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1. INTRODUCTION

This course is devoted to the smoothness/singularities of the solutions of weakly singular
integral equations of the second kind, and to piecewise polynomial collocation type methods
to solve such equations. In Section 5 we prove theorems which characterise the boundary
singulatities of the derivatives of a solution and undertake a change of variables that kills
these singularities. This enables to justify some new collocation type methods not considered
in the literature. Since two of these methods are based on the spline interpolation or quasi-
interpolation, we undertake also a study of this approximation tool, see Section 8; occuring
here computations are due to Evely Leetma.

It is assumed that the reader has taken an elementary course of functional analysis. In
Section 2 we remind all or almost all that we need in the sequel about the functional spaces
and the operator theory.

In the main text we minimise the quoting to literure. Bibliographical remarks can be found
in the end of the lecture notes. There can be found also further comments on the central
results of the lectures.

Besides elementary training exercises, section Exercises and Problems contains some more
serious problem settings for possible master and doctor theses.

Let us recall standard designations used during the present notes:

R = (—00,00) is the set of real numbers, Ry = [0, c0),

C is the set of complex numbers,

N={1,2,3,...} is the set of natural numbers,

Z=1A..-1,0,1,2,...} is the set of integers, Z, =Ny ={0,1,2,...},

@(t) < 9(t) as t — 0 means that i%) and % are bounded as ¢t — 0,

©(t) ~1(t) as t — 0 means that ‘1’;%) —last—0.

Sometimes we use abbreviated designations of partial derivatives:
=9 gk = (i)k
T 9z Yz T \oz/ ¢
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By ¢ we denote a generic constant that may have different values by different occurrences.

2. REQUISITES

2.1. Spaces. Below K stand for R or C; its elements are called scalars.

A vector space X is a non-empty set with two operations — addition (u,v € X — u+v € X)
and multiplication to scalars (u € X, @« € K — au € X) such that that the following axioms
are satisfied:

utv=v+u u+(v+w)=(u+v)+w,

afu+v)=acu+aw, (a+plu=au+pfu, (af)u=ca(fu), lu=u;

there is an element 0 in X such that u + 0 =wu, Ou = 0 for all u € X.

The elements (called also vectors) ui,...,u, of a vector space X are linearly dependent if
there are scalars aq, ...,a, not all of which are zero such that ayuq + ... + ayu, = 0; otherwise
U1, ..., Uy are called linearly independent. The dimension of X is n (dimX = n) if there are
n linearly independent elements in X and every set of n + 1 elements is linearly dependent;
the dimension of X is infinite (dimX = oo) if for any natural number n, there are n linearly
independent elements in X. A subspace Xy of a vector space X is a non-empty subset of X
which itself is a vector space with respect to the operations of X (thus u,v € X = u+v € Xp;
u € Xg, a € K = au € Xj). By span§ , the linear span of a subset S C X, is denoted the
set of all linear combinations Y y_; agur with ap € K, up € S, n = 1,2,...; clearly, spanS is
a subspace of X.

A normed space X is a vector space which is equipped with a norm || - ||=]| - || x, a function
from X into R, such that

|| w [[= 0 if and only if u = 0;

lou|=lallu]| VaeK, ueX;

[utv|<[ul+]vlVu,veX.

A sequence (uy,) C X converges to u € X (one writes u, — wor limu, = u) if || up,—u ||[—= 0
as n — 00. A sequence (uy) C X is a Cauchy sequence if || wy, —uy, ||[— 0 as m,n — co. Every
convergent sequence (u,) C X is Cauchy but the inverse is not true in general. A normed
space X is called complete if every Cauchy sequence of its elemets converges to an element of
X. A complete normed space is called Banach space.

For up € X and r > 0, the set B(ug,r) :={u € X :||u —up ||< r} is called (closed) ball of
X with the centre ug and radius r. A set S C X is called:

bounded if it is contained in a ball of X;

open if for any ug € S there is an 7 > 0 such that B(ug,r) C S;

closed if (up) C S, up, — u implies u € S;

relatively compact if every sequence (u,) C S contains a convergent subsequence (with a
limit in X not necessarily belonging to S);

compact if S is closed and relatively compact.
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The closure S of a set S C X is the smallest closed set containing S. A set S C X is said
to be dense in X if § = X. A relatively compact set is bounded; in finite dimensional spaces,

also the inverse is true.
The Kolmogorov n-width dp,(S,X) of a set S C X is defined by

d S X —= 3 f . f _
n( 3 ) chX:lcrllian:n zlells) Unngn || U — Up ||X

where the infimum is taken over all subspaces X,, C X of dimension n.
Examples of Banach spaces:

C10,1] consists of all continuous functions u : [0,1] — K,
e llepo,n=Il v lloo= max | u(z) |;
BC(0,1) consists of all bounded continuous functions u : (0,1) — K,
e lorouy=] v llo= sup [u(z)|;
0<z<1

C™[0, 1] consists of all m times continuously differentiable functions w : [0,1] — K,

I lemon= D I u® oo

k=0
Lr(0,1), 1 < p < oo, consists of all (equivalence classes of) measurable functions u :
(0,1) = K such that || u ||,< oo,

1 1/p
ooy =1l u = ( /0 | u(z) |P) ;

L*°(0,1) consists of all measurable functions u : (0,1) — K such that || u ||co< 00,
[ llpee 0,y = © llo= sup [u(z) .
0<z<1

All these spaces are infinite dimensional. The space C[0, 1] is a closed subspace of BC(0, 1);
both are closed subspaces of L>(0,1).

Theorem 2.1 (Arzela). A set S C C[0,1] is relatively compact in C[0,1] if and only if the
following two conditions are fulfilled:

(i) the functions u € S are uniformly bounded, i.e., there is a constant ¢ such that | u(z) |< ¢
for all z € [0,1], u € S;

(ii) the functions u € S are equicontinuous, i.e., for every ¢ > 0 there is a § > 0 such that
z1,22 € [0,1], | 1 — z2 |< 0 implies | u(z1) — u(ze) [< e forall u € S.

2.2. Linear operators. Let X and Y be two vector spaces. Operator A : X — Y is a

function defined on X and with values in Y'; operator A is called linear if

Alu+v) = Au+ Av, A(ou) = aAu
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for all u,v € X and o € K.

Assume now that X and Y are normed spaces. An operator A : X — Y is said to be
continuous if || up — u ||x— 0 implies | Aup — Au |[y— 0. A linear operator A : X —» Y
occurs to be continuous if and only if it is be bounded, i.e., if there is a constant ¢ such that

| Au ly<cllu|x
for all u € X. The smallest constant ¢ in this inequality is called the norm of A,
| Allx—y=sup{|| Au [ly: v € X, || u | x=1}.

A sequence of linear bounded operators A, : X — Y is said to be pointwise convergent (or
strongly convergent) if the sequence (Aju) is convergent in Y for any u € X.

Theorem 2.2 (Banach—Steinhaus). Let X and Y be Banach spaces. A sequence of linear
bounded operators A, : X — Y converges pointwise if and only if the following two conditions
are fulfilled:

(i) there is a constant ¢ such that || Ay || x—y < ¢ for all n;

(ii) there is a dense set S C X such that the sequence (A,u) is convergent in Y for every
u € S.

Under conditions (i) and (ii), the limit operator A : X — Y, Au = limA,u, is linear and
bounded.

2.3. Inverse operator. Let X and Y be Banach spaces and A : X — Y a linear operator.

Introduce the subspaces
N(A)={ue X: Au=0} C X (the null space of A),

R(A)={feY: f=Au, 2 € X} CY (therange of A).
If N(A) = {0} then the inverse operator A=} : R(A) C Y — X exists on R(A), i.e.,
AT Au=u Yu € X, AA™1f = f Vf € R(A); clearly also A1 is linear. If N'(4) = {0} and
R(A) =Y then the inverse operator A=! : Y — X is defined on whole Y; a nontrivial fact is
that A~! is bounded if A is. This is the essence of the following theorem.

Theorem 2.3 (Banach). Let X and Y be Banach spaces and let A: X — Y be a linear
bounded operator with A'(A) = {0} and R(A) =Y. Then the inverse operator A1 : Y — X
is linear and bounded.

Theorem 2.4 (Banach). Let X and Y be Banach spaces and A : X — Y a linear
bounded operator having the inverse A™! : Y — X. Assume that the linear bounded operator
B : X — Y satisfies the condition

| B |lxsvl A7 lysx< 1.
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Then A+ B: X — Y has the inverse (A + B)™! : Y — X (defined on whole Y) and

| A flyox

= Bllxsvll A= lysx

| (A+B)" ll-sx< §

2.4. Linear compact operators. Let X , Y, U, V be Banach spaces. A linear operator
T: X — Y is said to be compact if it maps bounded subsets of X into relatively compact
subsets of Y. Equivalently, T: X — Y is compact if for every bounded sequence (u,) C X,
the sequence (T'u,) contains a subsequence that converges in Y. Linear compact operators
are bounded. A linear bounded finite dimensional operator (i.e., a linear bounded operator
with finite dimensional range) is compact. For linear compact operators 71,72 : X — Y,
ay,a € K, the operator a1T7 + a1y : X — Y is compact. For a linear compact operator
T : X — Y and linear bounded operators A : U — X and B : Y — V, the operators
TA: U —Y and BT : X — V are compact.

Theorem 2.5. Let T;, : X - Y, n =1,2,..., be linear compact operators, T: X =Y a
linear bounded operator, and let || 7,, — T ||x5y— 0 as n — co. Then T': X — Y is compact.

Theorem 2.6. Let T': X — Y be a linear compact operator and let the linear bounded
operators B, : Y — V converge pointwise to B: Y — V as n — 0co. Then

| By — BT ||x»v— 0 as n — oo.

