Topological groups
are Hausdorff spaces”!

Exercise. Let A be an algebra and a normed space. Prove that it is a
topological algebra if and only if there exists a constant C <∞ such that

‖xy‖ ≤ C ‖x‖ ‖y‖

for every x, y ∈ A.

Closed ideals

In topological algebras, the good ideals are the closed ones.

Examples. Let A be a topological algebra; then {0} ⊂ A is a closed ideal.
Let B be another topological algebra, and φ ∈ Hom(A,B) be continuous.
Then it is easy to see that Ker(φ) = φ−1({0}) ⊂ A is a closed ideal; this is
actually a canonical example of closed ideals.

Proposition. Let A be a topological algebra and J its ideal. Then either
J = A or J ⊂ A is a closed ideal.

Proof. Let λ ∈ C, x, y ∈ J , and z ∈ A. Take V ∈ V(λx). Then there
exists U ∈ V(x) such that λU ⊂ V (due to the continuity of the multiplication
by a scalar). Since x ∈ J , we may pick x0 ∈ J ∩ U . Now

λx0 ∈ J ∩ (λU) ⊂ J ∩ V,

which proves that λx ∈ J . Next take W ∈ V(x+y). Then for some U ∈ V(x)
and V ∈ V(y) we have U + V ⊂ W (due to the continuity of the mapping
(x, y) 7→ x + y). Since x, y ∈ J , we may pick x0 ∈ J ∩ U and y0 ∈ J ∩ V .
Now

x+ y ∈ J ∩ (U + V ) ⊂ J ∩W,
which proves that x + y ∈ J . Finally, we should show that xz, zx ∈ J , but
this proof is so similar to the previous steps that it is left for the reader as
an easy task �
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Topology for quotient algebra. Let J be an ideal of a topological alge-
bra A. Let τ be the topology of A. For x ∈ A, define [x] = x + J , and let
[S] = {[x] | x ∈ S}. Then it is easy to check that {[U ] | U ∈ τ} is a topology
of the quotient algebra A/J ; it is called the quotient topology.

Remark. Let A be a topological algebra and J be its ideal. The quotient
map (x 7→ [x]) ∈ Hom(A,A/J ) is continuous: namely, if x ∈ A and [V ] ∈
VA/J ([x]) for some V ∈ τ then U := V + J ∈ V(x) and [U ] = [V ].

Lemma. Let J be an ideal of a topological algebra A. Then the algebra
operations on the quotient algebra A/J are continuous.

Proof. Let us check the continuity of the multiplication in the quotient
algebra: Suppose [x][y] = [xy] ∈ [W ], where W ⊂ A is an open set (recall
that every open set in the quotient algebra is of the form [W ]). Then

xy ∈ W + J .

Since A is a topological algebra, there are open sets U ∈ VA(x) and V ∈
VA(y) satisfying

UV ⊂ W + J .

Now [U ] ∈ VA/J ([x]) and [V ] ∈ VA/J ([y]). Furthermore, [U ][V ] ⊂ [W ]
because

(U + J )(V + J ) ⊂ UV + J ⊂ W + J ;

we have proven the continuity of the multiplication ([x], [y]) 7→ [x][y]. As
an easy exercise, we leave it for the reader to verify the continuities of the
mappings (λ, [x]) 7→ λ[x] and ([x], [y]) 7→ [x] + [y] �

Exercise. Complete the previous proof by showing the continuities of the
mappings (λ, [x]) 7→ λ[x] and ([x], [y]) 7→ [x] + [y].

With the previous Lemma, we conclude:

Proposition. Let J be an ideal of a topological algebra A. Then A/J is
a topological algebra if and only if J is closed.

23



Proof. If the quotient algebra is a topological algebra then {[0]} = {J } is
a closed subset of A/J ; since the quotient homomorphism is a continuous
mapping, J = Ker(x 7→ [x]) ⊂ A must be a closed set.

Conversely, suppose J is a closed ideal of a topological algebra A. Then
we deduce that

(A/J ) \ {[0]} = [A \ J ]

is an open subset of the quotient algebra, so that {[0]} ⊂ A/J is closed �

Remark. Let X be a topological vector space and M be its subspace. The
reader should be able to define the quotient topology for the quotient vector
space X/M = {[x] := x + M | x ∈ X}. Now X/M is a topological vector
space if and only if M is a closed subspace.

Let M ⊂ X be a closed subspace. If d is a metric on X then there is a
natural metric for X/M :

([x], [y]) 7→ d([x], [y]) := inf
z∈M

d(x− y, z),

and if X is a complete metric space then X/M is also complete. Moreover,
if x 7→ ‖x‖ is a norm on X then there is a natural norm for X/M :

[x] 7→ ‖[x]‖ := inf
z∈M
‖x− z‖.
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5 Compact spaces

In this section we mainly concentrate on compact Hausdorff spaces, though
some results deal with more general classes of topological spaces. Roughly,
Hausdorff spaces have enough open sets to distinguish between any two
points, while compact spaces “do not have too many open sets”. Combining
these two properties, compact Hausdorff spaces form an extremely beautiful
class to study.

Compact space. Let X be a set and K ⊂ X. A family S ⊂ P(X) is
called a cover of K if

K ⊂
⋃
S;

if the cover S is a finite set, it is called a finite cover. A cover S of K ⊂ X
has a subcover S ′ ⊂ S if S ′ itself is a cover of K.

Let (X, τ) be a topological space. An open cover of X is a cover U ⊂ τ
of X. A subset K ⊂ X is compact (more precisely τ -compact) if every open
cover of K has a finite subcover, i.e.

∀U ⊂ τ ∃U ′ ⊂ U : K ⊂
⋃
U ⇒ K ⊂

⋃
U ′ and |U ′| <∞.

We say that (X, τ) is a compact space if X itself is τ -compact.

Examples.

1. If τ1 and τ2 are topologies of X, τ1 ⊂ τ2, and (X, τ2) is a compact space
then (X, τ1) is a compact space.

2. (X, {∅, X}) is a compact space.

3. If |X| =∞ then (X,P(X)) is not a compact space. Clearly any space
with a finite topology is compact. Even though a compact topology can
be of any cardinality, it is in a sense “not far away from being finite”.

4. A metric space is compact if and only if it is sequentially compact (i.e.
every sequence contains a converging subsequence).

5. A subset X ⊂ Rn is compact if and only if it is closed and bounded
(Heine–Borel Theorem).

6. A theorem due to Frigyes Riesz asserts that a closed ball in a normed
vector space over C (or R) is compact if and only if the vector space is
finite-dimensional.
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Exercise. A union of two compact sets is compact.

Proposition. An intersection of a compact set and a closed set is compact.

Proof. Let K ⊂ X be a compact set, and C ⊂ X be a closed set. Let U
be an open cover of K ∩ C. Then {X \ C} ∪ U is an open cover of K, thus
having a finite subcover U ′. Then U ′ \ {X \ C} ⊂ U is a finite subcover of
K ∩ C; hence K ∩ C is compact �

Proposition. Let X be a compact space and f : X → Y continuous. Then
f(X) ⊂ Y is compact.

Proof. Let V be an open cover of f(X). Then U := {f−1(V ) | V ∈ V} is
an open cover of X, thus having a finite subcover U ′. Hence f(X) is covered
by {f(U) | U ∈ U ′} ⊂ V �

Corollary. If X is compact and f ∈ C(X) then |f | attains its greatest
value on X (here |f |(x) := |f(x)|) �

5.1 Compact Hausdorff spaces

Theorem. Let X be a Hausdorff space, A,B ⊂ X compact subsets, and
A ∩ B = ∅. Then there exist open sets U, V ⊂ X such that A ⊂ U , B ⊂ V ,
and U∩V = ∅. (In particular, compact sets in a Hausdorff space are closed.)

Proof. The proof is trivial if A = ∅ or B = ∅. So assume x ∈ A and y ∈ B.
Since X is a Hausdorff space and x 6= y, we can choose neighborhoods Uxy ∈
V(x) and Vxy ∈ V(y) such that Uxy ∩Vxy = ∅. The collection P = {Vxy | y ∈
B} is an open cover of the compact set B, so that it has a finite subcover

Px = {Vxyj
| 1 ≤ j ≤ nx} ⊂ P

for some nx ∈ N. Let

Ux :=
nx⋂
j=1

Uxyj
.

Now O = {Ux | x ∈ A} is an open cover of the compact set A, so that it has
a finite subcover

O′ = {Uxi
| 1 ≤ i ≤ m} ⊂ O.
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Then define

U :=
⋃
O′, V :=

m⋂
i=1

⋃
Pxi

.

It is an easy task to check that U and V have desired properties �

Corollary. Let X be a compact Hausdorff space, x ∈ X, and W ∈ V(x).
Then there exists U ∈ V(x) such that U ⊂ W .

Proof. Now {x} and X \W are closed sets in a compact space, thus they
are compact. Since these sets are disjoint, there exist open disjoint sets
U, V ⊂ X such that x ∈ U and X \W ⊂ V ; i.e.

x ∈ U ⊂ X \ V ⊂ W.

Hence x ∈ U ⊂ U ⊂ X \ V ⊂ W �

Proposition. Let (X, τX) be a compact space and (Y, τY ) a Hausdorff space.
A bijective continuous mapping f : X → Y is a homeomorphism.

Proof. Let U ∈ τX . Then X \ U is closed, hence compact. Consequently,
f(X \ U) is compact, and due to the Hausdorff property f(X \ U) is closed.
Therefore (f−1)−1(U) = f(U) is open �

Corollary. Let X be a set with a compact topology τ2 and a Hausdorff
topology τ1. If τ1 ⊂ τ2 then τ1 = τ2.

Proof. The identity mapping (x 7→ x) : X → X is a continuous bijection
from (X, τ2) to (X, τ1) �

A more direct proof of the Corollary. Let U ∈ τ2. Since (X, τ2) is
compact and X \ U is τ2-closed, X \ U must be τ2-compact. Now τ1 ⊂ τ2,
so that X \ U is τ1-compact. (X, τ1) is Hausdorff, implying that X \ U is
τ1-closed, thus U ∈ τ1; this yields τ2 ⊂ τ1 �

Functional separation

A family F of mappings X → C is said to separate the points of the set X
if there exists f ∈ F such that f(x) 6= f(y) whenever x 6= y. Later in these
notes we shall discover that a compact space X is metrizable if and only if
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C(X) is separable and separates the points of X.

Urysohn’s Lemma is the key result of this section:

Urysohn’s Lemma (1923?). Let X be a compact Hausdorff space, A,B ⊂
X closed non-empty sets, A ∩B = ∅. Then there exists f ∈ C(X) such that

0 ≤ f ≤ 1, f(A) = {0}, f(B) = {1}.

Proof. The set Q ∩ [0, 1] is countably infinite; let φ : N → Q ∩ [0, 1] be a
bijection satisfying φ(0) = 0 and φ(1) = 1. Choose open sets U0, U1 ⊂ X
such that

A ⊂ U0 ⊂ U0 ⊂ U1 ⊂ U1 ⊂ X \B.
Then we proceed inductively as follows: Suppose we have chosen open sets
Uφ(0), Uφ(1), . . . , Uφ(n) such that

φ(i) < φ(j)⇒ Uφ(i) ⊂ Uφ(j).

Let us choose an open set Uφ(n+1) ⊂ X such that

φ(i) < φ(n+ 1) < φ(j)⇒ Uφ(i) ⊂ Uφ(n+1) ⊂ Uφ(n+1) ⊂ Uφ(j)

whenever 0 ≤ i, j ≤ n. Let us define

r < 0⇒ Ur := ∅, s > 1⇒ Us := X.

Hence for each q ∈ Q we get an open set Uq ⊂ X such that

∀r, s ∈ Q : r < s⇒ Ur ⊂ Us.

Let us define a function f : X → [0, 1] by

f(x) := inf{r : x ∈ Ur}.
Clearly 0 ≤ f ≤ 1, f(A) = {0} and f(B) = {1}.

Let us prove that f is continuous. Take x ∈ X and ε > 0. Take r, s ∈ Q
such that

f(x)− ε < r < f(x) < s < f(x) + ε;

then f is continuous at x, since x ∈ Us \Ur and for every y ∈ Us \Ur we have
|f(y)− f(x)| < ε. Thus f ∈ C(X) �

Corollary. Let X be a compact space. Then C(X) separates the points of
X if and only if X is Hausdorff.

Exercise. Prove the previous Corollary.
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Appendix on complex analysis

Let Ω ⊂ C be open. A function f : Ω → C is called holomorphic in Ω,
denoted by f ∈ H(Ω), if the limit

f ′(z) := lim
h→0

f(z + h)− f(z)

h

exists for every z ∈ Ω. Then Cauchy’s integral formula provides a power
series representation

f(z) =
∞∑
n=0

cn(z − a)n

converging uniformly on the compact subsets of the disk

D(a, r) = {z ∈ C : |z − a| < r} ⊂ Ω;

here cn = f (n)(a)/n!, where f (0) = f and f (n+1) = f (n)′.

Liouville’s Theorem. Let f ∈ H(C) such that |f | is bounded. Then f is
constant, i.e. f(z) ≡ f(0) for every z ∈ C.

Proof. Since f ∈ H(C), we have a power series representation

f(z) =
∞∑
n=0

cnz
n

converging uniformly on the compact sets in the complex plane. Thereby

1

2π

∫ 2π

0

|f(reiφ)|2 dφ =
1

2π

∫ 2π

0

∑
n,m

cn cm rn+m ei(n−m)φ dφ

=
∑
n,m

cn cm rn+m 1

2π

∫ 2π

0

ei(n−m)φ dφ

=
∞∑
n=0

|cn|2r2n

for every r > 0. Hence the fact

∞∑
n=0

|cn|2r2n =
1

2π

∫ 2π

0

|f(reiφ)|2 dφ ≤ sup
z∈C
|f(z)|2 <∞

implies cn = 0 for every n ≥ 1; thus f(z) ≡ c0 = f(0) �
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Appendix on functional analysis

Let X, Y be normed spaces with norms x 7→ ‖x‖X and y 7→ ‖y‖Y , respec-
tively. The set of bounded linear mappings X → Y is denoted by L(X, Y );
the operator norm (A 7→ ‖A‖) : L(X, Y )→ R is defined by

‖A‖ := sup
x∈X:‖x‖X≤1

‖Ax‖Y .