(Similar claim about || TA, — TA ||y—y is wrong.)

Denote by I = I'x the identity operator in X, i.e., Ju = u for every u € X.

Theorem 2.7 (Fredholm alternative). Let T': X — X be a linear compact operator and
let

N(I -T)={0}.
Then I — T has the bounded inverse (I —T) !: X — X.

Theorem 2.8. Let X and Y be Banach spaces such that Y C X , Y is dense in X and
| ullx<c| uly forevery u € Y. Let T: X — X be a linear compact operator that maps
Y into Y, and let also T : Y — Y be compact. Assume that the equation v = Tu + f with
given f € Y has a solution u € X. Then u € Y.

The only claim u € Y of Theorem 2.8 will be trivial if we add the assumption that N(I —
T) = {0}, since then by Theorem 2.7 equation u = T'u + f is uniquely solvable in X as well
as in Y. Actually this additional assumption is acceptable for our needs in the sequel so far
as we do not treat eigenvalue problems.

Examples of linear compact integral operators. With the help of Theorem 2.1 it easy
to see that the Fredholm integral operator

1
T: C[0,1] > C[0,1], (Tu)(z) = /0 K (z,y)u(y)dy,
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is compact provided that its kernel K(z,y) is continuous on the square O = [0,1] x [0,1].

Similarly, the Volterra integral operator
T
7 00,1 - C0,1), (Tu)(@) = [ K(o.y)ulwy
0
is compact provided that the kernel K (z,y) is continuous on the triangle A = {(z,y) € R? :
0<y<z<1}

2.5. Differentiation of composite functions. Theorem 2.9 (Faa di Bruno). Let u be
an m times continuously differentiable function on an interval which contains the values of
@ € C™[0,1]. Then the composite function u(p(x)) is m times continuously differentiable on
[0,1] and the differentiation formula

d\’ i | NP o@D\

E1+2ko+...4jk;=j

holds for j = 1,...,m; the sum is taken over all non-negative integers ki,...,k; such that
ki +2ky + ...+ jkj = 5.

3. WEAKLY SINGULAR INTEGRAL OPERATORS

3.1. Weakly singular kernels. Consider the integral operator T defined by its kernel func-
tion K (z,y) via the formula

(Tu)(z) = /0 K(z,y)uly)dy, 0<z<1,

where u is taken from some set of functions, for example, from C[0,1]. In the literature,
the weak singularity of the kernel K and of the corresponding operator 7" may have different
senses. A tight understanding is that K has the form

(3.1) K(z,y) =alz,y) |z -y |7
where a is a continuous function on [0, 1] x [0,1] and 0 < v < 1. This kernel has the property
1
(32 sup [ K(a,p) | dy < o0
0<z<1J0
often used to define the weak singularity in the wide sense: a kernel K is weakly singular if it
is absolutely integrable w.r.t. y and satisfies (3.2). The kernels we will consider in the sequel
are somewhere in the middle of these two extremal understandings of the weak singularity:
we assume that K is continuous on ([0, 1] x [0,1]) \ diag and

(3-3) | K(z,y) |< ek (14 | & —y [77) for (z,y) € ([0,1] x [0,1]) \ diag
where v < 1. Here diag means the diagonal of R?:

diag = diag(R?) = {(z,y) € R? : z = y}.
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For instance, the kernels

K(z,y) = a(z,y)log |z —y |, K(z,y) =a(z,y)|z—y| " log"|z—y|

with a € C([0,1] x [0,1]) and many others are weakly singular in this sense.

3.2. The smoothness-singularity class S™" of kernels. We are interested in kernels that
are C™-smooth outside the diagonal. Introduce the following smoothness-singularity class
8™ of kernels. For given m € Ny and v € R, denote by ™" = 8™ (([0,1] x [0,1]) \ diag)
the set of m times continuously differentiable kernels K on ([0,1] x [0, 1]) \ diag that satisfy
there for all k,1 € Ny, k + [< m, the inequality

(3.4) ‘(%)k (% + gy)lK(ac,y)

Note that for k =1 = 0, v > 0, condition (3.4) coincides with (3.3). A kernel K € ™" is
weakly singular if v < 1. A kernel K € §™" with v < 0 is bounded but its derivatives may

1, v+k<O0
<cxmq 1+ [log|lz—yll, v+k=0
|z —y |77k, v+k>0

have singularities on the diagonal; ¥ = 0 corresponds to a logarithmically singular kernel. A

consequene of (3.4) is that

(3.5) ‘ (%)k (a% + %)l K(z,vy)

Indeed, using the equality 0y = (0; + 0y) — Oy, we can obtain (3.5) from (3.4) first for k =1,
then for k = 2 etc. l

Observe also that the differentiation (6% + a%) does not influence on the r.h.s. of (3.4).
This tells us that (3.4) is somehow related to kernels that depend on the difference z — y of
arguments. For example, kernel (3.1) belongs to S™" if a € C™([0,1] x [0, 1]); actually the
condition on a can be weakened, see Exercise 4. A further important example is given by
K(z,y) = a(z,y)log | z —y | with an a € C™([0,1] x [0,1]) — this kernel K belongs to S™°.

Lemma 3.1. (i) If K € 8™ with an m > 1 then 0,K(z,y) and 0yK(z,y) belong to
S™ L +lwhereas (0, + 8y) K (z,y) belongs to S™ 1.

(ii) If K € 8™ then (z — y) K (z,y) belongs to S™¥1.

Proof. These claims are elementary consequences of the definition of S™¥. [

1, v+k<0
Scgm{ Wlloglz—yll, v+k=0
|z —y | vk, v+k>0

3.3. Compactness of a weakly singular integral operator in C[0,1]. A weak singularity
of the kernel implies that the corresponding integral operator is compact in the space C]0, 1].
More precisely, the following statement holds true.

Lemma 3.2. A kernel K € 8™ with m > 0, v < 1 defines a compact operator T :
L*(0,1) — C]0,1], hence also a compact operator 7' : C[0,1] — C[0,1] and a compact
operator T': L*(0,1) — L*°(0,1).
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Proof. Take a smooth “cutting” function e : [0,00) — R satisfying the conditions e(r) = 0
forOSTS%,e(ﬂzlforerandOSe(T) <1 for all r > 0. Define

Ko(e,y) = e(n | 2 —y DK (,9), (2,9) € [0,1] x [0,1],
and .
(Tou)(z) = /0 Ko (z,y)u(y)dy, neN.

The kernels K, (z,y) are continuous on [0, 1] x [0, 1] — the possible diagonal singularity is “cut”
off by the factor e(n | x —y |), Kn(z,y) = 0 in a neighborhood of the diagonal. Hence the
operators T, : L*(0,1) — C[0, 1] are compact. Further, for u € L*°(0,1), 0 < z < 1, we have

(T — Tou)(z) = /0 (K (2,) — Kz, 9)]u(y)dy = /0 Kz, y)[1 - e(n | = -y July)dy,

| (Tu = Thu)(z) |< CK/O lz—y |7 [1—eln|z—yldy [l ulle

1/n 1/n)t—v
<o [ ey dylule=2ex [ 2 el u oo 2
js—yl<1/n 0 —v

that implies Tw € C[0,1] as a uniform limit of T,,u € C[0, 1], and

(1/m)t™
1

| T — Ty |l (0,1)—scl0,1) < 2¢K — 0 as n — oo.

Thus T maps L*°(0,1) into C[0,1] and 7' : L*°(0,1) — C[0,1] is compact as a norm limit of
compact operators T,, : L*(0,1) — C|[0,1], see Theorem 2.5. O

4. DIFFERENTIATION OF WEAKLY SINGULAR INTEGRALS

First we recall a well known result about the closedness of the graph of the differentiation
operator; the proof is left as an exercise.

Lemma 4.1. Let v, € C*(0,1) and v, — v, v}, — w uniformly on every closed subinterval
[6,1—16],6 >0. Then v € C*(0,1) and v' = w.

We are ready to establish a differentiation formulae for weakly singular integrals with respect
to a parameter.

Theorem 4.2. Let g(x,y) be a continuously differentiable function on ((0,1) x [0,1]) \diag
satisfiying there the inequalities

0 0
. < gyl |24+ 2 < —y | 1.
(4.1) lg(z,y) |[<clz—yl|™, ‘(aeray)g(w,y)‘_CI:v y|™, v<

Then the function = fol g(x,y)dy is continuously differentiable in (0,1) and

d (! Lrog 9
. — - Z = - 1 1.
(4.2) Iz /0 g(z,y)dy /O (83: + 8y) 9(z,y)dy + g(z,0) —g(z,1), 0<z <
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Proof. For functions g that are continuously differentiable on (0,1) x [0, 1] including the
diagonal, formula (4.2) is obvious. Let g satisfy the conditons of the Lemma. Take a cutting
function e€ C[0,00) satisfying e(r) = 0for 0 <r < 2, e(r) =1forr >1and 0 <e(r) <1
for all » > 0; we already used this cutting function in the proof of Lemma 3.2. Define
gn(z,y) =e(n |z -1y |)g(z,y), n = 1,2,.... The functions g,, are continuously differentiable

n (0,1) x [0,1] and (4.2) holds for them: denoting v, (x) zfol e(n|z—y|)g(z,y)dy, we have
d (1 1
@) =5 [ el =y Doty = [ etn]z =y )0+ )ale.v)dy

+e(nz)g(z,0) —e(n(l —z))g(z,1), 0 <z < 1.
We took into account that (0, + 0y)e(n |z —y |) = 0. With the help of (4.1) we find that