Let us denote the dual of a normed space X by X ′ := L(X,C).

Hahn–Banach Theorem. Let X be a normed vector space, M ⊂ X be a
vector subspace, and f : M → C a bounded linear functional. Then there is a
bounded linear functional F : X → C such that ‖f‖ = ‖F‖ and f(x) = F (x)
for every x ∈M �

Corollary. Let X is a normed space. Then

‖x‖ = max
F∈X′:‖F‖≤1

|F (x)|

for every x ∈ X �

Banach–Steinhaus Theorem (Uniform Boundedness Principle). Let
X, Y be Banach spaces and {Tj}j∈J ⊂ L(X, Y ). If

sup
j∈J
‖Tjx‖ <∞

for every x ∈ X then sup
j∈J
‖Tj‖ <∞ �
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6 Banach algebras

Banach algebra. An algebra A is called a Banach algebra if it is a Banach
space satisfying

‖xy‖ ≤ ‖x‖ ‖y‖

for every x, y ∈ A and
‖1‖ = 1.

The next exercise is very important:

Exercise. Let K be a compact space. Show that C(K) is a Banach algebra
with the norm f 7→ ‖f‖ = maxx∈K |f(x)|.

Examples. Let X be a Banach space. Then the Banach space L(X) of
bounded linear operators X → X is a Banach algebra, when the multiplica-
tion is the composition of operators, since

‖AB‖ ≤ ‖A‖ ‖B‖

for every A,B ∈ L(X); the unit is the identity operator I : X → X, x 7→ x.
Actually, this is not far away from characterizing all the Banach algebras:

Theorem. A Banach algebra A is isometrically isomorphic to a norm
closed subalgebra of L(X) for a Banach space X.

Proof. Here X := A. For x ∈ A, let us define

m(x) : A → A by m(x)y := xy.

Obviously m(x) is a linear mapping, m(xy) = m(x)m(y), m(1A) = 1L(A),
and

‖m(x)‖ = sup
y∈A: ‖y‖≤1

‖xy‖

≤ sup
y∈A: ‖y‖≤1

(‖x‖ ‖y‖) = ‖x‖ = ‖m(x)1A‖

≤ ‖m(x)‖ ‖1A‖ = ‖m(x)‖;

briefly, m = (x 7→ m(x)) ∈ Hom(A,L(A)) is isometric. Thereby m(A) ⊂
L(A) is a closed subspace and a Banach algebra �
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Exercise. Let a Banach space A be a topological algebra. Equip A with
an equivalent Banach algebra norm.

Exercise. Let A be a Banach algebra, and let x, y ∈ A satisfy

x2 = x, y2 = y, xy = yx.

Show that either x = y or ‖x−y‖ ≥ 1. Give an example of a Banach algebra
A with elements x, y ∈ A such that x2 = x 6= y = y2 and ‖x− y‖ < 1.

Proposition. Let A be a Banach algebra. Then Hom(A,C) ⊂ A′ and
‖φ‖ = 1 for every φ ∈ Hom(A,C).

Proof. Let x ∈ A, ‖x‖ < 1. Let

yn :=
n∑
j=0

xj,

where x0 := 1. If n > m then

‖yn − ym‖ = ‖xm + xm+1 + . . .+ xn‖
≤ ‖x‖m

(
1 + ‖x‖+ . . .+ ‖x‖n−m

)
= ‖x‖m 1− ‖x‖n−m+1

1− ‖x‖
→n>m→∞ 0;

thus (yn)∞n=1 ⊂ A is a Cauchy sequence. There exists y = limn→∞ yn ∈ A,
because A is complete. Since xn → 0 and

yn(1− x) = 1− xn+1 = (1− x)yn,

we deduce y = (1 − x)−1. Suppose λ = φ(x), |λ| > ‖x‖; now ‖λ−1x‖ =
|λ|−1 ‖x‖ < 1, so that 1− λ−1x is invertible. Then

1 = φ(1) = φ
(
(1− λ−1x)(1− λ−1x)−1

)
= φ

(
1− λ−1x

)
φ
(
(1− λ−1x)−1

)
= (1− λ−1φ(x)) φ

(
(1− λ−1x)−1

)
= 0,

a contradiction; hence

∀x ∈ A : |φ(x)| ≤ ‖x‖,

that is ‖φ‖ ≤ 1. Finally, φ(1) = 1, so that ‖φ‖ = 1 �
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Lemma. Let A be a Banach algebra. The set G(A) ⊂ A of its invertible
elements is open. The mapping (x 7→ x−1) : G(A) → G(A) is a homeomor-
phism.

Proof. Take x ∈ G(A) and h ∈ A. As in the proof of the previous Propo-
sition, we see that

x− h = x(1− x−1h)

is invertible if ‖x−1‖ ‖h‖ < 1, that is ‖h‖ < ‖x−1‖−1; thus G(A) ⊂ A is
open.

The mapping x 7→ x−1 is clearly its own inverse. Moreover

‖(x− h)−1 − x−1‖ = ‖(1− x−1h)−1x−1 − x−1‖

≤ ‖(1− x−1h)−1 − 1‖ ‖x−1‖ = ‖
∞∑
n=1

(x−1h)n‖ ‖x−1‖

≤ ‖h‖

(
∞∑
n=1

‖x−1‖n+1 ‖h‖n−1

)
→h→0 0;

hence x 7→ x−1 is a homeomorphism �

Exercise. Let A be a Banach algebra. We say that x ∈ A is a topological
zero divisor if there exists a sequence (yn)∞n=1 ⊂ A such that ‖yn‖ = 1 for all
n and

lim
n→∞

xyn = 0 = lim
n→∞

ynx.

(a) Show that if (xn)∞n=1 ⊂ G(A) satisfies xn → x ∈ ∂G(A) then ‖x−1
n ‖ → ∞.

(b) Using this result, show that the boundary points of G(A) are topological
zero divisors.
(c) In what kind of Banach algebras 0 is the only topological zero divisor?

Theorem (Gelfand, 1939). Let A be a Banach algebra and x ∈ A. The
spectrum σ(x) ⊂ C is a non-empty compact set.

Proof. Let x ∈ A. Then σ(x) belongs to a 0-centered disc of radius ‖x‖
in the complex plane: for if λ ∈ C, |λ| > ‖x‖ then 1 − λ−1x is invertible,
equivalently λ1− x is invertible.

The mapping g : C → A, λ 7→ λ1 − x, is continuous; the set G(A) ⊂ A
of invertible elements is open, so that

C \ σ(x) = g−1(G(A))
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is open. Thus σ(x) ∈ C is closed and bounded, i.e. compact by Heine–Borel.

The hard part is to prove the non-emptiness of the spectrum. Let us
define the resolvent mapping R : C \ σ(x)→ G(A) by

R(λ) = (λ1− x)−1.

We know that this mapping is continuous, because it is composed of contin-
uous mappings

(λ 7→ λ1− x) : C \ σ(x)→ G(A) and (y 7→ y−1) : G(A)→ G(A).

We want to show that R is weakly holomorphic, that is f ◦R ∈ H(C \ σ(x))
for every f ∈ A′ = L(A,C). Let z ∈ C \ σ(x), f ∈ A′. Then we calculate

(f ◦R)(z + h)− (f ◦R)(z)

h
= f

(
R(z + h)−R(z)

h

)
= f

(
R(z + h)R(z)−1 − 1

h
R(z)

)
= f

(
R(z + h)(R(z + h)−1 − h1)− 1

h
R(z)

)
= f(−R(z + h)R(z))

→h→0 f(−R(z)2),

because f and R are continuous; thus R is weakly holomorphic.

Suppose |λ| > ‖x‖. Then

‖R(λ)‖ = ‖(λ1− x)−1‖ = |λ|−1 ‖(1− x/λ)−1‖ = |λ|−1

∥∥∥∥∥
∞∑
j=0

(x/λ)j

∥∥∥∥∥
≤ |λ|−1

∞∑
j=0

‖x/λ‖−j = |λ|−1 1

1− ‖x/λ‖
=

1

|λ| − ‖x‖
→|λ|→∞ 0.

Thereby

(f ◦R)(λ)→|λ|→∞ 0

for every f ∈ A′. To get a contradiction, suppose σ(x) = ∅. Then f ◦ R ∈
H(C) is 0 by Liouville’s Theorem (see Appendix), for every f ∈ A′; the
Hahn-Banach Theorem says that then R(λ) = 0 for every λ ∈ C; this is a
contradiction, since 0 6∈ G(A). Thus σ(x) 6= ∅ �
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Exercise. Let A be a Banach algebra, x ∈ A, Ω ⊂ C an open set, and
σ(x) ⊂ Ω. Then

∃δ > 0 ∀y ∈ A : ‖y‖ < δ ⇒ σ(x+ y) ⊂ Ω.

Corollary (Gelfand–Mazur). Let A be a Banach algebra where 0 ∈ A is
the only non-invertible element. Then A is isometrically isomorphic to C.

Proof. Take x ∈ A, x 6= 0. Since σ(x) 6= ∅, pick λ(x) ∈ σ(x). Then
λ(x)1 − x is non-invertible, so that it must be 0; x = λ(x)1. By defining
λ(0) = 0, we have an algebra isomorphism

λ : A → C.

Moreover, |λ(x)| = ‖λ(x)1‖ = ‖x‖ �

Exercise. LetA be a Banach algebra, and suppose that there exists C <∞
such that

‖x‖ ‖y‖ ≤ C ‖xy‖

for every x, y ∈ A. Show that A ∼= C isometrically.

Spectral radius. Let A be a Banach algebra. The spectral radius of x ∈ A
is

ρ(x) := sup
λ∈σ(x)

|λ|;

this is well-defined, because due to Gelfand the spectrum in non-empty. In
other words, D(0, ρ(x)) = {λ ∈ C : |λ| ≤ ρ(x)} is the smallest 0-centered
closed disk containing σ(x) ⊂ C. Notice that ρ(x) ≤ ‖x‖, since λ1 − x =
λ(1− x/λ) is invertible if |λ| > ‖x‖.

Spectral Radius Formula (Beurling, 1938; Gelfand, 1939). Let A
be a Banach algebra, x ∈ A. Then

ρ(x) = lim
n→∞

‖xn‖1/n.
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Proof. For x = 0 the claim is trivial, so let us assume that x 6= 0. By
Gelfand’s Theorem, σ(x) 6= ∅. Let λ ∈ σ(x) and n ≥ 1. Notice that in an
algebra, if both ab and ba are invertible then the elements a, b are invertible.
Therefore

λn1− xn = (λ1− x)

(
n−1∑
k=0

λn−1−kxk

)
=

(
n−1∑
k=0

λn−1−kxk

)
(λ1− x)

implies that λn ∈ σ(xn). Thus |λn| ≤ ‖xn‖, so that

ρ(x) = sup
λ∈σ(x)

|λ| ≤ lim inf
n→∞

‖xn‖1/n.

Let f ∈ A′ and λ ∈ C, |λ| > ‖x‖. Then

f(R(λ)) = f
(
(λ1− x)−1

)
= f

(
λ−1(1− λ−1x)−1

)
= f

(
λ−1

∞∑
n=0

λ−nxn

)

= λ−1

∞∑
n=0

f(λ−nxn).

This formula is true also when |λ| > ρ(x), because f ◦ R is holomorphic in
C \ σ(x) ⊃ C \ D(0, ρ(x)). Hence if we define Tλ,x,n ∈ A′′ = L(A′,C) by
Tλ,x,n(f) := f(λ−nxn), we obtain

sup
n∈N
|Tλ,x,n(f)| = sup

n∈N
|f(λ−nxn)| <∞ (when |λ| > ρ(x))

for every f ∈ A′; the Banach–Steinhaus Theorem applied on the family
{Tλ,x,n}n∈N shows that

Mλ,x := sup
n∈N
‖Tλ,x,n‖ <∞,

so that we have

‖λ−nxn‖ Hahn−Banach
= sup

f∈A′:‖f‖≤1

|f(λ−nxn)|

= sup
f∈A′:‖f‖≤1

|Tλ,x,n(f)|

= ‖Tλ,x,n‖
≤ Mλ,x.

Hence
‖xn‖1/n ≤M

1/n
λ,x |λ| →n→∞ |λ|,
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when |λ| > ρ(x). Thus

lim sup
n→∞

‖xn‖1/n ≤ ρ(x);

collecting the results, the Spectral Radius Formula is verified �

Remark 1. The Spectral Radius Formula contains startling information:
the spectral radius ρ(x) is purely an algebraic property (though related to
a topological algebra), but the quantity lim ‖xn‖1/n relies on both algebraic
and metric properties! Yet the results are equal!

Remark 2. ρ(x)−1 is the radius of convergence of theA-valued power series

λ 7→
∞∑
n=0

λnxn.

Remark 3. Let A be a Banach algebra and B its Banach subalgebra. If
x ∈ B then

σA(x) ⊂ σB(x)

and the inclusion can be proper, but the spectral radii for both Banach
algebras are the same, since

ρA(x) = lim
n→∞

‖xn‖1/n = ρB(x).

Exercise. Let A be a Banach algebra, x, y ∈ A. Show that ρ(xy) = ρ(yx).
Show that if x ∈ A is nilpotent (i.e. xk = 0 for some k ∈ N) then σ(x) = {0}.
Give examples of nilpotent linear operators.

Exercise. Let A be a Banach algebra and x, y ∈ A such that xy = yx.
Prove that ρ(xy) ≤ ρ(x)ρ(y).
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7 New topologies from old ones

In this section families of mappings transfer (induce and co-induce) topologies
from topological spaces to a set in natural ways. The most important cases
for us are quotient and product spaces.

Comparison of topologies. If (X, τ1) and (X, τ2) are topological spaces
and τ1 ⊂ τ2, we say that τ1 is weaker than τ2 and τ2 is stronger than τ1.