1
w—ﬁ/guwm%vg —ﬁ/ s+ 8,)9(@, y)dy + g(z,0) — glz,1) as n - oo
0

uniformly on every closed subinterval [6,1—4], § > 0. By Lemma 4.1, the function fol g(z,y)dy
is continuously differentiable on (0,1) and (4.2) holds true for it. OJ
Theorem 4.3. Let g(z,y) be a continuously differentiable function for 0 <y < z < 1

satisfiying there the inequalities
(9,8 .
43 el <o - |(5o+ 50 ) o) <o -t v<r

Then the function fo z,y)dy is continuously differentiable in (0,1) and

4.4 il _ 9,0 .
(4.4) e /0 9(z,y)dy /O (8x + ay) g(z,y)dy + g(2,0), 0<z<

Proof. This can be proved by the same idea as Theorem 4.2. Alternatively, we can derive
(4.4) from (4.2) extending g by the zero values to ((0,1) x [0,1]) \diag and noticing that (4.3)
implies (4.1) for the extended g. The details of the argument are proposed as an exercise. [

5. BOUNDARY SINGULARITIES OF THE SOLUTION

5.1. Boundary singularities of a solution to w.s.i.e. is a usual phenominon. Consider

the integral equation

(5.1) /Kwy y)dy + f(z), 0<z <1,

where K € §™Y with m > 1, v < 1, f € C™[0,1]. Let us demonstrate that in general
u ¢ C'[0,1]. Indeed, supposing that u € C*[0, 1], we can differentiate (5.1) as an equality and
we obtain on the basis of Theorem 4.2

=/u@+memmmw+/Kumw@@
0 0
K (z,00u(0) — K(z, 1u(1) + f(z)
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Since the integral operators with the kernels K(z,y) and (9, + 0y) K (z,y) are weakly singular
and u,u’ € C[0, 1], the first two terms on the r.h.s. are on the basis of Theorem 3.2 continuous
on [0,1]; the same is true for the term f/(z). On the other hand, the term K(z,0)u(0) has
a singularity at z = 0 provided that u(0) # 0 and K (z,0) really has a singularity allowed by
inequality (3.3), and similarly the term K(z,1)u(1) has a singularity at z = 1 if u(1) # 0 and
K (x,1) has a singularity. Thus the assumption u € C*[0, 1] leads to a contradiction if K (z,0)
or K(z,1) is singular and u(0) # 0, u(1) # 0; these inequalities hold for most of f € C™]0,1].

5.2. Weighted space C™"(0,1). For m > 1, v < 1, denote by C"™"(0,1) the space of
functions f € C™(0, 1) that satisfy the inequalities
1 j+r—1<0

(5.2) | fO@) [<cp 14 |logpla)|, j+v—1=0 p, 0<z<1, j=0,..,m,

pla)™ =+, j+rv—1>0
where

p(z) = min{z,1 — z}

is the distance from z € (0,1) to the boundary of the interval (0,1). Introduce the weight

functions
1, A<0
wa(z) =¢ 1/(1+ | logp(z)|), A=0 p, 0<z <1, XeR
p(z) A>0

Equipped with the norm
m .
I £ llemeoun=_ sup wjp, 1(z) | f9() |,
=0 0<z<1

C™"(0,1) becomes a Banach space.
For j = 0 (5.2) yields | f(z) |< ¢y telling us that a function f € C™"(0,1) is bounded on
(0,1). For 7 =1 (5.2) yields

| f(@) 1< eppla) ¥, 0<z <1,

if 0 < v < 1; for v < 0 we have a more strong inequality. This implies f’ € L9(0,1) foraq > 1
such that qv < 1. Hence, for any 1,22 € (0,1), we have
1

/2f'(w)dw S(/2|f'(£10) |qu)q</2dx)q =1 £ llze| @1 — @5 |7

where % + % = 1. We see that f is uniformly continuous on (0,1). A uniformly continuous

function f on (0,1) has the boundary limits
£(0) = Tim f(z), F(1):= lim f(z),

z—0 r—1

| f(z1) = f(=2) |=
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hence f has a continuous extension to [0, 1]. So we established a natural imbedding
(5.3) c™"(0,1) Cc C[0,1}, m>1, v <1.

Moreover, with the help of Arzela theorem (Theorem 2.1) we obtain that the imbedding
operator is compact.

If v < 0 we can apply the same argument for f’ and so on. We obtain the following
generalization of imbedding (5.3):

(5.4) c™¥(0,1) € C'[0,1], m >1, v <1, | = min{m — 1, | intv |}

where intv, the integer part of v, is the greatest integer not exceeding v. Imbedding (5.4) is
compact.

5.3. Compactness of integral operators in weighted spaces. The following theorem is
crucial in the smoothness considerations for the solutions of (5.1). It has a simple formulation
but not so simple proof.

Theorem 5.1. Let K € Sm”, m > 1, v < 1. Then the Fredholm integral operator T
defined by (Tu)( fo u(y)dy maps C™"(0,1) into itself and T' : C™"(0,1) —
c™v(0,1) is compact.

Proof. (i) A technical formulation of what we have to prove. First of all, taking a function
u € C™¥(0,1), we have to ensure that Tu € C™¥(0,1), or equivalently, Tu € C™(0,1)
and w;y,_1D'Tu € BC(0,1), i = 0,...,m, where D = % is the differentiation operator and
w;i+y—1 are the weight functions introduced in Section 5.2. Second, we have to prove that the
operators w;,,_1 DT : C™"(0,1) — BC(0,1), i = 0,...,m, are compact. Then for a given
bounded sequence (un)nen C C™¥(0,1), the sequences (wjy,_1D*Tuy,), i = 0,...,m, are
relatively compact in BC(0, 1), and repeatedly extracting convergent subsequences from the
preceding subsequences, first for j = 0, after that for 7 = 1 etc., we can arrive to a subsequence
determined by an infinite set N’ C N such that all (w;;, 1D*Tuy)nent, i = 0, ..., m, converge
uniformly in (0, 1), or equivalently, the sequence (T'up,)necn' converges in C™*(0, 1) that means
the compactness of T' : C™(0,1) — C™"(0,1). (A fastidious reader uses Lemma 4.1 to
ensure that the limits of (D*T'uy,)nent, 4 = 0, ..., m, are consistent in (0,1).)

For i = 0, we have w;y, 1(z) =1, and w;y, 1D'T =T : C™(0,1) C Clo,1] — C[0,1] is
compact by Lemma 3.2. Thus we have to prove the compactness of w;y,_1D'T : C™*(0,1) —
BC(0,1) fori=1,...m

(ii) Differentiation of Tu. Take an arbitrary u € C™"(0,1) and a “cutting” function
e € C™[0,00) that satisfies

1
0<e(r)<lforr>0, e(r)y=0for0<r<—, e(r)=1forr>1.

[\
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Fix an arbitrary point 2’ € (0,1) and denote 7' = 1p(z') = 7 min{2’,1 — 2'}. For z satisfying

[ Kty
- /01 e ('f”?q;,yg K (z,y)u(y)dy + /01 {1 .y (|x%y|> } K(z,y)u(y)dy.

In the first integral on r.h.s., the diagonal singularity is cut off by the factor e ('w;y‘

|z — ' |[< 37!, we split

) ; we may
differentiate this integral m times under the integral sign. In the second integral on r.h.s., the
coefficient function 1 —e(] z — y | /r') vanishes for y = 0 and y = 1. Due to estimate (3.4)
and Theorem 4.2, this integral is also differentiable; differentiation formula (4.2) yields

5%/01 {1 —e <|x+y|> } K(z,y)u(y)dy
[ (B2 4 D) tkwantrao, 152 172

(the boundary terms of (4.2) vanish in our case; (% + a—y) e(| z—y | /r')=0). In its turn, the
last integral can be differentiated in a similar manner. By repeated differentiation we obtain

wrae = [ (2) e (251 ke b uway

. |z —y | 0 Y\ o1, ,
_ 1= J1 4 — < — <1 < m.
+/0 {1 e( - )}(8$+8y) {K(z,y)u(y)}dy, |z—2z"|< 57 1<i<m

Differentiating the product of functions under the integrals by the Leibnitz rule, setting after

that £ = z’ but writing again z instead of z’, we arrive at the formula

65.5) (D'Tu)(z) = 2% ( j ) [eten (2) ke
‘7:
L
]:
[ a—ax)J m;y')] L SISk isicm

Multiplying both sides of (5.5) to the weight function w;;,_1(z), the result can be rewritten
in the form
i, _ Z i j -
(5.6) Wiyy 1D'Tu = Z ; (T”u +S;j(wjrp1 D u)) , 1<i<m,
=0
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where for j =0,...,4,1=1,...,m,

1

0

57) (Tg)@) = [ v @eiten) () Koty

0

(5.8) (Sijv)(z) = /01 % {1 —e (%)} { (a% + %)i_j K(a:,y)} v(y)dy.

Now the proof of the compactness of the operators w;y,_1 DT : C™"(0,1) — BC(0,1),
i =1,...,m, can be reduced to the study of the mapping properties of T; ; and S; ;. In (5.6),

sup wi,1(y) | (D) (y) [<[|w llome (1), 5= 05 s
O<y<1

To prove compactness of the operators w;y,_1 DT : C™"(0,1) — BC(0,1), i =1,...,m, it is
sufficient to establish that

5.9 T;;: C™"(0,1) - BC(0,1), i1 =1,...m, j=0,...,4, are compact,
J

(5.10) S;;: BC(0,1) = BC(0,1), i =1,...,m, j=0,...,4, are compact.