7.1 Co-induction

Co-induced topology. Let X and J be sets, (Xj, τj) be topological spaces
for every j ∈ J , and F = {fj : Xj → X | j ∈ J} be a family mappings. The
F-co-induced topology of X is the strongest topology τ on X such that the
mappings fj are continuous for every j ∈ J . Indeed, this definition is sound,
because

τ = {U ⊂ X | ∀j ∈ J : f−1
j (U) ∈ τj},

as the reader may easily verify.

Example. Let A be a topological vector space and J its subspace. Let
us denote [x] := x + J for x ∈ A. Then the quotient topology of A/J =
{[x] | x ∈ A} is the {(x 7→ [x]) : A → A/J }-co-induced topology.

Example. Let (X, τX) be a topological space. Let R ⊂ X × X be an
equivalence relation. Let

[x] := {y ∈ X | (x, y) ∈ R},

X/R := {[x] | x ∈ X},

and define the quotient map p : X → X/R by x 7→ [x]. The quotient topology
of the quotient space X/R is the {p}-co-induced topology on X/R. Notice
that X/R is compact if X is compact, since p : X → X/R is a continuous
surjection.

Remark. The message of the following exercise is that if our compact space
X is not Hausdorff, we “factor out” inessential information that C(X) “does
not see” to obtain a compact Hausdorff space related nicely to X.
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Exercise. Let X be a topological space, and define C ⊂ X ×X by

(x, y) ∈ C definition⇐⇒ ∀f ∈ C(X) : f(x) = f(y).

Prove:
(a) C is an equivalence relation on X.
(b) There is a natural bijection between the sets C(X) and C(X/C).
(c) X/C is a Hausdorff space.
(d) If X is a compact Hausdorff space then X ∼= X/C.

Exercise. For A ⊂ X the notation X/A means X/RA, where the equiva-
lence relation RA is given by

(x, y) ∈ RA
definition⇐⇒ x = y or {x, y} ⊂ A.

Let X be a topological space, and let ∞ ⊂ X be a closed subset. Prove that
the mapping

X \∞ → (X/∞) \ {∞}, x 7→ [x],

is a homeomorphism.

Finally, let us state a basic property of co-induced topologies:

Proposition. Let X have the F-co-induced topology, and Y be a topological
space. A mapping g : X → Y is continuous if and only if g ◦ f is continuous
for every f ∈ F .

Proof. If g is continuous then the composed mapping g ◦ f is continuous
for every f ∈ F .

Conversely, suppose g ◦ fj is continuous for every fj ∈ F , fj : Xj → X.
Let V ⊂ Y be open. Then

f−1
j (g−1(V )) = (g ◦ fj)−1(V ) ⊂ Xj is open;

thereby g−1(V ) = fj(f
−1
j (g−1(V ))) ⊂ X is open �

Corollary. Let X, Y be topological spaces, R be an equivalence relation on
X, and endow X/R with the quotient topology. A mapping f : X/R→ Y is
continuous if and only if (x 7→ f([x])) : X → Y is continuous �
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7.2 Induction

Induced topology. Let X and J be sets, (Xj, τj) be topological spaces
for every j ∈ J and F = {fj : X → Xj | j ∈ J} be a family of mappings.
The F-induced topology of X is the weakest topology τ on X such that the
mappings fj are continuous for every j ∈ J .

Example. Let (X, τX) be a topological space, A ⊂ X, and let ι : A → X
be defined by ι(a) = a. Then the {ι}-induced topology on A is

τX |A := {U ∩ A | U ∈ τX}.

This is called the relative topology of A. Let f : X → Y . The restriction
f |A = f ◦ ι : A→ Y satisfies f |A(a) = f(a) for every a ∈ A ⊂ X.

Exercise. Prove Tietze’s Extension Theorem: Let X be a compact
Hausdorff space, K ⊂ X closed and f ∈ C(K). Then there exists F ∈ C(X)
such that F |K = f .

Example. Let (X, τ) be a topological space. Let σ be the C(X) = C(X, τ)-
induced topology, i.e. the weakest topology on X making the all τ -continuous
functions continuous. Obviously, σ ⊂ τ , and C(X, σ) = C(X, τ). If (X, τ) is
a compact Hausdorff space it is easy to check that σ = τ .

Example. Let X, Y be topological spaces with bases BX ,BY , respectively.
Recall that the product topology for X × Y = {(x, y) | x ∈ X, y ∈ Y } has
a base

{U × V | U ∈ BX , V ∈ BY }.

This topology is actually induced by the family

{pX : X × Y → X, pY : X × Y → Y },

where the coordinate projections pX and pY are defined by pX((x, y)) = x
and pY ((x, y)) = y.

Product topology. Let Xj be a set for every j ∈ J . The Cartesian product

X =
∏
j∈J

Xj
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is the set of the mappings

x : J →
⋃
j∈J

Xj such that ∀j ∈ J : x(j) ∈ Xj.

Due to the Axiom of Choice, X is non-empty if all Xj are non-empty. The
mapping

pj : X → Xj, x 7→ xj := x(j),

is called the jth coordinate projection. Let (Xj, τj) be topological spaces.
Let X :=

∏
j∈J Xj be the Cartesian product. Then the {pj | j ∈ J}-induced

topology on X is called the product topology of X.

If Xj = Y for all j ∈ J , it is customary to write∏
j∈J

Xj = Y J = {f | f : J → Y }.

Weak∗-topology. Let x 7→ ‖x‖ be the norm of a normed vector space X
over a field K ∈ {R,C}. The dual space X ′ = L(X,K) of X is set of bounded
linear functionals f : X → K, having a norm

‖f‖ := sup
x∈X: ‖x‖≤1

|f(x)|.

This endows X ′ with a Banach space structure. However, it is often better
to use a weaker topology for the dual: Let us define x(f) := f(x) for every
x ∈ X and f ∈ X ′; this gives the interpretation X ⊂ X ′′ := L(X ′,K),
because

|x(f)| = |f(x)| ≤ ‖f‖ ‖x‖.

So we may treat X as a set of functions X ′ → K, and we define the weak∗-
topology of X ′ to be the X-induced topology of X ′.

Let us state a basic property of induced topologies:

Proposition. Let X have the F-induced topology, and Y be a topological
space. A mapping g : Y → X is continuous if and only if f ◦ g is continuous
for every f ∈ F .
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Proof. If g is continuous then the composed mapping f ◦ g is continuous
for every f ∈ F .

Conversely, suppose fj ◦ g is continuous for every fj ∈ F , f : X → Xj.
Let y ∈ Y , V ⊂ X be open, g(y) ∈ V . Then there exist {fjk}nk=1 ⊂ F and
open sets Wjk ⊂ Xjk such that such that

g(y) ∈
n⋂
k=1

f−1
jk

(Wjk) ⊂ V.

Let

U :=
n⋂
k=1

(fjk ◦ g)−1(Wjk).

Then U ⊂ Y is open, y ∈ U , and g(U) ⊂ V ; hence g : Y → X is continuous
at an arbitrary point y ∈ Y , i.e. g ∈ C(Y,X) �

Hausdorff preserved in products: It is easy to see that a Cartesian
product of Hausdorff spaces is always Hausdorff: If X =

∏
j∈J Xj and x, y ∈

X, x 6= y, then there exists j ∈ J such that xj 6= yj. Therefore there are
open sets Uj, Vj ⊂ Xj such that

xj ∈ Uj, yj ∈ Vj, Uj ∩ Vj = ∅.
Let U := p−1

j (Uj) and V := p−1(Vj). Then U, V ⊂ X are open,

x ∈ U, y ∈ V, U ∩ V = ∅.
Also compactness is preserved in products; this is stated in Tihonov’s Theo-
rem (Tychonoff’s Theorem). Before proving this we introduce a tool:

Non-Empty Finite InterSection (NEFIS) property. Let X be a set.
Let NEFIS(X) be the set of those families F ⊂ P(X) such that every
finite subfamily of F has a non-empty intersection. In other words, a family
F ⊂ P(X) belongs to NEFIS(X) if and only if

⋂
F ′ 6= ∅ for every finite

subfamily F ′ ⊂ F .

Lemma. A topological space X is compact if and only if F 6∈ NEFIS(X)
whenever F ⊂ P(X) is a family of closed sets satisfying

⋂
F = ∅.

Proof. Let X be a set, U ⊂ P(X), and F := {X \ U | U ∈ U}. Then⋂
F =

⋂
U∈U

(X \ U) = X \
⋃
U ,

so that U is a cover of X if and only if
⋂
F = ∅. Now the claim follows the

definition of compactness �
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Tihonov’s Theorem (1935). Let Xj be a compact space for every j ∈ J .

Then X =
∏
j∈J

Xj is compact.

Proof. To avoid the trivial case, suppose Xj 6= ∅ for every j ∈ J . Let
F ∈ NEFIS(X) be a family of closed sets. In order to prove the compactness
of X we have to show that

⋂
F 6= ∅.

Let
P := {G ∈ NEFIS(X) | F ⊂ G}.

Let us equip the set P with a partial order relation ≤:

G ≤ H definition⇐⇒ G ⊂ H.

The Hausdorff Maximal Principle says that the chain {F} ⊂ P belongs
to a maximal chain C ⊂ P . The reader may verify that G :=

⋃
C ∈ P is a

maximal element of P .
Notice that the maximal element G may contain non-closed sets. For

every j ∈ J the family
{pj(G) | G ∈ G}

belongs to NEFIS(Xj). Define

Gj := {pj(G) | G ∈ G}.

Clearly also Gj ∈ NEFIS(Xj), and the elements of Gj are closed sets in Xj.
Since Xj is compact,

⋂
Gj 6= ∅. Hence we may choose

xj ∈
⋂
Gj.

The Axiom of Choice provides the existence of the element x := (xj)j∈J ∈
X. We shall show that x ∈

⋂
F , which proves Tihonov’s Theorem.

If Vj ⊂ Xj is a neighborhood of xj and G ∈ G then

pj(G) ∩ Vj 6= ∅,

because xj ∈ pj(G). Thus

G ∩ p−1
j (Vj) 6= ∅

for every G ∈ G, so that G ∪ {p−1
j (Vj)} belongs to P ; the maximality of G

implies that
p−1
j (Vj) ∈ G.
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Let V ∈ τX be a neighborhood of x. Due to the definition of the product
topology,

x ∈
n⋂
k=1

p−1
jk

(Vjk) ⊂ V

for some finite index set {jk}nk=1 ⊂ J , where Vjk ⊂ Xjk is a neighborhood
of xjk . Due to the maximality of G, any finite intersection of members of G
belongs to G, so that

n⋂
k=1

p−1
jk

(Vjk) ∈ G.

Therefore for every G ∈ G and V ∈ VτX (x) we have

G ∩ V 6= ∅.

Hence x ∈ G for every G ∈ G, yielding

x ∈
⋂
G∈G

G
F⊂G
⊂

⋂
F∈F

F =
⋂
F∈F

F =
⋂
F ,

so that
⋂
F 6= ∅ �

Remark. Actually, Tihonov’s Theorem is equivalent to the Axiom of Choice;
we shall not prove this.

Banach–Alaoglu Theorem (1940). Let X be a normed C-vector space
(or a normed R-vector space). The norm-closed unit ball

K := BX′(0, 1) = {φ ∈ X ′ : ‖φ‖X′ ≤ 1}

of the dual space X ′ is weak∗-compact.

Proof. Due to Tihonov,

P :=
∏
x∈X

{λ ∈ C : |λ| ≤ ‖x‖} = D(0, ‖x‖)
X

is compact in the product topology τP . Any element f ∈ P is a mapping

f : X → C such that f(x) ≤ ‖x‖.

Hence K = X ′ ∩ P . Let τ1 and τ2 be the relative topologies of K inherited
from the weak∗-topology τX′ of X ′ and the product topology τP of P , re-
spectively. We shall prove that τ1 = τ2 and that K ⊂ P is closed; this would
show that K is a compact Hausdorff space.
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First, let φ ∈ X ′, f ∈ P , S ⊂ X, and δ > 0. Define

U(φ, S, δ) := {ψ ∈ X ′ : x ∈ S ⇒ |ψx− φx| < δ},
V (f, S, δ) := {g ∈ P : x ∈ S ⇒ |g(x)− f(x)| < δ}.

Then

U := {U(φ, S, δ) | φ ∈ X ′, S ⊂ X finite, δ > 0},
V := {V (f, S, δ) | f ∈ P, S ⊂ X finite, δ > 0}

are bases for the topologies τX′ and τP , respectively. Clearly

K ∩ U(φ, S, δ) = K ∩ V (φ, S, δ),

so that the topologies τX′ and τP agree on K, i.e. τ1 = τ2.
Still we have to show that K ⊂ P is closed. Let f ∈ K ⊂ P . First we

show that f is linear. Take x, y ∈ X, λ, µ ∈ C and δ > 0. Choose φδ ∈ K
such that

f ∈ V (φδ, {x, y, λx+ µy}, δ).

Then

|f(λx+ µy)− (λf(x) + µf(y))|
≤ |f(λx+ µy)− φδ(λx+ µy)|+ |φδ(λx+ µy)− (λf(x) + µf(y))|
= |f(λx+ µy)− φδ(λx+ µy)|+ |λ(φδx− f(x)) + µ(φδy − f(y))|
≤ |f(λx+ µy)− φδ(λx+ µy)|+ |λ| |φδx− f(x)|+ |µ| |φδy − f(y)|
≤ δ (1 + |λ|+ |µ|).

This holds for every δ > 0, so that actually

f(λx+ µy) = λf(x) + µf(y),

f is linear! Moreover, ‖f‖ ≤ 1, because

|f(x)| ≤ |f(x)− φδx|+ |φδx| ≤ δ + ‖x‖.

Hence f ∈ K, K is closed �

Remark. The Banach–Alaoglu Theorem implies that a bounded weak∗-
closed subset of the dual space is a compact Hausdorff space in the relative
weak∗-topology. However, in a normed space norm-closed balls are compact
if and only if the dimension is finite!
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Miscellany on (Banach) algebras

Exercise. Let {Aj | j ∈ J} be a family of topological algebras. Endow

A :=
∏
j∈J

Aj with a structure of a topological algebra.

Before examining commutative Banach algebras in detail, we derive some
useful results that could have been treated already in earlier sections (but
we forgot to do so :)

Lemma. Let A be a commutative algebra and M be its ideal. Then M is
maximal if and only if [0] is the only non-invertible element of A/M.

Proof. Of course, here [x] means x+M, where x ∈ A. Assume thatM is
a maximal ideal. Take [x] 6= [0], so that x 6∈ M. Define

J := Ax+M = {ax+m | a ∈ A, m ∈M}.

Then clearly J 6=M⊂ J , and J is a vector subspace of A. If y ∈ A then

J y = yJ = yAx+ yM⊂ Ax+M = J ,

so that either J is an ideal or J = A. But since M is a maximal ideal
contained properly in J , we must have J = A. Thus there exist a ∈ A and
m ∈M such that ax+m = 1A. Then

[a][x] = 1A/M = [x][a],

[x] is invertible in A/M.
Conversely, assume that all the non-zero elements are invertible in A/M.

Assume that J ⊂ A is an ideal containing M. Suppose J 6=M, and pick
x ∈ J \M. Now [x] 6= [0], so that for some y ∈ A we have [x][y] = [1A].
Thereby

1A ∈ xy +M
x∈J
⊂ J +M⊂ J + J = J ,

which is a contradiction, since no ideal can contain invertible elements.
Therefore we must have J =M, meaning that M is maximal �

Proposition. A maximal ideal in a Banach algebra is closed.

Proof. In a topological algebra, the closure of an ideal is either an ideal
or the whole algebra. Let M be a maximal ideal of a Banach algebra A.
The set G(A) ⊂ A of the invertible elements is open, and M∩ G(A) = ∅
(because no ideal contains invertible elements). Thus M⊂M⊂ A \G(A),
so that M is an ideal containing a maximal ideal M; thus M =M �
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Proposition. Let J be a closed ideal of a Banach algebra A. Then the quo-
tient vector space A/J is a Banach algebra; moreover, A/J is commutative
if A is commutative.

Proof. Let us denote [x] := x + J for x ∈ A. Since J is a closed vector
subspace, the quotient space A/J is a Banach space with the norm

[x] 7→ ‖[x]‖ = inf
j∈J
‖x+ j‖.

Let x, y ∈ A and ε > 0. Then there exist i, j ∈ J such that

‖x+ i‖ ≤ ‖[x]‖+ ε, ‖y + j‖ ≤ ‖[y]‖+ ε.

Now (x+ i)(y + j) ∈ [xy], so that

‖[xy]‖ ≤ ‖(x+ i)(y + j)‖
≤ ‖x+ i‖ ‖y + j‖
≤ (‖[x]‖+ ε) (‖[y]‖+ ε)

= ‖[x]‖ ‖[y]‖+ ε(‖[x]‖+ ‖[y]‖+ ε);

since ε > 0 is arbitrary, we have

‖[x][y]‖ ≤ ‖[x]‖ ‖[y]‖.

Finally, ‖[1]‖ ≤ ‖1‖ = 1 and ‖[x]‖ = ‖[x][1]‖ ≤ ‖[x]‖ ‖[1]‖, so that we have
‖[1]‖ = 1 �

Exercise. Let A be an algebra. The commutant of a subset S ⊂ A is

Γ(S) := {x ∈ A | ∀y ∈ S : xy = yx}.

Prove the following claims:

(a) Γ(S) ⊂ A is a subalgebra; Γ(S) is closed if A is a topological algebra.

(b) S ⊂ Γ(Γ(S)).

(c) If xy = yx for every x, y ∈ S then Γ(Γ(S)) ⊂ A is a commutative
subalgebra, where σΓ(Γ(S))(z) = σA(z) for every z ∈ Γ(Γ(S)).
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8 Commutative Banach algebras

In this section we are interested in maximal ideals of commutative Banach
algebras. We shall learn that such algebras are closely related to algebras
of continuous functions on compact Hausdorff spaces: there is a natural far
from trivial homomorphism from a commutative Banach algebra A to an
algebra of functions on the set Hom(A,C), which can be endowed with a
canonical topology — related mathematics is called the Gelfand theory.
In the sequel, one should ponder this dilemma: which is more fundamental,
a space or algebras of functions on it?

Examples of commutative Banach algebras:

1. Our familiar C(K), when K is a compact space.

2. L∞([0, 1]), when [0, 1] is endowed with the Lebesgue measure.

3. A(Ω) := C(Ω) ∩H(Ω), when Ω ⊂ C is open and Ω ⊂ C is compact.

4. M(Rn), the convolution algebra of complex Borel measures on Rn, with
the Dirac delta distribution at 0 ∈ Rn as the unit element, and endowed
with the total variation norm.

5. The algebra of matrices

(
α β
0 α

)
, where α, β ∈ C; notice that this

algebra contains nilpotent elements!

Spectrum of algebra. The spectrum of an algebra A is

Spec(A) := Hom(A,C),

i.e. the set of homomorphisms A → C; such a homomorphism is called a
character of A.

Remark. The concept of spectrum is best suited for commutative al-
gebras, as C is a commutative algebra; here a character A → C should
actually be considered as an algebra representation A → L(C). In order
to fully capture the structure of a non-commutative algebra, we should
study representations of type A → L(X), where the vector spaces X are
multi-dimensional; for instance, if H is a Hilbert space of dimension 2 or
greater then Spec(L(H)) = ∅. However, the spectrum of a commutative Ba-
nach algebra is rich, as there is a bijective correspondence between characters
and maximal ideals. Moreover, the spectrum of the algebra is akin to the
spectra of its elements:
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Theorem (Gelfand, 1940). Let A be a commutative Banach algebra.
Then:
(a) Every maximal ideal of A is of the form Ker(h) for some h ∈ Spec(A);
(b) Ker(h) is a maximal ideal for every h ∈ Spec(A);
(c) x ∈ A is invertible if and only if ∀h ∈ Spec(A) : h(x) 6= 0;
(d) x ∈ A is invertible if and only if it is not in any ideal of A;
(e) σ(x) = {h(x) | h ∈ Spec(A)}.

Proof.

(a) Let M ⊂ A be a maximal ideal; let [x] := x +M for x ∈ A. Since
A is commutative and M is maximal, every non-zero element in the
quotient algebra A/M is invertible. We know that M is closed, so
that A/M is a Banach algebra. Due to the Gelfand–Mazur Theorem,
there exists an isometric isomorphism λ ∈ Hom(A/M,C). Then

h = (x 7→ λ([x])) : A → C

is a character, and

Ker(h) = Ker((x 7→ [x]) : A → A/M) =M.

(b) Let h : A → C be a character. Now h is a linear mapping, so that
the co-dimension of Ker(h) in A equals the dimension of h(A) ⊂ C,
which clearly is 1. Any ideal of co-dimension 1 in an algebra must be
maximal, so that Ker(h) is maximal.

(c) If x ∈ A is invertible and h ∈ Spec(A) then h(x) ∈ C is invertible, that
is h(x) 6= 0. For the converse, assume that x ∈ A is non-invertible.
Then

Ax = {ax | a ∈ A}

is an ideal of A (notice that 1 = ax = xa would mean that a = x−1).
Hence by Krull’s Theorem, there is a maximal ideal M ⊂ A such
that Ax ⊂ M. Then (a) provides a character h ∈ Spec(A) for which
Ker(h) =M. Especially, h(x) = 0.

(d) This follows from (a,b,c) directly.

(e) (c) is equivalent to
“x ∈ A non-invertible if and only if ∃h ∈ Spec(A) : h(x) = 0”,
which is equivalent to
“λ1− x non-invertible if and only if ∃h ∈ Spec(A) : h(x) = λ” �
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Exercise. Let A be a Banach algebra and x, y ∈ A such that xy = yx.
Prove that σ(x+ y) ⊂ σ(x) + σ(y) and σ(xy) ⊂ σ(x)σ(y).

Exercise. Let A be the algebra of those functions f : R→ C for which

f(x) =
∑
n∈Z

fn eix·n, ‖f‖ =
∑
n∈Z

|fn| <∞.

Show that A is a commutative Banach algebra. Show that if f ∈ A and
∀x ∈ R : f(x) 6= 0 then 1/f ∈ A.

Gelfand transform. LetA be a commutative Banach algebra. The Gelfand
transform x̂ of an element x ∈ A is the function

x̂ : Spec(A)→ C, x̂(φ) := φ(x).

Let Â := {x̂ : Spec(A)→ C | x ∈ A}. The mapping

A → Â, x 7→ x̂,

is called the Gelfand transform of A. We endow the set Spec(A) with the Â-
induced topology, called the Gelfand topology; this topological space is called
the maximal ideal space of A (for a good reason, in the light of the previous
theorem). In other words, the Gelfand topology is the weakest topology on
Spec(A) making every x̂ a continuous function, i.e. the weakest topology on

Spec(A) for which Â ⊂ C(Spec(A)).

Theorem (Gelfand, 1940). Let A be a commutative Banach algebra.
Then K = Spec(A) is a compact Hausdorff space in the Gelfand topol-
ogy, the Gelfand transform is a continuous homomorphism A → C(K), and
‖x̂‖ = sup

φ∈K
|x̂(φ)| = ρ(x) for every x ∈ A.

Proof. The Gelfand transform is a homomorphism, since

λ̂x(φ) = φ(λx) = λφ(x) = λx̂(φ) = (λx̂)(φ),

x̂+ y(φ) = φ(x+ y) = φ(x) + φ(y) = x̂(φ) + ŷ(φ) = (x̂+ ŷ)(φ),

x̂y(φ) = φ(xy) = φ(x)φ(y) = x̂(φ)ŷ(φ) = (x̂ŷ)(φ),

1̂A(φ) = φ(1A) = 1 = 1C(K)(φ),

for every λ ∈ C, x, y ∈ A and φ ∈ K. Moreover,

x̂(K) = {x̂(φ) | φ ∈ K} = {φ(x) | φ ∈ Spec(A)} = σ(x),

50



implying
‖x̂‖ = ρ(x) ≤ ‖x‖.

Clearly K is a Hausdorff space. What about compactness? Now K =
Hom(A,C) is a subset of the closed unit ball of the dual Banach space A′;
by the Banach–Alaoglu Theorem, this unit ball is compact in the weak∗-
topology. Recall that the weak∗-topology τA′ of A′ is the A-induced topology,
with the interpretation A ⊂ A′′; thus the Gelfand topology τK is the relative
weak∗-topology, i.e.

τK = τA′ |K .
To prove that τK is compact, it is sufficient to show that K ⊂ A′ is closed in
the weak∗-topology.

Let f ∈ A′ be in the weak∗-closure of K. We have to prove that f ∈ K,
i.e.

f(xy) = f(x)f(y) and f(1) = 1.

Let x, y ∈ A, ε > 0. Let S := {1, x, y, xy}. Using the notation of the proof
of Banach–Alaoglu Theorem,

U(f, S, ε) = {ψ ∈ A′ : z ∈ S ⇒ |ψz − fz| < ε}

is a weak∗-neighborhood of f . Thus choose hε ∈ K ∩ U(f, S, ε). Then

|1− f(1)| = |hε(1)− f(1)| < ε;

ε > 0 being arbitrary, we have f(1) = 1. Noticing that |hε(x)| ≤ ‖x‖, we get

|f(xy)− f(x)f(y)|
≤ |f(xy)− hε(xy)|+ |hε(xy)− hε(x)f(y)|+ |hε(x)f(y)− f(x)f(y)|
= |f(xy)− hε(xy)|+ |hε(x)| · |hε(y)− f(y)|+ |hε(x)− f(x)| · |f(y)|
≤ ε (1 + ‖x‖+ |f(y)|).

This holds for every ε > 0, so that actually

f(xy) = f(x)f(y);

we have proven that f is a homomorphism, f ∈ K �

Exercise. Let A be a commutative Banach algebra. Its radical Rad(A) is
the intersection of all the maximal ideals of A. Show that

Rad(A) = Ker(x 7→ x̂) = {x ∈ A | ρ(x) = 0},

where x 7→ x̂ is the Gelfand transform. Show that nilpotent elements of A
belong to the radical.
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Exercise. Let X be a finite set. Describe the Gelfand transform of F(X).

Exercise. Describe the Gelfand transform of the algebra of matrices

(
α β
0 α

)
,

where α, β ∈ C.

Theorem. Let X be a compact Hausdorff space. Then Spec(C(X)) is
homeomorphic to X.

Proof. For x ∈ X, let us define the function

hx : C(X)→ C, f 7→ f(x) (evaluation at x ∈ X).

This is clearly a homomorphism, and hence we may define the mapping

φ : X → Spec(C(X)), x 7→ hx.

Let us prove that φ is a homeomorphism.
If x, y ∈ X, x 6= y, then Urysohn’s Lemma provides f ∈ C(X) such that

f(x) 6= f(y). Thereby hx(f) 6= hy(f), yielding φ(x) = hx 6= hy = φ(y);
thus φ is injective. It is also surjective: Namely, let us assume that h ∈
Spec(C(X)) \ φ(X). Now Ker(h) ⊂ C(X) is a maximal ideal, and for every
x ∈ X we may choose

fx ∈ Ker(h) \Ker(hx) ⊂ C(X).

Then Ux := f−1
x (C \ {0}) ∈ V(x), so that

U = {Ux | x ∈ X}

is an open cover of X, which due to the compactness has a finite subcover
{Uxj
}nj=1 ⊂ U . Since fxj

∈ Ker(h), the function

f :=
n∑
j=1

|fxj
|2 =

n∑
j=1

fxj
fxj

belongs to Ker(h). Clearly f(x) 6= 0 for every x ∈ X. Therefore g ∈ C(X)
with g(x) = 1/f(x) is the inverse element of f ; this is a contradiction, since
no invertible element belongs to an ideal. Thus φ must be surjective.