(iii) Proof of (5.10). Denote by H;; the kernel of the integral operator S;;, 1 < i < m,
0<y <y

Observe that 1 —e (2&”(;)3") =0for |z—y|> @, hence

supp Hy,; € {(z,) € [0.1] x [0,1] | 2 —y |< A7)

and H; ; is continuous on ([0, 1] x [0,1])/diag. For (z,y) € suppH, ;, the quantities p(z) and
p(y) are of the same order:

29 < piy) < 2pw) for y (z -

o), 0

9 Ty

Hence similar relations hold for the weight functions: with some positive constants ¢; and co,

(5.11) c1wjyy—1(7) < wip-1(y) < cowjp-1(z), j=0,..,m.
Thus
Wipy_1(z) (O O\ d a)i—j
iji(Ty) |Ke———F | | =+ 5 y) < ot K(z,y) |.
| Higlo) 1< en = (L ) K 1ol (g +55) K@)l

Now (3.4) tells us that the kernels H;;, i = 1,...,m, j = 0,...,4, are weakly singular, and
(5.10) holds due to Lemma 3.2.
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(iv) Proof of (5.9): case 0 < v < 1. The following argument holds also for v = 0, except
for j = 4. Denote by Kj; j(x,y) the kernel of the integral operator T; ;,

Kij(z,y) = witv_1(2)e;(z,9)0 K (z,y), 1<i<m,

Observe that
suppeg C {(z,y) € [0,1] x [0,1] : | z — y |> p(z)/4},

whereas for j > 0 the support of e; is smaller,

(5.12) suppe; C {(z,y) € [0,1] x [0,1] : p(z)/4 <|z -y |< p(z)/2}, 0<j<m.
Further,
| ej(2y) 1< ¢i(p(@)/D 7, ¢ = max | ()|, 0<j<m.
Hence
(5.13) lej(zy) [<clz—y| 7, 0<j<m,

(for j = 0 this inequality is trivially true). For 0 < v <1,0<j <4,and forv =0,0<j <1,
(3.4) yields | 8y 'K (z,y) |< ¢ |z —y |~(~9~*, and we obtain

‘ Kzaj(xﬁy) |S Cwi_i_y_l(m) | T—Yy ‘*’L’*I/,

1
(5.14) / | Kij(a,y) | dy < cwipo () / -y | dy
0 {y: Iw*yIZ@}

1

< 2cwiyy—1(z) /

—i—v+1 ;
i ) >1
z—z—l/dz S Clwz'—}-y—l(-T) p(.’I)) ,L'+V -
o) 14+ |logp(z) |, i+v=1

This means that for 0 < v < 1, 0 < j < 4, and for v = 0, 0 < j < 14, the operators
T;j : C[0,1] — BC(0,1) are bounded that together with the compact imbedding C™"(0,1) C
C[0,1] implies the compactness of T;; : C™"(0,1) — BC(0,1). Thus (5.9) holds true for
0 < v < 1, whereas for v = 0 we yet have to prove that also T;; : C"™"(0,1) = BC(0,1) is
compact.

(v) Proof of (5.9): case v = 0. To obtain (5.9) for v = 0, it remains to establish that
the operators T;; : C™"(0,1) - BC(0,1), 1 < ¢ < m, are compact. Let us try to follow
the estimation idea of the proof part (iv): now (for j = i) we have by (3.4) | I K (z,y) |<
c(l+log|z—yl),

}:c', O0<z <l

| Kii(z,y) |[< cwimi(z) |z —y |7 (1+1og |z —y|),

and instead of (5.14) we obtain

1
/ | Kia(ey) | dy < cwz-_lm)/ |z —y [~ (1 +log |z —y )dy
0 {y: Iw—y\2¥}
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[ 10 ogp@) ), i=1 . L =1
SC{ i i>1}p<w)+<1+|logp<m)|>—c{Hllogp(mDl}.

We see that T;; : BC(0,1) — BC(0, 1) is till bounded (and hence T;; : C™*(0,1) — BC(0,1)
is compact) for 4 = 1 but not for ¢ > 1. To prove the compactness of T;; : C"™"(0,1) —
BC(0,1) for ¢ > 2 we need new ideas. Observe that

ei(w,y) = _ayei—l(‘l‘ay)

and integrate in (5.7) by parts. Clearly e;—1(z,0) = ej—1(z,1) = 0, so we obtain

1
(T ) () = /0 wi1(z) [~Byei1(z,y)] K (2, y)u(y)dy

1 1
— [ wia@eis @00 K o))y + [ wis(@)eis ,3) K (o) ()
0 0
T =T, + T}
Due to (5.13) and (3.5), the kernel of the operator T}, has the estimate
wi-1(z) | ei-1(2,9)10y K (2,9)] |< cwima () |2 —y [Tz —y [T'=cp(a) ™! |2 -y |7,

and similarly as in (iv) we obtain that 7}, : BC(0,1) — BC(0,1) is bounded, hence T}, :
C™¥(0,1) — BC(0,1) is compact. To prove the compactness of T;/; : C™¥(0,1) — BC(0,1),
we present it in the form
1
W;—1\T
(@)@ = [ 22 e (o0 K ()0 ()
o wo(y)

Here || wou' [|loo < © ||¢m.v(0,1), 80 it suffices to observe that

Lw; 1 (2)
wo(y)

as for an integral operator with a weakly singular kernel. Indeed, taking into account (5.11)

Ty : BC(0,1) — BC(0,1) is compact for (T};v)(z) :=/ ei—1(z,y)K(z,y)v(y)dy
0

and (5.12) we can estimate the kernel of T} as follows:

wi—1(x)

wo () | ei-1(z,9)K (2,y) |< ep()” 11+ [logp(z) |) |z —y | (1+ | log [ & —y [])

<1+ | log |z —y )%, (z,y) € suppei—1.

This completes the proof of the Theorem in the most important case 0 < v < 1. In the
case of v < 0, (5.9) can be established by same ideas; more terms and more times must be
integrated by parts in (5.7). We do not go into details. Instead we demonstrate another idea,
how the proof of the Theorem for v < 0 can be obtained from the case 0 < v < 1.
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(vi) Extending the proof for negative v. Let v € [—1,0). Then u € C™"(0,1) is continuously
differentiable on [0, 1] and Theorem 4.2 yields

/ K (2, y)u(y)dy = / (B + 0,) K (2, y)u()]dy + u(0)K (z,0) — u(1)K (z, 1)

= [[10. + o) + [ Ko @y +uOK (5,0 - u()K (e, ),
or
DTu =Ty +TDu+ Ryu,

’IUZ'_|_,,_1DiTu = wi+,,_1Di71T(1)u + wi_Hj_lDiflTDU + wH_,,_lDi*lRlu, 1 <3< m,
where T1) is the integral operator with the kernel K\ (z,y) = (9,+0,) K (z,y) and (R1u)(z) =
u(0)K (z,0) — u(1)K(z,1) is a finite dimensional (a two dimensional) operator. For u €
C™"(0,1) it holds Du € C™~1#+1(0,1) with v +1 € [0, 1),

| Du ||Cm—1,u+1(0,1)§|| u ||cmw(o,1) .

The operator w;y,_1 D" 1T = w(i_1)+(u+1)_1Di_1T : Cm=br+l(0,1) — BC(0,1) is compact
on the basis of (i)-(v), hence w;y, 1D~ 'TD : C™¥(0,1) — BC(0,1) is compact. The
same is true for w;y, D 'TM . C™*(0,1) — BC(0,1) since K()(z,y) satisfies same
inequalities as K (x,y). Finally, the compactness of w;,,_1D* 'Ry : C™¥(0,1) — BC(0,1)
is a consequence of the boundedness of this finite dimensional operator. As a summary, we
obtain that w;y, 1 DT : C™¥(0,1) — BC(0,1) is compact for i = 1,...,m. As explained in
(i) this implies the claim of the Theorem.

Having stablished the compactness of w;y,_1 DT : C™"(0,1) — BC(0,1) for v € [-1,0),
we in similar way extend the claim for v € [-2,—1) etc. O

5.4. Smoothness and singularities of the solutions. We are ready to present the basic
result about the smoothness and singularities of the solutions to weakly singular integral
equations.

Theorem 5.2. Let K € 8™, f € C™¥(0,1), m > 1, v < 1, and let u € C[0,1] be a
solution of equation (5.1). Then u € C™"(0,1).

Proof. By Lemma 3.2, the integral operator 7" : C]0,1] — C[0, 1] is compact. By Theorem
5.1 T maps C™"(0,1) into itself and 7" : C™"(0,1) — C™"(0,1) is compact. With X =
C[0,1] and Y = C™¥(0, 1), Theorem 2.8 yields that u € C"™"(0, 1) for the solutions u € C[0, 1]
of (5.1). O

5.5. A smoothing change of variables. The derivatives of a solution u € C™"(0,1) to
equation (5.1) may have boundary singularities. Now we undertake a change of variables that
kills the singularities, i.e., the solution of the transformed equation will be C"™-smooth on

[0,1] including the boundary points.
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Let ¢ : [0,1] — [0, 1] be a smooth strictly increasing function such that ¢(0) =0, p(1) = 1.
Introducing the change of variables

equation (5.1) takes the form

(5.15) o(t) = /le(t, sy(s)ds + fo(t), 0<t<1,
0
where
fo(t) = fp(t), Kylt,s) == K(p(t), ¢(s))¢' (5);
the solutions of equations (5.15) and (5.1) are in the relations
v(t) = ulp(t), u(z)=v(p™ (z)).

Under conditions we set on ¢ : [0,1] — [0, 1], the inverse function ¢! : [0,1] — [0, 1] exists
and is continuous.
Theorem 5.3. Given m > 1, v < 1, let p € N satisfy

<0
(5.16) p> { M V= }
1

) O<r<l
Let ¢ € CP[0,1] satisfy the conditions ¢(0) =0, (1) =1, <p'(t) >0for0<t<1and

Then the following claims hold true.
(i) For f € C™"(0,1), the function f,(t) = f(¢(t)) belongs to C™|0, 1] and

(5.18) 90 =Y =0, j=1,...m
(ii) For K € 8%, the kernel K,,(¢,s) = K (¢(t), ¢(s))¢'(s) belongs to S®” and hence defines
a compact integral operator

T,: C[0,1] - C[0,1], (T,0)( /K (t, )

Proof. (i) Clearly f, € C™(0,1), thus claim (i) concerns the boundary behaviour of f.
Due to the imbedding (5.3), after the continuation by continuity, f, € C[0,1]. So we have to
show that

f900) = lim () = 0, fP(1) = lim [P (1) =0, j=1,....m

t—0 t—1
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We establish these relations for ¢ — 0; for ¢ — 1 the argument is similar. By the formula of
Faa di Bruno (see Theorem 2.9),

Dy=" > hp ST ) @ P D (), 0 <t <1,
k:1+2k2...+jkj:j

with some constants cg,, . x;- In a vicinity of 0, the inclusion f € C™"(0,1) yields

1, k<l—v
| F (@) [Seq 1+ |loge(t) |, k=1-v
(t)Ivk, E>1—-v
Due to (5.17),
o) <t?, W) =<tP" as t -0, i =0,...,p,
hence
1, k1+...+kj<1—1/
P <e Y 14 |logt|,  ki+..+kj=1—v pt®Dkge=Dka 4p=5k;
kit2ke.tjhy=j | PU-v=ki—e—ki) g4 4 Ei>1 v

Pkt thy)=j ki+..+kj<l—v
=c > (14 |logt |ytptkrtethi) =iy 4 4 kj=1-v p, 1<j<m.
k1+2ka...4+jk;=j tp(lf’/)*j’ ki + ...+ kj >S1—v

For v > 0, we have k1 + ... +k; > 1 — v and | fé,j)(t) |< t?(=¥)=7 in accordance to lower
line. For v = 0, there is one combination of kq,...,k; such that k; + 2ks... + jk; = j and

ki+..+kj =1-v,namely k; = ... = kj_1 =0, k; = 1, yielding | fé,j)(t) |< ctP=I(1+ | logt |).
For v < 0, the smallest exponent p(ky + ... + k;) — j with restrictins ki + 2ks... + jk; = j and
ki +...+k; < 1—v again corresponds to the combination k1 = ... = k; 1 = 0, k; = 1, yielding

| fg )(t) |< tP~J from the upper line which dominates over terms in in the lower and central

lines. As a summary, in a neighborhood of 0, it holds

I, r<0
|9 1< e i1+ |logt]), v=0 ¢, ji=1,...,m
p(1-v)=j v>0

Now condition (5.16) implies that lim; g fg(,j)(t) =0forj=1,..,m.
(ii) Claim (ii) is trivial for v < 0 since then K,(t, s) is bounded together with K(z,y). To
prove claim (ii) for 0 < v < 1, we first examine the properties of the function

p(t)—p(s)
P(t,s) == o L7 , 0<t,s<1.
o'(t), t=s



WEAKLY SINGULAR INTEGRAL EQUATIONS 20

Due to the conditions set on ¢, we have 9 € CP~1([0,1] x [0,1]), #(t,s) > 0 for (¢,s) €
([0,1] x [0,1]) \ {(0,0), (1,1)}; we show that there exists a positive constant ¢y such that

(5.19) P(t,s) > comin{(t+ )P~ [(1—t)+ (1 —s)P7'}, 0<t,s<1.

It suffices to establish estimate (5.19) in a neighborhood of the points (0, 0); for a neighborhood
of the point (1.1) the estimate follows by the symmetry; on the rest part of [0, 1] x [0, 1] function
1) is greater than a positive constant implying (5.19) also there, possibly with a smaller but still
positive constant ¢y. We choose a neighborhood Us C [0, 1]x[0, 1] of (0, 0) of a sufficiently small
radius § > 0 such that ¢® (¢) # 0 for 0 < ¢ < 8, see (5.17). Then @) (t) > 0 for 0 <t < 6,
since p®)(t) < 0 for 0 < ¢ < § together with the conditions ¢'(0) = ... = ¢ 1 (0) = 0 should
imply ¢'(¢) < 0 for 0 <t < 6 (use the Taylor formula!). Denote dy := ming<<s @) (t) > 0.
Let 0 < s <t <§. Due to (5.17), the Taylor formula with the integral form of the rest term
yields

t
p(t) —p(s) = : )! /0 (t— T)P—lgo(p) (1)dr —

=1 : ) /0 S(s—T)”‘lso"’)(T)dT

(r—1

s t
= 7)'/0 [(t - T)pil - (5 - T)pil](p(p) (T)dT + 1 )' /; (t _ T)pfl(p(p) (T)dT.

(p—1 (p—1
The functions (t — 7)P~! — (s — 7)P~! and (¢ — 7)P~! under last two integrals are positive.
Estimating ¢®) (1) > dy > 0 we obtain

- i } — )Pl — (s —7)Pdr t — )P ldr
o)~ 0() 2 0 ([ Te=rr = (o= ar [ (- rptar)
t

= ﬁ (/0 (t— T)p_ldT — /Os(s — T)p_ldT> = %(tp —sP),

and (5.19) follows for 0 < s <t < 4:

-1 p—1
1) — dotP — s do 22 . . -1 ; ;
p(t) —p(s) _ dot? — " _ p—?ZtﬁsP*H >0y ( pj )tasplﬂ = co(t + s)P7 L.
" j=0 7=0

1

t—s —pl t—s

The case 0 < t < s < § is symmetrical to the treated case 0 < s <t < 4d. For 0 < s =t < 4,
(5.19) follows by a limit argument. This completes the proof of (5.19).

Let us return to claim (ii) of the Theorem for 0 < v < 1. Consider the case 0 < v < 1. Due
to (3.4) and (5.19),

| Kolt,5) 1< exc | l0) = pls) [ 6/(6) = exc (E9 AN o

<cgey”|t—s|" <clt—s|™

[min{(z + s)7~1, (1 =) + (1 —s))P~ 1}
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on the last step we took into account that ¢'(s) < sP~L as s — 0, ¢'(s) < (1—3s)P"Lass — 1.
Thus K, € S%”. In the case v = 0,

| Kyt ) [< cx(1+ | log | o(t) — @(s) || ¢'(s)

= excit [1og 202 4 1og s (s
c(1+ | logmin{(¢ + s, [(1 - ) (L—=s)I} | +[log |t —s])¢'(s)
<ec+e(l+ | log |t —s]]), ie, K, €S,
Having established that K, € S%” for v < 1, the compactness of the operator T,, : C[0,1] —
C[0,1] follows by Lemma 3.2. O
Corollary 5.4. Assume the conditions of Theorems 5.2 and 5.3. Then v € C™[0, 1],

(5.20) v (0) =0 (1) =0, j=1,...m,

for the solutions of equation (5.15).

Remark 5.5. One can conjecture that, under condition of Theorem 5.3, K € S™" implies
K, € §™Y. The argument becomes rather technical to justify this. For us the relation
K, e SO established in Theorem 5.3 is sufficient in the sequel.

Example 5.6. Let us present an example of function ¢ that satisfies the conditions of
Theorem 5.3:

t
1
(5.21) o(t) = cp/o Y1 —7)P N, ¢y =

fol P=1(1 — 7)P—1dr

, pEN

Clearly, p(0) =0, p(1) = 1, ¢'(t) = cpt? "L (1 — )P > 0 for 0 < ¢t < 1, () (0) = (1) = 0
forj=1,..,p—1, ®(0) = Cps P (1) = (=1)P=1¢,. In this example, ¢ is a polynomial of
degree 2p — 1.

6. SPECIFICATION FOR VOLTERRA INTEGRAL EQUATIONS

The Volterra integral equation

(6.1) /Kwy y)dy + f(z), 0<z <1,

can be considered as a special case of the Fredholm integral equation (5.1) in which K(z,y) =0
for 0 <z <y < 1. The class S™"(([0, 1] x [0,1]) \ diag) is well defined for such kernels, hence
the results of Section 5 hold for equation (6.1). Nevertheless, it is worth to revisit the results
of Section 5 since normally the derivatives of a solution u(z) to (6.1) may have singularities
only at x = 0. We “project” the formulations of the main concepts and results of Section 5 to
the needs of Volterra equation (6.1). The proofs are omitted since they contain no new ideas,
conversely, they are some simplifications of the arguments in Section 5.
Denote
A={zy):0<y<z<i}
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and introduce the class S™"(A) of kernels K (z,y) that are defined and m times continuously
differentiable on A and satisfy for (z,y) € A and for all &, € Ny, k + < m, the inequality

o\ ra oY
Y (L4 %)k
() (5o v i) e
After an extension of K € S™"(A) by the zero value outside A we obtain a kernel K €
S (([0,1] x [0,1]) \ diag).

For m > 1, v < 1, denote by C™"(0, 1] the space of functions f € C™(0,1] that satisfy the

inequalities

1, v+k<0
<cgkmq 1+ |logz—y)|, v+k=0
(x —y)~ vk, v+k>0

1 j+r—-1<0
| f9(@) [<erq 14+ |logz |, j+v—-1=0 p, 0<z<1, j=0,..,m
gL 4 —1>0

Introduce the weight functions

1, A<0
wi(z) =4 1/(1+ |logz ), A=0 p, 0<z<1, AeR
z? A>0

The norm in C™"(0,1] is given by
m .
I F llemeon=2 sup wh,1(@) | fP@)]-
j=0 °F=
There holds the compact imbeding

cm™’(0,1] c C[0,1], m>1, v<1.

Theorem 6.1. Let K € Sm”( ), m > 1, v < 1. Then the Volterra integral operator
T defined by (Tu)( fo u(y)dy maps C™"(0,1] into itself and T : C™*(0,1] —
c™"(0,1] is compact.