We have proven that φ : X → Spec(C(X)) is a bijection. Thereby X and
Spec(C(X)) can be identified as sets. The Gelfand-topology of Spec(C(X)) is
then identified with the C(X)-induced topology σ of X, which is weaker than
the original topology τ of X. Hence φ : (X, τ)→ Spec(C(X)) is continuous.
Actually, σ = τ , because a continuous bijection from a compact space to a
Hausdorff space is a homeomorphism �
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Corollary. Let X and Y be compact Hausdorff spaces. Then the Banach
algebras C(X) and C(Y ) are isomorphic if and only if X is homeomorphic
to Y .

Proof. By the previous Theorem, X ∼= Spec(C(X)) and Y ∼= Spec(C(Y )).
If C(X) and C(Y ) are isomorphic Banach algebras then

X ∼= Spec(C(X))
C(X)∼=C(Y )∼= Spec(C(Y )) ∼= Y.

Conversely, a homeomorphism φ : X → Y begets a Banach algebra iso-
morphism

Φ : C(Y )→ C(X), (Φf)(x) := f(φ(x)),

as the reader easily verifies �
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9 Polynomial approximations: Stone–Weierstrass

In this section we study densities of subalgebras in C(X). These results will
be applied in characterizing function algebras among Banach algebras. First
we study continuous functions on [a, b] ⊂ R:

Weierstrass Theorem (1885). Polynomials are dense in C([a, b]).

Proof. Evidently, it is enough to consider the case [a, b] = [0, 1]. Let f ∈
C([0, 1]), and let g(x) = f(x)− (f(0) + (f(1)− f(0))x); then g ∈ C(R) if we
define g(x) = 0 for x ∈ R \ [0, 1]. For n ∈ N let us define kn : R→ [0,∞[ by

kn(x) :=

{
(1−x2)nR 1

−1(1−t2)n dt
, when |x| < 1,

0, when |x| ≥ 1.

Then define Pn := g ∗ kn (convolution of g and kn), that is

Pn(x) =

∫ ∞
−∞

g(x− t) kn(t) dt =

∫ ∞
−∞

g(t) kn(x− t) dt

=

∫ 1

0

g(t) kn(x− t) dt,

and from this last formula we see that Pn is a polynomial on [0, 1]. Notice
that Pn is real-valued if f is real-valued. Take any ε > 0. Function g is
uniformly continuous, so that there exists δ > 0 such that

∀x, y ∈ R : |x− y| < δ ⇒ |g(x)− g(y)| < ε.

Let ‖g‖ = max
t∈[0,1]

|g(t)|. Take x ∈ [0, 1]. Then

|Pn(x)− g(x)| =

∣∣∣∣∫ ∞
−∞

g(x− t) kn(t) dt− g(x)

∫ ∞
−∞

kn(t) dt

∣∣∣∣
=

∣∣∣∣∫ 1

−1

(g(x− t)− g(x)) kn(t) dt

∣∣∣∣
≤

∫ 1

−1

|g(x− t)− g(x)| kn(t) dt

≤
∫ −δ
−1

2‖g‖ kn(t) dt+

∫ δ

−δ
ε kn(t) dt+

∫ 1

δ

2‖g‖ kn(t) dt

≤ 4‖g‖
∫ 1

δ

kn(t) dt+ ε.

The reader may verify that
∫ 1

δ
kn(t) dt →n→∞ 0 for every δ > 0. Hence

‖Qn − f‖ →n→∞ 0, where Qn(x) = Pn(x) + f(0) + (f(1)− f(0))x �
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Exercise. Show that the last claim in the proof of Weierstrass Theorem is
true.

For f : X → C let us define f ∗ : X → C by f ∗(x) := f(x), and define
|f | : X → C by |f |(x) := |f(x)|. A subalgebra A ⊂ F(X) is called involutive
if f ∗ ∈ A whenever f ∈ A.

Stone–Weierstrass Theorem (1937). Let X be a compact space. Let
A ⊂ C(X) be an involutive subalgebra separating the points of X. Then A
is dense in C(X).

Proof. If f ∈ A then f ∗ ∈ A, so that the real part <f =
f + f ∗

2
belongs

to A. Let us define
AR := {<f | f ∈ A};

this is a R-subalgebra of the R-algebra C(X,R) of continuous real-valued
functions on X. Then

A = {f + ig | f, g ∈ AR},

so that AR separates the points of X. If we can show that AR is dense in
C(X,R) then A would be dense in C(X).

First we have to show that AR is closed under taking maximums and
minimums. For f, g ∈ C(X,R) we define

max(f, g)(x) := max(f(x), g(x)), min(f, g)(x) := min(f(x), g(x)).

Notice that AR is an algebra over the field R. Since

max(f, g) =
f + g

2
+
|f − g|

2
, min(f, g) =

f + g

2
− |f − g|

2
,

it is enough to prove that |h| ∈ AR whenever h ∈ AR. Let h ∈ AR. By the
Weierstrass Theorem there is a sequence of polynomials Pn : R → R such
that

Pn(x)→n→∞ |x|

uniformly on the interval [−‖h‖, ‖h‖]. Thereby

‖|h| − Pn(h)‖ →n→∞ 0,

where Pn(h)(x) := Pn(h(x)). Since Pn(h) ∈ AR for every n, this implies that
|h| ∈ AR. Now we know that max(f, g),min(f, g) ∈ AR whenever f, g ∈ AR.
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Now we are ready to prove that f ∈ C(X,R) can be approximated by
elements of AR. Take ε > 0 and x, y ∈ X, x 6= y. Since AR separates the
points of X, we may pick h ∈ AR such that h(x) 6= h(y). Let gxx = f(x)1,
and let

gxy(z) :=
h(z)− h(y)

h(x)− h(y)
f(x) +

h(z)− h(x)

h(y)− h(x)
f(y).

Here gxx, gxy ∈ AR, since AR is an algebra. Furthermore,

gxy(x) = f(x), gxy(y) = f(y).

Due to the continuity of gxy, there is an open set Vxy ∈ V(y) such that

z ∈ Vxy ⇒ f(z)− ε < gxy(z).

Now {Vxy | y ∈ X} is an open cover of the compact space X, so that there
is a finite subcover {Vxyj

| 1 ≤ j ≤ n}. Define

gx := max
1≤j≤n

gxyj
;

gx ∈ AR, because AR is closed under taking maximums. Moreover,

∀z ∈ X : f(z)− ε < gx(z).

Due to the continuity of gx (and since gx(x) = f(x)), there is an open set
Ux ∈ V(x) such that

z ∈ Ux ⇒ gx(z) < f(z) + ε.

Now {Ux | x ∈ X} is an open cover of the compact space X, so that there is
a finite subcover {Uxi

| 1 ≤ i ≤ m}. Define

g := min
1≤i≤m

gxi
;

g ∈ AR, because AR is closed under taking minimums. Moreover,

∀z ∈ X : g(z) < f(z) + ε.

Thus
f(z)− ε < min

1≤i≤m
gxi

(z) = g(z) < f(z) + ε,

that is |g(z)−f(z)| < ε for every z ∈ X, i.e. ‖g−f‖ < ε. Hence AR is dense
in C(X,R) implying that A is dense in C(X) �
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Remark. Notice that under the assumptions of the Stone–Weierstrass The-
orem, the compact space is actually a compact Hausdorff space, since con-
tinuous functions separate the points.

Exercise. Let K be a compact Hausdorff space, ∅ 6= S ⊂ K, and J ⊂
C(K) be an ideal. Let us define

I(S) := {f ∈ C(K) | ∀x ∈ S : f(x) = 0},
V (J ) := {x ∈ K | ∀f ∈ J : f(x) = 0}.

Prove that
(a) I(S) ⊂ C(K) a closed ideal,
(b) V (J ) ⊂ K is a closed non-empty subset,
(c) V (I(S)) = S (hint: Urysohn), and
(d) I(V (J )) = J .
Lesson to be learned:
topology of K goes hand in hand with the (closed) ideal structure of C(K).
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10 C∗-algebras

Now we are finally in the position to abstractly characterize algebras C(X)
among Banach algebras: according to Gelfand and Naimark, the category of
compact Hausdorff spaces is equivalent to the category of commutative C∗-
algebras. The class of C∗-algebras behaves nicely, and the related functional
analysis adequately deserves the name “non-commutative topology”.

Involutive algebra. An algebra A is a ∗-algebra (“star-algebra” or an
involutive algebra) if there is a mapping (x 7→ x∗) : A → A satisfying

(λx)∗ = λx∗, (x+ y)∗ = x∗ + y∗, (xy)∗ = y∗x∗, (x∗)∗ = x

for every x, y ∈ A and λ ∈ C; such a mapping is called an involution. In other
words, an involution is a conjugate-linear anti-multiplicative self-invertible
mapping A → A.

A ∗-homomorphism φ : A → B between involutive algebras A and B is
an algebra homomorphism satisfying

φ(x∗) = φ(x)∗

for every x ∈ A. The set of all ∗-homomorphisms between ∗-algebras A and
B is denoted by Hom∗(A,B).

C∗-algebra. A C∗-algebra A is an involutive Banach algebra such that

‖x∗x‖ = ‖x‖2

for every x ∈ A.

Examples.

1. The Banach algebra C is a C∗-algebra with the involution λ 7→ λ∗ = λ,
i.e. the complex conjugation.

2. If K is a compact space then C(K) is a commutative C∗-algebra with
the involution f 7→ f ∗ by complex conjugation, f ∗(x) := f(x).

3. L∞([0, 1]) is a C∗-algebra, when the involution is as above.

4. A(D(0, 1)) = C
(
D(0, 1)

)
∩H(D(0, 1)) is an involutive Banach algebra

with f ∗(z) := f(z), but it is not a C∗-algebra.
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5. The radical of a commutative C∗-algebra is always the trivial {0}, and
thus 0 is the only nilpotent element. Hence for instance the algebra of

matrices

(
α β
0 α

)
(where α, β ∈ C) cannot be a C∗-algebra.

6. If H is a Hilbert space then L(H) is a C∗-algebra when the involution
is the usual adjunction A 7→ A∗, and clearly any norm-closed involutive
subalgebra of L(H) is also a C∗-algebra. Actually, there are no others,
but we shall not prove this fact in these lecture notes:

Gelfand–Naimark Theorem (1943). If A is a C∗-algebra then there
exists a Hilbert space H and an isometric ∗-homomorphism onto a closed
involutive subalgebra of L(H) �

However, we shall characterize the commutative case: the Gelfand trans-
form of a commutative C∗-algebra A will turn out to be an isometric iso-
morphism A → C(Spec(A)), so that A “is” the function algebra C(K) for
the compact Hausdorff space K = Spec(A)! Before going into this, we prove
some related results.

Proposition. Let A be a ∗-algebra. Then 1∗ = 1, x ∈ A is invertible if
and only if x∗ ∈ A is invertible, and σ(x∗) = σ(x) := {λ | λ ∈ σ(x)}.

Proof. First,

1∗ = 1∗1 = 1∗(1∗)∗ = (1∗1)∗ = (1∗)∗ = 1;

second,

(x−1)∗x∗ = (xx−1)∗ = 1∗ = 1 = 1∗ = (x−1x)∗ = x∗(x−1)∗;

third,
λ1− x∗ = (λ1∗)∗ − x∗ = (λ1)∗ − x∗ = (λ1− x)∗,

which concludes the proof �

Proposition. Let A be a C∗-algebra, and x = x∗ ∈ A. Then σ(x) ⊂ R.

Proof. Assume that λ ∈ σ(x) \R, i.e. λ = λ1 + iλ2 for some λj ∈ R with
λ2 6= 0. Hence we may define y := (x−λ11)/λ2 ∈ A. Now y∗ = y. Moreover,
i ∈ σ(y), because

i1− y =
λ1− x
λ2

.
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Take t ∈ R. Then t+ 1 ∈ σ(t1− iy), because

(t+ 1)1− (t1− iy) = −i(i1− y).

Thereby

(t+ 1)2 ≤ ρ(t1− iy)2

≤ ‖t1− iy‖2

C∗
= ‖(t1− iy)∗(t1− iy)‖

t∈R, y∗=y
= ‖(t1 + iy)(t1− iy)‖ = ‖t21 + y2‖
≤ t2 + ‖y‖,

so that 2t+ 1 ≤ ‖y‖ for every t ∈ R; a contradiction �

Corollary. Let A a C∗-algebra, φ : A → C a homomorphism, and x ∈ A.
Then φ(x∗) = φ(x), i.e. φ is a ∗-homomorphism.

Proof. Define the “real part” and the “imaginary part” of x by

u :=
x+ x∗

2
, v :=

x− x∗

2i
.

Then x = u + iv, u∗ = u, v∗ = v, and x∗ = u − iv. Since a homomorphism
maps invertibles to invertibles, we have φ(u) ∈ σ(u); we know that σ(u) ⊂ R,
because u∗ = u. Similarly we obtain φ(v) ∈ R. Thereby

φ(x∗) = φ(u− iv) = φ(u)− iφ(v) = φ(u) + iφ(v) = φ(u+ iv) = φ(x);

this means that Hom∗(A,C) = Hom(A,C) �

Exercise. Let A be a Banach algebra, B its closed subalgebra, and x ∈ B.
Prove the following facts:
(a) G(B) is open and closed in G(A) ∩ B.
(b) σA(x) ⊂ σB(x) and ∂σB(x) ⊂ ∂σA(x).
(c) If C \ σA(x) is connected then σA(x) = σB(x).

Using the results of the exercise above, the reader can prove the following
important fact on the invariance of spectrum in C∗-algebras:

Exercise. Let A be a C∗-algebra and B its C∗-subalgebra. Show that
σB(x) = σA(x) for every x ∈ B.
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Lemma. Let A be a C∗-algebra. Then ‖x‖2 = ρ(x∗x) for every x ∈ A.

Proof. Now

‖(x∗x)2‖ = ‖(x∗x)(x∗x)‖ = ‖(x∗x)∗(x∗x)‖ C∗
= ‖x∗x‖2,

so that by induction
‖(x∗x)2n‖ = ‖x∗x‖2n

for every n ∈ N. Therefore applying the Spectral Radius Formula, we get

ρ(x∗x) = lim
n→∞

‖(x∗x)2n‖1/2n

= lim
n→∞

‖x∗x‖2n/2n

= ‖x∗x‖,

the result we wanted �

Exercise. Let A be a C∗-algebra. Show that there can be at most one
C∗-algebra norm on an involutive Banach algebra. Moreover, prove that if
A,B are C∗-algebras then φ ∈ Hom∗(A,B) is continuous and has a norm
‖φ‖ = 1.

Commutative Gelfand–Naimark. Let A be a commutative C∗-algebra.
Then the Gelfand transform (x 7→ x̂) : A → C(Spec(A)) is an isometric
∗-isomorphism.

Proof. Let K = Spec(A). We already know that the Gelfand transform is
a Banach algebra homomorphism A → C(K). Let x ∈ A and φ ∈ K. Since
φ is actually a ∗-homomorphism, we get

x̂∗(φ) = φ(x∗) = φ(x) = x̂(φ) = x̂∗(φ);

the Gelfand transform is a ∗-homomorphism.
Now we have proven that Â ⊂ C(K) is an involutive subalgebra separat-

ing the points of K. Stone–Weierstrass Theorem thus says that Â is dense
in C(K). If we can show that the Gelfand transform A → Â is an isometry

then we must have Â = C(K): Take x ∈ A. Then

‖x̂‖2 = ‖x̂∗x̂‖ = ‖x̂∗x‖ Gelfand
= ρ(x∗x)

Lemma
= ‖x‖2,

i.e. ‖x̂‖ = ‖x‖ �

Exercise. Show that an injective ∗-homomorphism between C∗-algebras is
an isometry. (Hint: Gelfand transform.)
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Exercise. A linear functional f on a C∗-algebra A is called positive if
f(x∗x) ≥ 0 for every x ∈ A. Show that the positive functionals separate
the points of A.

Exercise. Prove that the involution of a C∗-algebra cannot be altered with-
out destroying the C∗-property ‖x∗x‖ = ‖x‖2.

An element x of a C∗-algebra is called normal if x∗x = xx∗. We use the
commutative Gelfand–Naimark Theorem to create the so called continuous
functional calculus at a normal element — a non-commutative C∗-algebra
admits some commutative studies:

Theorem. Let A be a C∗-algebra, and x ∈ A be a normal element. Let ι =
(λ 7→ λ) : σ(x)→ C. Then there exists a unique isometric ∗-homomorphism
φ : C(σ(x)) → A such that φ(ι) = x and φ(C(σ(x))) is the C∗-algebra
generated by x, i.e. the smallest C∗-algebra containing {x}.

Proof. Let B be the C∗-algebra generated by x. Since x is normal, B
is commutative. Let Gel = (y 7→ ŷ) : B → C(Spec(B)) be the Gelfand
transform of B. The reader may easily verify that

x̂ : Spec(B)→ σ(x)

is a continuous bijection from a compact space to a Hausdorff space; hence
it is a homeomorphism. Let us define the mapping

Cbx : C(σ(x))→ C(Spec(B)), (Cbxf)(h) := f(x̂(h)) = f(h(x));

Cbx can be thought as a “transpose” of x̂. Let us define

φ = Gel−1 ◦ Cbx : C(σ(x))→ B ⊂ A.

Then φ : C(σ(x) → A is obviously an isometric ∗-homomorphism. Further-
more,

φ(ι) = Gel−1(Cbx(ι)) = Gel−1(x̂) = Gel−1(Gel(x)) = x.

Due to the Stone–Weierstrass Theorem, the ∗-algebra generated by ι ∈
C(σ(x)) is dense in C(σ(x)); since the ∗-homomorphism φ maps the gen-
erator ι to the generator x, the uniqueness of φ follows �
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Remark. The ∗-homomorphism φ : C(σ(x)) → A in above is called the
(continuous) functional calculus at the normal element φ(ι) = x ∈ A. If
p = (z 7→

∑n
j=1 ajz

j) : C → C is a polynomial then it is natural to define

p(x) :=
∑n

j=1 ajx
j. Then actually

p(x) = φ(p);

hence it is natural to define f(x) := φ(f) for every f ∈ C(σ(x)). It is easy
to check that if f ∈ C(σ(x)) and h ∈ Spec(B) then f(h(x)) = h(f(x)).

Exercise. Let A be a C∗-algebra, x ∈ A normal, f ∈ C(σ(x)), and g ∈
C(f(σ(x))). Show that σ(f(x)) = f(σ(x)) and that (g ◦ f)(x) = g(f(x)).
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11 Metrizability

Next we try to construct metrics on compact spaces. We shall learn that a
compact space is metrizable if and only if the corresponding commutative
C∗-algebra is separable. Metrizability is equivalent to the existence of a
countable family of continuous functions separating the points of the space.
As a vague analogy to the manifolds, the reader may view such a countable
family as a set of coordinate functions on the space.

Theorem. If F ⊂ C(X) is a countable family separating the points of a
compact space (X, τ) then X is metrizable.

Proof. Let F = {fn}∞n=0 ⊂ C(X) separate the points of X. We can assume
that ‖fn‖ ≤ 1 for every n ∈ N; otherwise consider for instance functions
x 7→ fn(x)/(1 + |fn(x)|). Let us define

d(x, y) := sup
n∈N

2−n|fn(x)− fn(y)|

for every x, y ∈ X. Next we prove that d : X × X → [0,∞[ is a metric:
d(x, y) = 0 ⇔ x = y, because {fn}∞n=0 is a separating family. Clearly also
d(x, y) = d(y, x) for every x, y ∈ X. Let x, y, z ∈ X. We have the triangle
inequality:

d(x, z) = sup
n∈N

2−n|fn(x)− fn(z)|

≤ sup
n∈N

(2−n|fn(x)− fn(y)|+ 2−n|fn(y)− fn(z)|)

≤ sup
m∈N

2−m|fm(x)− fm(y)|+ sup
n∈N

2−n|fn(y)− fn(z)|

= d(x, y) + d(y, z).

Hence d is a metric on X.
Finally, let us prove that the metric topology coincides with the original

topology, τd = τ : Let x ∈ X, ε > 0. Take N ∈ N such that 2−N < ε. Define

Un := f−1
n (D(fn(x), ε)) ∈ Vτ (x), U :=

N⋂
n=0

Un ∈ Vτ (x).

If y ∈ U then
d(x, y) = sup

n∈N
2−n|fn(x)− fn(y)| < ε.

Thus x ∈ U ⊂ Bd(x, ε) = {y ∈ X | d(x, y) < ε}. This proves that the original
topology τ is finer than the metric topology τd, i.e. τd ⊂ τ . Combined with
the facts that (X, τ) is compact and (X, τd) is Hausdorff, this implies that
we must have τd = τ �
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Corollary. Let X be a compact Hausdorff space. Then X is metrizable if
and only if it has a countable basis.

Proof. Suppose X is a compact space, metrizable with a metric d. Let
r > 0. Then Br = {Bd(x, r) | x ∈ X} is an open cover of X, thus having a

finite subcover B′r ⊂ Br. Then B :=
∞⋃
n=1

B′1/n is a countable basis for X.

Conversely, suppose X is a compact Hausdorff space with a countable
basis B. Then the family

C := {(B1, B2) ∈ B × B | B1 ⊂ B2}

is countable. For each (B1, B2) ∈ C Urysohn’s Lemma provides a function
fB1B2 ∈ C(X) satisfying

fB1B2(B1) = {0} and fB1B2(X \B2) = {1}.

Next we show that the countable family

F = {fB1B2 : (B1, B2) ∈ C} ⊂ C(X)

separates the points of X: Take x, y ∈ X, x 6= y. Then W := X \ {y} ∈
V(x). Since X is a compact Hausdorff space, there exists U ∈ V(x) such
that U ⊂ W . Take B′, B ∈ B such that x ∈ B′ ⊂ B′ ⊂ B ⊂ U . Then
fB′B(x) = 0 6= 1 = fB′B(y). Thus X is metrizable �

Conclusion. Let X be a compact Hausdorff space. Then X is metrizable
if and only if C(X) is separable (i.e. contains a countable dense subset).

Proof. Suppose X is a metrizable compact space. Let F ⊂ C(X) be a
countable family separating the points of X (as in the proof of the previous
Corollary). Let G be the set of finite products of functions f for which
f ∈ F ∪ F∗ ∪ {1}; the set G = {gj}∞j=0 is countable. The linear span A of G
is the involutive algebra generated by F (the smallest ∗-algebra containing
F); due to the Stone–Weierstrass Theorem, A is dense in C(X). If S ⊂ C is
a countable dense set then

{λ01 +
n∑
j=1

λjgj | n ∈ Z+, (λj)
n
j=0 ⊂ S}

is a countable dense subset of A, thereby dense in C(X).
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Conversely, assume that F = {fn}∞n=0 ⊂ C(X) is a dense subset. Take
x, y ∈ X, x 6= y. By Urysohn’s Lemma there exists f ∈ C(X) such that
f(x) = 0 6= 1 = f(y). Take fn ∈ F such that ‖f − fn‖ < 1/2. Then

|fn(x)| < 1/2 and |fn(y)| > 1/2,

so that fn(x) 6= fn(y); F separates the points of X �

Exercise. Prove that a topological space with a countable basis is sepa-
rable. Prove that a metric space has a countable basis if and only if it is
separable.

Exercise. There are non-metrizable separable compact Hausdorff spaces!
Prove that X is such a space, where

X = {f : [0, 1]→ [0, 1] | x ≤ y ⇒ f(x) ≤ f(y)}

is endowed with a relative topology. Hint: Tihonov’s Theorem.
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12 Algebras of Lipschitz functions

This section is devoted to metric properties, not merely metrizability. We
shall study how to recover the metric space structure from a normed algebra
of Lipschitz functions in the spirit of the Gelfand theory of commutative
Banach algebras. In the sequel, K ∈ {R,C}.

Lipschitz mappings. Let (X, dX), (Y, dY ) be metric spaces; often we drop
the subscripts from metrics, i.e. write d for both dX and dY without confu-
sion. A mapping f : X → Y is called Lipschitz if

∃C <∞ ∀x, y ∈ X : dY (f(x), f(y)) ≤ C dX(x, y);

then the Lipschitz constant of f is

L(f) := inf{C ∈ R | ∀x, y ∈ X : d(f(x), f(y)) ≤ C d(x, y)}

= sup
x,y∈X: x 6=y

d(f(x), f(y))

d(x, y)
.

A mapping f : X → Y is called bi-Lipschitz (or a quasi-isometry) if it is
bijective and f, f−1 are both Lipschitz.

Examples.

1. Lipschitz mappings are uniformly continuous, but not the vice versa:
for instance, (t 7→

√
t) : [0, 1] → R is uniformly continuous, but not

Lipschitz.

2. The distance from x ∈ X to a non-empty set A ⊂ X is defined by

d(x,A) = d(A, x) := inf
a∈A

d(x, a),

Then dA = (x 7→ d(x,A)) : X → R is a Lipschitz mapping, L(dA) ≤ 1;
notice that dA(x) = 0 if and only if x ∈ A. Thus there are plenty of
Lipschitz functions on a metric space.

Exercise. Let A,B ⊂ X be non-empty sets. Assume that the distance
between A,B is positive, i.e. d(A,B) > 0, where

d(A,B) := inf
a∈A, b∈B

d(a, b).

Show that there exists a Lipschitz function f : X → R such that

0 ≤ f ≤ 1, f(A) = {0}, f(B) = {1}.

This is the Lipschitz analogy of Urysohn’s Lemma.

67



Tietze’s Extension Theorem (Lipschitz analogy). Let X be a metric
space, A ⊂ X non-empty, and f : A → K bounded. Then there exists
F : X → K such that

F |A = f, ‖F‖C(X) = ‖f‖C(A),

{
L(F ) = L(f), when K = R,
L(F ) ≤

√
2 L(f), when K = C.

Proof. Here ‖f‖C(A) := supx∈A |f(x)|. When L(f) =∞, define F : X → K
by F |A = f , F (X \ A) = {0}. For the rest of the proof, suppose L(f) <∞.

Let us start with the case K = R. Define G : X → R by

G(x) = inf
a∈A

(f(a) + L(f) d(x, a)),

so that G|A = f , as the reader may verify. Define F : X → R by

F (x) =

{
G(x), when |G(x)| ≤ ‖f‖C(A),

‖f‖C(A)
G(x)
|G(x)| , when |G(x)| > ‖f‖C(A).

Clearly F |A = f , ‖F‖C(X) = ‖f‖C(A), and L(f) ≤ L(F ) ≤ L(G); let us then
show that L(G) = L(f). Suppose x, y ∈ X. Take ε > 0. Choose aε ∈ A such
that G(y) ≥ f(aε) + L(f) d(y, aε)− ε. Then

G(x)−G(y) = inf
a∈A

(f(a) + L(f) d(x, a))−G(y)

≤ (f(aε) + L(f) d(x, aε))− (f(aε) + L(f) d(y, aε)− ε)
= L(f) (d(x, aε)− d(y, aε)) + ε

≤ L(f) d(x, y) + ε,

which yields G(x) − G(y) ≤ L(f) d(x, y). Symmetrically, G(y) − G(x) ≤
L(f) d(x, y), so that |G(x) − G(y)| ≤ L(f) d(x, y). Hence we have proven
that L(G) ≤ L(f), which completes the proof of the case K = R.

Let us consider the case K = C. Let f1 = <(f), f2 = =(f). Then using
the R-result we can extend f1, f2 : A → R to functions F1, F2 : X → R
satisfying

Fj|A = fj, L(Fj) = L(fj) ≤ L(f), ‖Fj‖C(X) = ‖fj‖C(A).

Let us define G : X → C by G = F1 + iF2, and define F : X → C by

F (x) =

{
G(x), when |G(x)| ≤ ‖f‖C(A),

‖f‖C(A)
G(x)
|G(x)| , when |G(x)| > ‖f‖C(A).
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Then ‖F‖C(X) = ‖f‖C(A). Moreover, we obtain L(G) ≤
√

2 L(f), because

|z| ≤
√

2 max{|<(z)|, |=(z)|} for every z ∈ C; hence

L(f) ≤ L(F ) ≤ L(G) ≤
√

2 L(f),

completing the proof �

Lipschitz spaces. Let X be a metric space. Let

Lip(X) = Lip(X,K) := {f : X → K : ‖f‖Lip = max(‖f‖C(X), L(f)) <∞}.