Theorem 6.2. Let K € S™"(A), f € C"™"(0,1], m > 1, v < 1, and let u € C|0, 1] be the
(unique) solution of equation (6.1). Then u € C™"(0, 1].

See Exercise 14 about the existence and uniqueness of the solution.

An alternative proof of Theorem 6.2. Again, Theorem 6.2 is an elementary consequence
ot Theorem 6.1 (similarly as Theorem 5.2 was an elementary consequence of Theorem 5.1).
Alternatively, Theorem 6.2 can be derived from Theorem 5.2 by a prolongation argument,
and we demonstrate how this can be done. First of all, we extend K € S™"(A) by the zero
values from A to ([0, 1] x [0,1])\diag obtaining K € S™"(([0,1] x [0,1]) \ diag). The Volterra
equation (6.1) is equivalent to the Fredholm equation (5.1) with the extended kernel. By
Theorem 5.2, we know about the solution of (5.1) that v € C™"(0,1). It remains to show
that actually no singularities of the derivatives of u(z), the solution of (6.1) and (5.1), occur



WEAKLY SINGULAR INTEGRAL EQUATIONS 23

at x = 1. To show this, we extend f from [0,1] to [0,1+ 6], 0 < § < 1/m, using the reflection

formula
(6.2) fl@) =Y dif(1—-j(z—1)), 1<z <143
j=0

where d; are chosen so that the C"™-smooth joining takes place at z = 1. Namely, differenti-
ating (6.2) k times we have

FB @) =Y (=)fdi f P (@ - 1), 1<z <1+,

M

Il
<)
Il

J

and the C™-smooth joining at £ = 1 happens if

§=0
We obtained a uniquely solvable (m+1) x (m+1) Vandermonde system to determine dy, ..., dp,.
Using th reflection formula we extend also the kernel K (z,y) along the lines y = vz, 0 < v < 1,
from the triangle A = {(z,y) : 0 < y < z < 1} onto the triangle Ay = {(z,y) : 0 <y <
z <140} with a § > 0. The extension procedure preserves f in C"™"(0,1 + 4] and K in
S™Y(As). Introduce the extended equation

u(z) = /0 " Kz y)ul)dy + f(z), 0<z<1+s;

for 0 < z < 1 this equation coincides with (6.1). By Theorem 5.2 applied to the extended
equation, u is C™-smooth for 0 < £ < 1 + §, hence no singularities of the derivatives of u at
x = 1 are possible. O

Let ¢ : [0,1] — [0, 1] be a smooth strictly increasing function such that ¢(0) = 0, p(1) = 1.
Introducing the change of variables

we rewrite the equation (6.1) in the form

t
(6.3) v(t)z/o K, (t, s)o(s)ds + fo(t), 0<t<1,

where
fo(t) = f(p(1), Kol(t,s) == K(p(t), p(s))¢ (5);

the solutions of equations (6.1) and (6.3) are in the relations

v(t) = u(p(t), u(z)=v(p~"(2)).

An obtrusive mistake is to write “formally” Ocp(t) K (o(t), p(s))u(p(s))¢' (s)ds as the result of
the change of variables in the integral [ K (z,y)u(y)dy. We must be more careful! Actually
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the change of variables y = ¢(s) yields

o )
/Kwy y)dy = / K (2, p(s))ulp(s))@! (s)ds,

and after that the change of variables z = ¢(t) completes the result as

[ K mutay Lo = / K (p(t), p(s))u(p(s)) (s)ds.

So we really obtain the transformed equation in the Volterra form (6.3).
Theorem 6.3. Given m > 1, v < 1, let

S m, vr<o0
PPl o<v<t [
Let ¢ € CP[0,1] satisfy ¢(0) =0, p(1) =1, ¢/(t) >0 for 0 <t < 1 and
PD0) =0, j=1,..p -1, ¢P(0) #0.
Then the following claims hold true.
(i) For f € C™"(0,1], the function f,(t) := f(¢(t)) belongs to C™|[0,1] and
Vo) =0, j=1,..,m
(ii) For K € 8%(A), the kernel K, (t,s) := K(p(t),(s))¢'(s) belongs to S (A) and
defines a compact Volterra integral operator
T,: C0,1] = C0, 1], (T,0)( /K (t, 5)v
An example of function ¢ satisfying the conditions of Theorem 6.3 is given by ¢(t) = tP.
Corollary 6.4. Assume the conditions of Theorems 6.2 and 6.3. Then v € C™[0, 1],
v90)=0, j=1,...,m

for the solution of equation (6.3).

7. A COLLOCATION METHOD FOR WEAKLY SINGULAR INTEGRAL EQUATIONS

7.1. Interpolation by polynomials on a uniform grid. Denote by P,, the set of polyno-
mials of degree not exceeding m.
Given an interval [a,b] and m € N, introduce the uniform grid consisting of points

.1 . b—a
(7.1) xi:a+(z—§)h, i=1,....m, h= p

Denote by II,,_; the Lagrange interpolation projection operator assigning to any u € Cla, b]
the polynomial IT,;,_1u € Pp,—1 that interpolates f at points (7.1).
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Lemma 7.1. For f € C™[a, ],

(72) max, | £(z) = Wt @) |< 0™ . | 1z |,

1-3- (2m—1)
2.

4 o~ (Wm)_% as m — o0.

Om
Further, for m =2k, k> 1

- m (m)
(7.3) pax | f@) = Tma f)(2) [< Imh™ max | () |,
!
By =27 2m T 9/rm 32 ™,

(m/2)12 ~

whereas for m =2k +1, k > 1,

] _ B < m (m)
(74) x| f(@) = (1 ))@) |< 0™ max | /(a) |
23 (k)2 2v/3 lom
P = 9 (2k+1)!N V2rnm 227 ™.
These estimates are elementary consequences of the error formula
Frm(g)

f@) = Um-1f)(2) = (2 = 21)..(z — 2m), 2 € [a,b], £=E(2) € (D).

Namely, for points (7.1), the maximum of | (z — z1)...(z — z,) | on [a, b] is attained at the end
points of the interval, whereas the maximum of | (z — z1)...(x — z9x) | on [k, Zg+1] is attained
at the centre of [zy, zky1] (which is also the centre of [a,b]). To establish (7.4), we take into
account that the maximum of | (z — z)(x — Tg41)(z — Tp42) | on [Tk, T2 equals %hg‘ and
elementarily estimate the remaining product on [zy_1, Zk11].

Comparing estimates (7.2)—(7.4) we observe that in the central parts of [a, b], the estimates
are approximately 2™ times preciser than on the whole interval. Surprisingly estimates (7.3)
and (7.4) are for m > 4 preciser even than the error estimate of the Chebyshev interpolant on
the same order on [a, b], see estimate (7.6) below. In the central parts of [a, b], the interpolation
process on the uniform grid has also good stability properties: in contrast to an exponential

growth of || Iy, 1 [|¢[a,6)—Cla,5) @S M — 00, it holds

(7.5) | M1 ”C[a,b]—>C[aT+b—rh1/2, aT+b+Th1/z]S cr(1 4 logm)

with a constant ¢, which depends only on > 0. This is the Runck’s theorem (see [2], p. 170).

7.2. Chebyshev interpolation. Denote by I/ _; the Chebyshev interpolation projection
operator assigning to any f € C|[a,b] the polynomial II),_,f € Pp,—1 that interpolates f at
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the Chebyshev knots

b— 2; —1 b
T = a(—cos : 7r)-l-a+ € (a,b), i=1,...,m.

2 2m 2
Lemma 7.2 (|2], p.163). For f € C™|a,b], m > 1, it holds
b—
(7.6) max | £(2) ~ (T £)(&) < S e | () |

The Chebyshev interpolant IT, _, f occurs to be the best approximation to the function
f(z) = ™ with respect to the uniform norm on [a,b], and (7.6) turns into equality for this
function. Computations with Chebyshev interpolant are numerically (relatively) stable, since
(see [2], p. 164)

4
| T 1 [l Cfas—clap) < 8 + }bg m, m € N.

It is known that for any projection operator P,_1 : Cla,b] = Pp_1, i.e., for any operator
_1: Cla,b] = Cla,b] with P2_, = P,, 1 and the range R(Py,_1) = Pp_1, it holds

| Pm—1 llcfapj—clan> co(l +1ogm), m €N,

where ¢y > 0. Thus || IT},,_; ||c{a,5/—Cfa,b] 18 of minimal possible growth order as m — oo.

7.3. Piecewise polynomial interpolation. Introduce in R the uniform grid R, := {jh :
j €Z}, h=1/n,n € N. Fix an m > 2. Given a function f € C[-4,1+ 6], § > mTh,
we introduce a piecewise polynomial interpolant II, ,,—1f € C[0,1] of degree < m — 1 as
follows. On every subinterval [jh, (j + 1)h], 0 < j < n — 1, the function II, ,_1 f is defined
independently from other subintervals as a polynomial of degree < m — 1 that interpolates f
at m points [h neighboring jh from two sides:

(7.7) (M1 f)(Ih) = F(IR), 1=3j— % T T % if m is even,
(18) ([ /)R = F0R), 1=~ " g+

To unify the writing form of conditions (7.7) and (7.8), introduce the designation

1
if m is odd.

Im={keZ: -2 <k<D).
2 2
Observe that Z,, contains m elements (integers),
m m m. . .
Loy = {—5 +1, —5 + 2, 5} if m is even,
-1 m-1 m

1
Do = {—m2 T A L, o} i ms odd.

Conditions (7.7) and (7.8) determining II, ,, 1 f on [jh, (j + 1)h] can be written in a unified

form as

(7.9) (pm—1f)(Ih) = f(Ih) for I such that | —j € Zp,.
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For 1 < j <n—2, conditions (7.9) contain the particular condition (I, y,—1 f)(jh) = f(jh) for
L, m—1f as a function on [jh, (j + 1)h] as well as a function on [(j — 1)h, jh], hence I, ;1 f
is uniquely defined at these interior knots, (Il m—1f)(jh) = f(jh), j=1,...,n —2, and this
guarantees the continuity of II, »,—1f on [0, 1].