A pointed metric space is a metric space X with a distinguished element, the
base point eX = e ∈ X; let

Lip0(X) = Lip0(X,K) := {f : X → K | f(e) = 0, L(f) <∞}.

Notice that if the diameter diam(X) = supx,y∈X d(x, y) of the space is finite
then Lip0(X) is contained in Lip(X),

Exercise. Show that Lip(X) is a Banach space with the norm f 7→ ‖f‖Lip.
Show that Lip0(X) is a Banach space with the norm f 7→ L(f). Show that
these spaces are topological algebras if diam(X) <∞.

Arens–Eells space. Let X be a metric space, x, y ∈ X. The xy-atom is
the function mxy : X → K defined by

mxy(x) = 1, mxy(y) = −1, mxy(z) = 0 otherwise.

A molecule on X is a linear combination m =
∑n

j=1 aj mxjyj
of such atoms;

then {x ∈ X | m(x) 6= 0} is a finite set and
∑

x∈X m(x) = 0. Let M denote
the K-vector space of the molecules on X. Notice that a molecule may have
several representations as a linear combination of atoms. Let us define a
mapping m 7→ ‖m‖AE : M → R by

‖m‖AE := inf

{
n∑
j=1

|aj| d(xj, yj) : n ∈ Z+, m =
n∑
j=1

aj mxjyj

}
;

obviously this is a seminorm on the space of the molecules, but we shall
prove that it is actually a norm; for the time being, we have to define the
Arens–Eells space AE(X) for X by completing the vector space M with
respect to the Arens–Eells-seminorm m 7→ ‖m‖AE modulo the subspace
{v : ‖v‖AE = 0}.
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Theorem. The Banach space dual of AE(X) is isometrically isomorphic
to Lip0(X).

Proof. Let us define two linear mappings T1 : AE(X)′ → Lip0(X) and
T2 : Lip0(X)→ AE(X)′ by

(T1φ)(x) := φ(mxe), (T2f)(m) :=
∑
y∈X

f(y) m(y),

where e ∈ X is the base point, and m ∈ M is a molecule (so that T2f is
uniquely extended to a linear functional on AE(X)). These definitions are
sound indeed: Firstly,

(T1φ)(e) = φ(mee) = φ(0) = 0,

|(T1φ)(x)− (T1φ)(y)| = |φ(mxe −mye)| = |φ(mxy)| ≤ ‖φ‖ ‖mxy‖AE
≤ ‖φ‖ d(x, y),

so that T1φ ∈ Lip0(X) and L(T1φ) ≤ ‖φ‖; we have even proven that T1 ∈
L(AE(X)′,Lip0(X)) with norm ‖T1‖ ≤ 1. Secondly, let ε > 0 and m ∈ M .
We may choose (aj)

n
j=1 ⊂ K and ((xj, yj))

n
j=1 ⊂ X ×X such that

m =
n∑
j=1

aj mxjyj
,

n∑
j=1

|aj| d(xj, yj) ≤ ‖m‖AE + ε.

Then

|(T2f)(m)| =

∣∣∣∣∣(T2f)
n∑
j=1

aj mxjyj

∣∣∣∣∣ =

∣∣∣∣∣
n∑
j=1

aj (f(xj)− f(yj))

∣∣∣∣∣
≤

n∑
j=1

|aj| |f(xj)− f(yj)|

≤ L(f)
n∑
j=1

|aj| d(xj, yj)

≤ L(f) (‖m‖AE + ε),

meaning that T2 ∈ L(Lip0(X), AE(X)′) with norm ‖T2‖ ≤ 1. Next we notice
that T2 = T−1

1 :

(T1(T2f))(x) = (T2f)(mxe) =
∑
y∈X

f(y) mxe(y) = f(x)− f(e) = f(x),
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(T2(T1φ))(m) =
∑
y∈X

(T1φ)(y) m(y) =
∑
y∈X

φ(mye) m(y)

= φ

(∑
y∈X

m(y) mye

)
= φ(m).

Finally, for f ∈ Lip0(X) we have

L(f) = L(T1T2f) ≤ ‖T1‖ ‖T2f‖ ≤ ‖T2f‖ ≤ ‖T2‖L(f) ≤ L(f),

so that T2, T1 = T−1
2 are isometries �

Remark. Let us denote

((f,m) 7→ 〈f,m〉) : Lip0(X)× AE(X)→ K

where
〈f,m〉 =

∑
x∈X

f(x) m(x)

if m ∈M . From now on, the weak∗-topology of Lip0(X) refers to the AE(X)-
induced topology, with the interpretation

AE(X) ⊂ AE(X)′′ ∼= Lip0(X)′.

Next we show how X is canonically embedded in the Arens–Eells space:

Corollary. The Arens–Eells seminorm m 7→ ‖m‖AE is a norm, and the
mapping (x 7→ mxe) : X → AE(X) is an isometry.

Proof. Take m ∈M , m 6= 0. Choose x0 ∈ X such that m(x0) 6= 0. Due to
the theorem above,

‖m‖AE
Hahn−Banach

= sup
f∈AE(X)′:‖f‖≤1

|〈f,m〉| = sup
f∈Lip0(X):L(f)≤1

∣∣∣∣∣∑
x∈X

f(x) m(x)

∣∣∣∣∣ .
Let A := {e}∪{x ∈ X |m(x) 6= 0}. Let r := d(x0, A\{x0}). By the Lipschitz
analogy of Tietze’s Extension Theorem, there exists f0 ∈ Lip0(X,R) such
that f0(x0) = r > 0, f0(A \ {x0}) = {0}, and L(f0) = 1. Thereby

‖m‖AE ≥ |〈f0,m〉| =

∣∣∣∣∣∑
x∈X

f0(x) m(x)

∣∣∣∣∣ = |f0(x0) m(x0)| > 0,
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i.e. m 7→ ‖m‖AE is actually a norm.

Let x, y ∈ X. Clearly ‖mxy‖AE ≤ d(x, y). Define d̃y(z) := d(z, y)−d(e, y),

where e ∈ X is the base point. Now d̃y ∈ Lip0(X) and L(d̃y) = 1, so that

‖mxy‖AE ≥ |〈d̃y,mxy〉| =

∣∣∣∣∣∑
z∈X

d̃y(z) mxy(z)

∣∣∣∣∣ = |d̃y(x)− d̃y(y)|

= d(x, y).

Hence ‖mxe −mye‖AE = ‖mxy‖AE = d(x, y) �

Nets and convergence. A partial order (J,≤) is called a directed if

∀i, j ∈ J ∃k ∈ J : i ≤ k, j ≤ k.

A net in a topological space (X, τ) is a family (xj)j∈J ⊂ X, where J = (J,≤)
is directed. A net (xj)j∈J ⊂ X converges to a point x ∈ X, denoted by

xj → x or xj →j∈J x or x = limxj = lim
j∈J

xj,

if for every U ∈ Vτ (x) there exists jU ∈ J such that xj ∈ U whenever jU ≤ j.
An example of a net is a sequence (xn)n∈N ⊂ X, where N has the usual

partial order; sequences characterize topology in spaces of countable local
bases, for instance metric spaces. But there are more complicated topologies,
where sequences are not enough; for example, weak∗-topology for infinite-
dimensional spaces.

Exercise. Nets can be used to characterize the topology: Let (X, τ) be a
topological space and A ⊂ X. Show that x ∈ A ⊂ X if and only if there
exists a net (xj)j∈J ⊂ A such that xj → x. Let f : X → Y ; show that
f ∈ C(X, Y ) if and only if xj → x ∈ X ⇒ f(xj)→ f(x) ∈ Y .
(Hint: define a partial order relation on Vτ (x) by U ≤ V ⇔ V ⊂ U .)

Lemma. Let E be a Banach space. The weak∗-converging nets in E ′ are
bounded.

Proof. Let fj → f in the weak∗-topology of E ′, i.e. 〈fj, φ〉 → 〈f, φ〉 ∈ K
for every φ ∈ E. Define Tj : E → K by φ 7→ 〈fj, φ〉. Since Tjφ→ 〈f, φ〉 ∈ K,
we have supj∈J |Tjφ| < ∞ for every φ ∈ E, so that C := supj∈J ‖Tj‖ < ∞
according to the Banach–Steinhaus Theorem. Thereby

‖fj‖
Hahn−Banach

= sup
φ∈E:‖φ‖≤1

|〈fj, φ〉| = sup
φ∈E:‖φ‖≤1

|Tjφ|
Hahn−Banach

= ‖Tj‖ ≤ C,

so that the net (fj)j∈J ⊂ E ′ is bounded �
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Proposition. On bounded subsets of Lip0(X) the weak∗-topology is the
topology of pointwise convergence. Moreover, if X is compact, on bounded
sets these topologies coincide with the topology of uniform convergence.

Proof. Let E ⊂ Lip0(X) be a bounded set containing a net (fj)j∈J such that
fj → f in the weak∗-topology. Endow the norm-closure E with the relative
weak∗-topology τ1, and also with the topology τ2 of pointwise convergence.
If x ∈ X then

fj(x) = fj(x)− fj(e) = 〈fj,mxe〉 → 〈f,mxe〉 = f(x)− f(e) = f(x),

i.e. fj → f pointwise. This means that the topology of pointwise convergence
is weaker than the weak∗-topology, τ2 ⊂ τ1. Now τ1 is compact due to the
Banach–Alaoglu Theorem, and of course τ2 is Hausdorff; hence τ1 = τ2, the
weak∗-topology and the topology of the pointwise convergence coincide on
bounded subsets.

Now suppose X is a compact metric space. Uniform convergence trivially
implies pointwise convergence. Let (fj)j∈J ⊂ E be as above, fj → f point-
wise. Since E is bounded, there exists C <∞ such that L(g) ≤ C for every
g ∈ E . It is easy to check that L(f) ≤ C. Take ε > 0. Since X is compact,
there exists {xk}nε

k=1 ⊂ X such that

∀x ∈ X ∃k ∈ {1, · · · , nε} : d(x, xk) < ε.

Due to the pointwise convergence fj → f , there exists jε ∈ J such that

|fj(xk)− f(xk)| < ε

for every k ∈ {1, · · · , nε} whenever jε ≤ j. Take x ∈ X. Take k ∈
{1, · · · , nε} such that d(x, xk) < ε. Then

|fj(x)− f(x)| ≤ |fj(x)− fj(xk)|+ |fj(xk)− f(xk)|+ |f(xk)− f(x)|
≤ L(fj) d(x, xk) + ε+ L(f) d(xk, x)

≤ C ε+ ε+ C ε = (2C + 1) ε.

Thereby ‖fj−f‖C(X) → 0; pointwise convergence on bounded subsets implies
uniform convergence, when X is compact �

Algebra Lip0(X). Let X be a metric space such that diam(X) < ∞.
In the sequel, we shall call Lip0(X) an algebra, even though 1 6∈ Lip0(X).
An algebra homomorphism between such non-unital algebras is a linear and
multiplicative mapping; then even the 0-mapping is a homomorphism!
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Proposition. Let X, Y be metric spaces with finite diameters, with the
respective base points eX , eY . Let g : Y → X be a Lipschitz mapping such
that g(eY ) = eX . Then the mapping

Lg : Lip0(X)→ Lip0(Y ), f 7→ f ◦ g,

is an algebra homomorphism, and ‖Lg‖ = L(g).

Proof. If f ∈ Lip0(X) and x, y ∈ Y then

|f(g(x))− f(g(y))| ≤ L(f) d(g(x), g(y)) ≤ L(f) L(g) d(x, y).

Hence L(Lgf) = L(f ◦ g) ≤ L(f) L(g), implying ‖Lg‖ ≤ L(g). Take y0 ∈ Y .
Define f0 ∈ Lip0(X) by f0(x) := d(x, g(y0))−d(eX , g(y0)), so that L(f0) = 1.
Take y ∈ Y , y 6= y0. Then

‖Lg‖ ≥ L(Lg(f0))

≥ |(Lgf0)(y)− (Lgf0)(y0)|
d(y, y0)

=
d(g(y), g(y0))

d(y, y0)
,

so that ‖Lg‖ ≥ L(g); hence ‖Lg‖ = L(g).
If λ ∈ K and f, h ∈ Lip0(X) then

Lg(λf) = (λf) ◦ g = λ (f ◦ g) = λ Lgf,

Lg(f + h) = (f + h) ◦ g = f ◦ g + h ◦ g = Lgf + Lgh,

Lg(fh) = (fh) ◦ g = (f ◦ g)(h ◦ g) = (Lgf)(Lgh),

so that Lg is a homomorphism �

Order-completeness. Non-empty B ⊂ Lip(X,R) is called order-complete
if

supG, inf G ∈ B

for every bounded family G ⊂ B. Here supremums and infimums are point-
wise, naturally.

Uniform separation. A family F ⊂ Lip0(X) separates uniformly the
points of X if

∃C <∞ ∀x, y ∈ X ∃g ∈ F : L(g) ≤ C, |g(x)− g(y)| = d(x, y).

In a striking resemblance with the “classical” Stone–Weierstrass Theorem,
we have the following:
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Theorem (Lipschitz Stone–Weierstrass). Let X be a compact metric
space. Let A be an involutive, weak∗-closed subalgebra of Lip0(X) separating
the points of X uniformly. Then A = Lip0(X).

Proof. As in the proof of the “classical” Stone–Weierstrass Theorem, invo-
lutivity justifies our concentration on the R-scalar case, where the involution
is trivial, f ∗ = f . Hence we assume that A is a weak∗-closed R-subalgebra
of Lip0(X,R) separating the points of X uniformly.

Let us show that B = A+ R1 is closed under the pointwise convergence
of bounded nets. Let (gj)j∈J ⊂ B be a bounded net converging to pointwise
to g ∈ Lip(X); here gj = fj + λj1 with fj ∈ A and λj ∈ R. Especially

λj = fj(e) + λj = gj(e)→ g(e) ∈ R.