To write a representation formula for II, ,,—1 f, introduce the Lagrange fundamental poly-
nomials Ly € Pp—1, k € Zpy, satisfying Ly(l) = 6y, k,1 € Z,,, where 03 is the Kronecker
symbol, 65 ; = 0 for k # [ and d;, = 1. An explicit formula for L; is given by
(7.10) L= ]I IZL_ZZ , k€ L,

l€Zm\{k}

Now it is easy to see that

(7.11)  (Mpm1f)®) = > F((G + k)k)Ly(nt — j) for t € [jh, (j + 1)h], j=0,..,n—1.
k€Zm

Indeed, the restriction of II,, ,,—1 f onto [jh, (j + 1)h] given by (7.11) is really a polynomial of

degree < m — 1 that satisfies interpolation conditions (7.9): for [ with [ — j € Z,, we have

(Mpm-1£)(IR) = > f(G+ERLe( = 3) = Y F((G +k)h)oka—j = f(IR).
k€EZm kEZm

The interpolant II,, ,,,—1 f could be defined on [0,1] also for m =1 as a piecewise constant
function with possible jumps at jh, 7 =1,...,n — 2. We lose the continuity of the interpolant
at the interior knots jh, j = 1,...,n — 2. But the real reason why we exclude the case m =1
from our consideration is that the interpolation points jh are not properly located. A natural
location of an interpolation point is the centre of the interval [jh, (j + 1)h) on which the
interpolant is constant. The case m = 1 with interpolation points (j + %)h can be examined
independently in an elementary way.

For m = 2, the interpolant II,, ,,—1 f is the usual piecewise linear function joining the points
(jh, f(jh)) € R2, j = 0,...,n, by straight lines. For m = 2, II,, ;,_1f does not need values of
f outside [0,1], and Hn m—118 a projection operator in C[0,1], i.e. Hn m—1 = pm—1.

For m > 3, II,, ;,—1 f uses values of f outside of [0,1]. For f € C[0,1], I, y,—1 f obtains a
sense after an extension of f onto [—d,1+ 4]. For instance, the reflection formulae of the type
(6.2) can be exploited to extend f so that f(kh) for k < 0 and k > n is a linear combination
of f(jh), j = 0,...,n, and the extended function maintains the smoothness of f. We are
in a lucky situation if f € C™[0, 1] satisfies the boundary conditions fU)(0) = fU)(1) = 0,
j =1,...,m, then the simplest extension operator

f (0)’ —0 <t< 0
(7.12) Es: C0,1] = C[-6,1+46], (Esf)(t) =1 f(1), 0<t<1
f(1), 1<t<1494
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maintains the smoothness of f. The operator
(7.13) Ppm—1 =1, m_1Es5 : C[0,1] = C[0,1]
is well defined and Pim_l =
R(Ppm—1) of Py m—1 is a subspace of dimension n + 1 in C[0,1]. A function f, € R(Ppm—1)
is uniquely determined by its n + 1 values at the knots jh, j =0,...,n:
(7.14)  fult) = D (Esfa)((G + k) Ly(nt — j) for ¢ € [jh, (j + 1R, j =0,..,n —1;
k€Zm

here (Esfr)(ih) = fn(ih) for i = 0,...,n, (Esfn)(ih) = frn(0) for i <0 and (Esf,)(ih) = fn(1)
for i > n. Clearly, f, =0 if and only if f,(:h) =0, i =0, ..., n.

The definition of II, ,,—1 f is closely related to the “central” part interpolation of f on the

Ppm-1,1.€e., Py 1 is a projection operator in C|0, 1]. The range

uniform grid treated in Section 7.1. On [jh, (j + 1)h], I, m—1f coincides with the polynomial
interpolant I, 1 f for f on the interval [aj, b;] with aj = (j — Z51)h, bj = (j + =L )h in the
case of even m and a; = (j — 2)h, b; = (i + F)h in the case of odd m, moreover, [jh, (j +1)h]
is a “central” part of [aj, b;]; the interpolation error on [jh, (j +1)h] can be estimated by (7.3)
and (7.4).

Lemma 7.3. (i) For f € C™[-6,1 + 4],

_ m (m)
22x [ 1) = (Mma F)(2) |< Imh™ _ max | F72(1) |

with ¥, defined in (7.3) and (7.4) respectively for even and odd m.

(ii) For f € V™ = {v € C™[0,1] : v9)(0) =) (1) =0, j =1,...,m} , it holds

(7.15) 22, | f(&) = (Pam—1 ) () |[< Imh™ B, FARIONE

Proof. The claim (i) is a direct consequence of Lemma 7.1. Further, for f € V(™ we have
Esf € C™[-4,1+4),

(m) () = (m) = <t<
L | ED™ ) = goax | ) |, (B0 = f0) for0< e < 1
and (7.15) follows from (i) applied to Esf. O

From (7.5) we obtain

| Prm—1 llcro,i»cp0,) <M Dam—1 ller=s,148—c0,11< ¢(1 + logm).
Thus the norms of projection operators are uniformly bounded with respect to n. Together
with (7.15), noticing that V(™ is dense in C[0,1}, the Banach-Steinhaus theorem (Theorem
2.2) yields the following result.
Corollary 7.4. For any f € C[0, 1], maxo<i<1 | f(t) = (Pom—1f)(t) | = 0 as n — oo.

74. A piecewise polynomial collocation method: error estimate. Having a weakly
singular integral equation (5.1), u = Tu+ f, with K € 8™, f € C™"(0,1), m > 2,0 < v < 1,
we rewrite it with the help of a smoothing change of variables in the form (5.15), v = Ty,v+ f,,
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and after that approximate (5.15) by the n + 1 dimensional equation
(716) Up = Pn,m—nga'Un + Pn,m—lftp-

This is the operator form of the piecewise polynomial collocation method corresponding to
the interpolation projection operator P, ,,—1 which is defined by (7.10)—(7.13). (A collocation
method is always related with a “projection” of a given equation with the help of an interpo-
lation projection operator. In this sense, collocation methods can be treated as a subclass of
Galerkin methods. Galerkin methods correspond to general class of projection operators, not
necessarily interpolation ones.)

Theorem 7.5. Let K € S™, f € C"™¥(0,1), m > 2, v < 1, and let ¢ : [0,1] — [0,1]
satisfy the conditions of Theorem 5.3. Further, assume that N'(I —T) = {0} (or equivalently,
N(I —T,) = {0}). Then there exists an ngy such that for n > ny, the collocation equation
(7.16) has a unique solution v,. The accuracy of v, can be estimated by

(7.17) 0= v [loo< ch™ || 0™ [|og

where v(t) = u,(t) = u(p(t)) is the solution of (5.15), u(x) is the solution of (5.1); by Corollary
5.4, v € C™[0,1]. The constant c¢ in (7.17) is independent of n and f (it depends on K, m
and ¢).

Proof. The following proof argument is typical for Galerkin (including collocation) methods.

By Theorems 5.3, T, : C[0,1] — C[0,1] is compact. By assumption, N'(I —T,) = {0},
and the bounded inverse (I —T,)~! : C[0,1] — C[0,1] exists due the Fredholm alternative
(Theorem 2.7); denote

k=l (I = Tp) ™" llepa-cpo, -

Further, the compactness of T, : C[0,1] — C]0, 1] and the pointwise convergence Py, y,—1 to
I in C[0,1] (see Corollary 7.4) imply by Theorem 2.6 the norm convergence

en = Pom—1T, — Ty ||C[0,1]—>C[0,1]—> 0 asn — oo.

Hence there is an ng such that ke, < 1 for n > ng. With the help of Theorem 2.4 we conclude
that I — P, ,,—1T, is invertible in C[0, 1] for n > ny and

(7.18) fin = (I = Pan1Tp) ™ llopo,0p0,< e,

— K as n — oQ.

This proves the unique solvability of the collocation equation (7.16) for n > nyg.
Let v and v, be the solutions of (5.15) and (7.16), respectively. Then

(I—=Pom-1Ty)(v —vn) =0 — Ppom-1Tpv — Pom—1fp =V — Py m—1v,

V— Uy = (I — Pn,mfchp)il(’U — Pmm,lv)

and

(7.19) | v —vn |loo< Bn || v = Pom—10 ||oo, 7 > ng.
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By Theorem 5.2, for the solution u of (5.1) we have u € C™"(0,1); by Corollary 5.4, for
v(t) = uy,(t) = u(p(t)) we have v € C™[0,1] and v (0) = v)(1) =0, j = 1,...,m; by Lemma
7.3(ii),
| v = Pom—-1v [loo< Imh™ || v™ oo -
Now (7.19) yields
v = n oo Knmh™ || v™ o

that together with (7.18) implies (7.17). O

Proving the convergence of the method, without the convergence speed, the assumptions of

Theorem 7.6 can be relaxed, see Exercise 16.

7.5. The matrix form of the collocation method. The solution v, of equation (7.16)
belongs to R(Py, m—1), so the knot values vy(ih), i = 0, ..., n, determine v, uniquely. Equation
(7.16) is equivalent to a system of linear algebraic equation with respect to v, (ih), i = 0,...,n
and our task is to find this system out.