Thus
fj(x) = gj(x)− λj → g(x)− g(e) ∈ R,

i.e. fj → g − g(e)1 pointwise. But (fj)j∈J ⊂ A is a bounded net, so that
fj → g−g(e)1 in the weak∗-topology; since A is weak∗-closed, g−g(e)1 ∈ A.
Thereby

g = (g − g(e)1) + g(e)1 ∈ A+ R1 = B;

B is closed under the pointwise convergence of bounded nets.
Let us show that B is order-complete. First, let g ∈ B. Take ε > 0. Let

gε(x) :=
√
g(x)2 + ε2.

By the Weierstrass Approximation Theorem, there exists a sequence (Pεn)∞n=1

of real-valued polynomials such that Pεn(0) = ε and

P ′εn(t)→n→∞
d

dt

√
t2 + ε2 =

t√
t2 + ε2

uniformly on [−‖g‖C(X), ‖g‖C(X)]; consequently, (Pεn(g))∞n=1 ⊂ B is a bounded
sequence, converging uniformly to gε; hence Pεn(g) → gε also pointwise.
Since B is closed under the pointwise convergence of bounded nets, we deduce
gε ∈ B; consequently, (gε)0<ε≤1 is a bounded net in B, so that g0 := limε→0+ gε
belongs to B. But g0(x) = |g(x)|, so that g ∈ B implies |g| ∈ B. Therefore if
f, g ∈ B then

max(f, g) =
f + g

2
+
|f + g|

2
, min(f, g) =

f + g

2
− |f + g|

2

belong to B. Let G ⊂ B be a bounded non-empty family. Let H ⊂ Lip(X,R)
be the smallest family closed under taking maximums and minimums and
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containing G. Now H ⊂ B, since B is closed under taking maximums and
minimums. Moreover, H is bounded. Clearly

supG = supH ∈ Lip(X,R) and inf G = infH ∈ Lip(X,R).

Let g := supG ∈ Lip(X,R). Take ε > 0. For each x ∈ X there exists
gx ∈ G such that g(x)− ε < gx(x). Due to the continuity of gx, there exists
Ux ∈ V(x) such that g(y)− ε < gx(y) for every y ∈ Ux. Then {Ux | x ∈ X}
is an open cover of the compact space X, so that there is a finite subcover
{Uxj

| 1 ≤ j ≤ n}. Let hε := max(gx1 , · · · , gxn) ∈ H. Then

g(x)− ε < hε(x) < g(x)

for every x ∈ X, so that (hε)0<ε≤1 ⊂ H ⊂ B is a bounded net, hε →ε→0+ g.
Hence supG = g ∈ B, because B is closed under the pointwise convergence of
bounded nets. Similarly one proves that inf G ∈ B. Thus B is order-complete.

Take f ∈ Lip0(X,R). We have to show that f ∈ A. We may assume
that L(f) ≤ 1. Due to the uniform separation, for every x, y ∈ X there
exists gxy ∈ A such that L(gxy) ≤ C (C does not depend on x, y ∈ X) and
|gxy(x) − gxy(y)| = d(x, y). Since |f(x) − f(y)| ≤ L(f) d(x, y) ≤ d(x, y)
and since A is an algebra, there exists hxy ∈ A satisfying hxy(x)− hxy(y) =
f(x)− f(y) and L(hxy) ≤ C. Define fxy ∈ B by

fxy := hxy − (hxy(y)− f(y))1.

Then fxy(x) = f(x) and fxy(y) = f(y), L(fxy) = L(hxy) ≤ C, and

‖fxy‖C(X) ≤ ‖hxy‖C(X) + |hxy(y)|+ |f(y)| ≤ (2C + 1) r(X),

where r(X) := supz∈X d(z, e) < ∞ is the “radius” of the space. The family
(fxy)x,y∈X ⊂ B is hence bounded; due to the order-completeness of B,

f = inf
x∈X

sup
y∈X

fxy

belongs to B; but f(e) = 0, so that f ∈ A �

Quotient metrics. Let X be a compact metric space and A ⊂ Lip0(X) be
an involutive, weak∗-closed subalgebra. Let RA be the equivalence relation

(x, y) ∈ RA
definition⇐⇒ ∀f ∈ A : f(x) = f(y).

Let [x] := {y ∈ X | (x, y) ∈ RA}. Let us endow XA := X/RA = {[x] | x ∈ X}
with the metric

dXA([x], [y]) := sup
f∈A:L(f)≤1

|f(x)− f(y)|.

Let π = (x 7→ [x]) : X → XA. Recall that this induces a homomorphism
Lπ = (f̃ 7→ f̃ ◦ π) : Lip0(XA)→ Lip0(X).
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Corollary. Let X be a compact metric space, and let A be an involutive,
weak∗-closed subalgebra of Lip0(X). Then Lπ : Lip0(XA)→ A ⊂ Lip0(X) is
a bounded algebra isomorphism Lip0(XA) ∼= A with a bounded inverse.

Exercise. Prove the previous Corollary.

Exercise. Show that weak∗-closed ideals of Lip0(X) are involutive, when
X is compact. (Hint: Lipschitz–Stone–Weierstrass.)

Varieties and ideals. Let X be a metric space, S ⊂ X, and J ⊂ Lip0(X).
Then

I(S) := {f ∈ Lip0(X) | ∀x ∈ S : f(x) = 0}
is a weak∗-closed ideal of Lip0(X) (the ideal of S), and

V (J ) := {x ∈ X | ∀f ∈ J : f(x) = 0}

is a closed subset of X (the variety of J ).

Theorem. Let X be a compact metric space, J be a weak∗-closed ideal of
Lip0(X). Then J = I(V (J )).

Exercise. Prove the previous theorem. (Hint: show that d(x, V (J )) =
dXJ ([x], V (J )) for every x ∈ X, use Lipschitz–Stone–Weierstrass.)

Corollary. Let X be a compact metric space, and let ω : Lip0(X) → K
be an algebra homomorphism. Then ω is weak∗-continuous if and only if
ω = ωx := (x 7→ f(x)) for some x ∈ X.

Proof. If ωx := (x 7→ f(x)) : Lip0(X) → K then ωx = mxe ∈ AE(X) in
the sense that 〈f, ωx〉 = f(x) = 〈f,mxe〉; hence evaluation homomorphisms
are weak∗-continuous.

Conversely, let ω : Lip0(X)→ K be a weak∗-continuous homomorphism.
Then Ker(ω) is an weak∗-closed ideal of Lip0(X), hence involutive. Thus
by the previous Theorem Ker(ω) = I(V ) for some V ⊂ X. Notice that
0 = ωe; assume that ω 6= 0. Since ω is a surjective linear mapping onto K,
Ker(ω) must be of co-dimension 1 in Lip0(X), and thereby V = {e, x} for
some x ∈ X. Hence ω = (f 7→ λf(x)) for some λ ∈ K, λ 6= 0. Choose
f ∈ Lip0(X) such that f(x) = 1, so that

λ = ω(f) = ω(f 2) = ω(f)2 = λ2.

This yields λ = 1, i.e. ω = ωx := (f 7→ f(x)) �
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Spectra. In these lecture notes we started with unital algebras (which
we simply called “algebras”). At the present, we have encountered non-
unital algebras, e.g. Lip0(X) and its ideals on a compact metric space
X. In the sequel, let the word “algebra” stand for both unital and non-
unital algebras. We say that a homomorphism is a linear multiplicative
mapping between algebras such that if both algebras are unital then one
unit element is mapped to another; the set of homomorphisms A → B is
denoted by Hom(A,B). Notice that 0 ∈ Hom(A,B) if and only if A or B is
non-unital. With these nominations, let the spectrum of a Banach space and
a commutative topological algebra A be

Spec(A) := Hom(A,K).

If furthermore A ∼= E ′ for a Banach space E, let

Specw
∗
(A) := {ω ∈ Spec(A) | ω is weak∗−continuous}.

Endow all these spectra with the metric given by the norm of the Banach
space A′; there are also the relative weak∗-topologies of A′ on the spectra.

Theorem. Let X be a compact metric space. Then the metric topology and
the relative weak∗-topology of Specw

∗
(Lip0(X)) are the same, and X is iso-

metric to Specw
∗
(Lip0(X)). Moreover, Specw

∗
(Lip0(X)) = Spec(Lip0(X)).

Proof. Let us denoteA := Lip0(X). The weak∗-topology onK := Specw
∗
(A)

is the topology induced by the family {f̂ | f ∈ A}, where f̂ : K → K is de-

fined by f̂(ω) := ω(f) (sort of Gelfand transform).
The previous Corollary indicates that K is the set of evaluation homo-

morphisms ωx = (f 7→ f(x)), and we know that

ι = (x 7→ mxe = ωx) : X → AE(X) ⊂ A′

is an isometry. Hence X is isometric to K.
The norm topology of A′ is stronger than the weak∗-topology, so that the

metric topology on K is stronger than the relative weak∗-topology. Notice
that fy ∈ A, where f̂y(ωx) = fy(x) = d(x, y) − d(e, y); hence f̂y : K → R is

weak∗-continuous on K, so that f̂y
−1

(U) ⊂ K is weak∗-open for every open
set U ⊂ R. Thus the metric ball

B(ωy, ε) = {ωx : ‖ωx − ωy‖ < ε} = {ωx : d(x, y) < ε}
= {ωx : f̂y(ωx) < ε− d(e, y)}
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is a weak∗-open set. Clearly {B(ωy, ε) | y ∈ X, ε > 0} is a basis for the
metric topology of the spectrum; thereby the metric topology is weaker than
the weak∗-topology. Consequently, the topologies must be the same.

Let us extend ω ∈ Spec(A) ⊂ A′ linearly to ω̃ : Lip(X) → K by setting
ω̃(1) = 1. Then ω̃ ∈ Spec(Lip(X)). Assume that for every x ∈ X there
exists fx ∈ Ker(ω̃) such that fx(x) 6= 0. Then pick a neighborhood Ux ∈ V(x)
such that 0 6∈ fx(Ux). Due to the compactness of X we may pick a finite
subcover {Uxj

}nj=1 out of the open cover {Ux | x ∈ X}. Then

f :=
n∑
j=1

|fxj
|2 =

n∑
j=1

fxj
fxj
∈ Ker(ω̃);

so f belongs to an ideal of Lip(X), but on the other hand f(x) > 0 for every
x ∈ X, so that 1/f ∈ Lip(X) as the reader may verify — a contradiction.
Hence there exists x ∈ X such that f(x) = 0 for every f ∈ Ker(ω̃). The
reader may prove analogies of the Lipschitz Stone–Weierstrass Theorem and
its consequences replacing (non-unital) subalgebras of Lip0(X) by (unital)
subalgebras of Lip(X); of course, the weak∗-convergence has to be replaced
by the pointwise convergence of bounded nets; then it follows that Ker(ω̃) =
{f ∈ Lip(X) | f(x) = 0}, which would imply that ω̃ = (f 7→ f(x)).

Hence ω̃ = (f 7→ f(x)) for some x ∈ X, and consequently ω = ωx.
Evaluation homomorphisms are weak∗-continuous, so that we have proven
that Spec(A) = K �

Theorem. Let A be a Banach space and a non-unital commutative topo-
logical algebra, and endow Spec(A) with the relative metric of A′. Then
Spec(A) is a complete pointed metric space of finite diameter, and the ex-
tended Gelfand transform

(f 7→ f̂) : A → Lip0(Spec(A)),

(where f̂(ω) := ω(f) for f ∈ A and ω ∈ Spec(A)) is of norm ≤ 1.

Proof. We may always endow A with an equivalent Banach algebra norm
(even though the algebra is non-unital). From the Gelfand theory of com-
mutative Banach algebras, we know that Spec(A) is a bounded weak∗-closed
(even weak∗-compact) subset of A′; hence the metric is complete, and the
diameter is finite.

Now let x 7→ ‖x‖ be the original norm of A. Let φ, ψ ∈ Spec(A). Then

|x̂(φ)− x̂(ψ)| = |(φ− ψ)(x)| ≤ ‖φ− ψ‖ ‖x‖,

so that L(x̂) ≤ ‖x‖. Notice that x̂(0) = 0, so that the proof is complete �
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Theorem. Let A be a commutative Banach algebra, and endow Spec(A)
with the relative metric of A′. Then Spec(A) is a complete metric space of

diameter at most 2, and the Gelfand transform (f 7→ f̂) : A → Lip(Spec(A))
is of norm 1.

Proof. In the Gelfand theory we have seen that Spec(A) belongs to the
closed unit ball of A′, so that the diameter of the spectrum is at most 2. If
φ ∈ Spec(A) and x ∈ A then |x̂(φ)| = |φ(x)| ≤ ‖x‖, and the rest of the proof
is as in the previous Theorem �

Remark. Let A be a Banach space and a non-unital topological algebra.
If Spec(A) is compact in the metric topology then the metric topology is the
relative weak∗-topology, and Lip0(Spec(A)) ⊂ C(Spec(A)).
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[7] P. R. Halmos: A Hilbert Space Problem Book. D. Van Nostrand Company,
Inc. 1967.

[8] G. J. Murphy: C∗-algebras and Operator Theory. Academic Press 1990.

[9] M. A. Naimark: Normed Rings. Wolters–Noordhoff Publishing 1970.

[10] H. L. Royden: Real Analysis. The Macmillan Company 1963.

[11] W. Rudin: Functional Analysis. Tata McGraw-Hill 1992.

[12] W. Rudin: Real and Complex Analysis. McGraw-Hill 1986.

[13] L. A. Steen and J. A. Seebach, Jr.: Counterexamples in Topology. Dover
1995.

[14] P. Suppes: Axiomatic Set Theory. Dover 1972.
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More information on the lecture topics

Set theory and Axiom of Choice: [14, 12, 15].
Topology: [15, 9, 13, 10, 5].
Measure theory: [4, 5, 10, 12].
Basic functional analysis: [12, 11, 7, 9].
Banach algebras and C∗-algebras: [8, 1, 11, 3, 9, 6] and practically any
book on advanced functional analysis (C∗=B∗ in [11] :)
Lipschitz algebras: [16].

For those mastering these lecture notes:
Non-commutative geometry: [2, 6, 17].
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13 Notations

P(X), 7
|X|, 7
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