First of all, for w, € R(Pym-1), we have w, = 0 if and only if wy(ih) =0, i = 0,...,n.
Further, (P, m—1w)(ih) = w(ih), i = 0,...,n. Hence equation (7.15) is equivalent to the
(so-called collocation) conditions

vn(ih) = (Tyvy)(ih) + f(ih), 1 =0,...,n,

i.e. vp € R(Ppym—1) satisfies equation (5.15) at the knots ih, i = 0, ...,n. (Actually collocation
methods are usually a priori described by conditions of such type and after that an operator
form of the method is derived; we follow an equivalent inverse way.) Using the representation
(7.14) for v, we obtain

=l rG+DR
(Tpvn)(ih) / K, (ih, s)vp(s Z/ o(ih, s)vp(s)ds
jh

j=0

n-1 (G+1Dh
= Z Z / K, (ih,s)Lg(ns — j)ds (Esv,)((j + k)h)

=0 k€Z, 7 Ih

n—1 'Un(O)a Jtk<0 n
=YY kS v((GHER), 1<j+k<n —13=> bywy(lh), i=0,..,n,
J=0 k€Zm vn (1), j+k>n =
where

(G+1Dh
(7.20) Qi jk = / K,(ih,s)Li(ns —j)ds, i=0,..,n, j=0,...,n — 1, k € Zy,
J

ih
ZkeZm Z{j:Ogjgnfl,g#kSO} Q5,k 5 I=
(7.21) bZ,l == ZkEZm Z{jOS]Sn—l,]+k:l} ai,j,k, l - ].’ R 1 ) ’L,l == 0, ey T

EkeZm Z{j;ogjgnq,jwczn} Qi gk s l=mn
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Hence the matrix form of the collocation method (7.16) is given by

(7.22) vn(ih) =Y biwn(lh) + f(ih), i=0,...,n,
=0

with b;; defined by (7.20), (7.21). Having determined v, (ih), i = 0,...,n, through solving
the system (7.22), the collocation solution vy, (t) at any intermediate point ¢ € [jh, (§ + 1)h],
j=0,..,n—1, is given by

'Un(o)a j+ k < 0
(7.23) vnt)= Y < va((j+Kkh), 1<j+k<n—1 p-Ly(nt—j)
k€Zm vn (1), jt+k>n

where Ly, k € Z,,, are the Lagrange fundamental polynomials defined in (7.10).

8. SPLINE INTERPOLATION AND QUASI-INTERPOLATION

8.1. Cardinal B-splines. There are different equivalent definitions of the B-splines. We
present the recursive definition of the cardinal B-spline By, of degree m, m > 0, as follows:

BM@:{l, 0<z<l },

0, z<0Qorz2>1

Bon(s) = % (#Bmr1 () + (m+1—2)Bpi(z—1)), m=1,2,....

Here are the explicit formulae of B, for m = 1,2, 3:

z, 0<z<1

Bi(z)=1¢ 2—z, 1<z<2 3,
0 otherwise
%xz, 0<z<1
1l 9.2 _

Ba(z) = 5(—22°+6x—-3), 1<x<2 ,

1(3-1)%, 2<zr<3

0 otherwise
%x?’, 0<z<1

1(_92.3 2 _

Ba(z) = g(—3x° +122° — 122 +4), 1<z<2
Bs(4 — ), 2<z<4
0 otherwise

Let us list most important properties of B,:
Bm c Cm—l(R) for m Z 1, Bm |[J,]+1]€ Pm, j S Z,

suppBy, = [0,m + 1], Bp(z) >0 for0 <z <m+1,

1 1 1
P 0) = Bu( S 4 0), 2€ R, Bu(") = max Bu(o),
xr

Bm( 2 €R
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Y Bulz-j)=1, z€R

JEZL
Some of the listed properties are obvious, some need proofs; some of proofs become easier when
equivalent definitions of By, are introduced. We quote [1], [4], [10], [11], [19] for equivalent
definitions and proofs. In particular, By, (z) = ff_l B,,—1(y)dy, that implies by recursion the
smoothness claim B,, € C™ !(R). Together with the property By, |[j7j+1]6 Pm, j € Z (which
is elementary), this means that By, is a spline of degree m (and defect 1) on the “cardinal”
knot set Z.

We complete the listed properties by the Marsden identity

Dt—j-1D)(t—j-2)..(t—j—m)Bp(z—j)=(t-2)", t,z €R, m>1.
JEZ
Equalizing the coefficients by #™* on the r.h.s and Lh.s., we obtain the Marsden formulae
zk = Zﬁj7k,mBm($ -J), k=0,....,m, z €R
JEZL
in which the coefficients f; k ,, satisfy | Bjxm |< em | 4 |F for 0 # j € Z. Exact expressions

for B; k,m can be written down but they are somewhat complicated and we do not need them;
for us it is sufficient to to be sure that | 8, | do not grow exponentially as | j |— oco.

8.2. Wiener interpolant. Now we assume m > 2 to be fixed. Introduce in R the uniform
grid Ry = {jh: j €Z}, h=1/n,n € N. Given a bounded function f € C(R), we look for its
interpolant Q4 1f in the form

(8.1) (Qum-1f)(@) =) djBu-r(nz — j), = €R,
JEZL
and determine the coeflicients d; from the interpolation conditions

(82) QumaD)((k+5)h) = F((k+ F)h), k€L,

This leads to the bi-infinite system of linear equations

> Bui(k+ 5 —d)d; = f((k+5)h), ke,

° 2
JEL
or
(8.3) > by_jd; = fi, k€L,
JEZ
where
(8.4) b= Bri(k+3), fr = f((k+Z)h), keZ.

For m = 2, system (8.3) reduces to the relations d = f((k + 1)h)), k € Z, and (Qn,1 f)(z) =
> jez F((7+1)h))Bi(nz — j) is the usual piecewise linear interpolant which can be determined
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on every subinterval [ih, (i41)h] independently from other subintervals. All is clair in the case
m = 2 and from now we focuse our attention to the case m > 3. A delicate problem is that, as
we show below , the solution of system (8.3) is nonunique for m > 3 if we allow an exponential
growth of | d; | as | j |= co. Note that there are no problems with the convergence of the
series in (8.1) since this series is locally finite: it follows from the relation suppB,—1 = [0, m]
that

i
(@num-1f)(@)= Y. djBm 1(nz—j) for x € [ih, (i + 1)h], i € Z.
j=i—m+1
Consider the case of even m, then the interpolation points are ¢k, 7 € Z. We have

0
(Qum—1f)(z) = Z djBm—1(nz — j) for z € [0,h].
j=—m+1

After the satisfying the interpolation conditions at £ = 0 and z = h, there remains m — 2
dimensional manifold of coefficients d_,,+1, ..., dp undetermined. Arbitrarily fixing the val-
ues of d_;41,...,dg from this manifold, we can uniquely determine d_,, and d; so that
(Qnm-1f)(z) = Z]l':—m djBp—1(nz — j) satisfies the interpolation conditions at z = —h
and at £ = 2h; due the support property of By,_1, the values of (Qnm—1f)(z) at = 0 and
£ = h remain to be as they were. After that we can uniquely determine the next pair of
coefficients d_p,—1 and dy so that (Qnm-1f)(z) = Z?Z_m_l d;Bp—1(nz — j) satisfies the in-
terpolation conditions at x = —2h and = = 3h; the values of (Qn m—1f)(z) at x = —h,0,h, 2k
remain to be as they were. Continuing in this manner we determine all dj, j € Z, so that
(@nm—1f)(x) = X jezdjBm—1(nz — j) satisfies all conditions (8.2). Hence there exists an
m — 2 dimensional manifold of interpolants (8.1)—(8.3). For odd m > 3, satisfying on the first
step the interpolation conditions at x = h/2 and continuing as above, we easily see that there
exists an m — 1 imensional manifold of interpolants (8.1)—(8.3).

Only one of solutions of system (8.3) is suitable to obtain a bounded interpolant Q1 f
for a bounded function f € C(R). This solution is related to the Wiener theorem for Fourier
series, or equivalently, for Laurent series on the unit circle | z |= 1 of the complex plane.
Wiener theorem [20] can be formulated as follows: if the given complex numbers b, k € Z,

satisfy the conditions ), | b |< oo and

(8.5) b(z) == bpz" #0 forall z € Cwith |z |=1,
kEZ

then a(z) := 1/b(z) has the (Laurent) expansion a(z) = Y., axz* with ay € C, k € Z,
such that ) .., | ar |< oo. (Hence the expansion of a converges uniformly on the circle
| z |=1 of the complex plane, similarly as the expansion of b.) It is easy to understand (the
argument is presented in Section 8.3) that 2 = (ag—;)k, jez is the inverse to B = (bk—;)k,jez,
ie, BA=AB =7T. We call A the Wiener inverse of B. Condition (8.5) occurs to be fulfilled
in our interpolation problem (8.1)—(8.4), so we can use the Wiener inverse 2 of 98 and define
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the Wiener interpolant Qpnm—1f by (8.1) with
(8.6) dp = Zak,]’fj, k€ Z.
JEZ

Ounly a finite number of by do not vanish in the interpolation system (8.3). As we will see
Section 8.3, this enables an elementary construction of the numbers ay, k € Z; it occurs that
ay, are real and decay exponentially as | k |— oo.

Due to the exponential decay of aj, we may truncate the series in (8.6) to O(logn) terms
maintaining the highest possible accuracy order O(h™) of Qp m—1f. Hence the error f(z) —
(Qn,m—1f)(z) significantly depends on the values of f only in a neighborhood of z of a width

O(n~1logn); to a change of f outside this interval, the error f(z) — (Qnm-1f)(z) responds
by a change of an order O(n™™).

8.3. Construction of the Wiener interpolant. Denote
p=1nt ((m —1)/2) (int = integer part).

Due to the properties of By, 1, for by defined in (8.4), it holds

u
bp=>b_g >0for |k|<p, bp=0for |k|>p, Y b=1
k=—p

Introduce the functions

w
(8.7) b(z) = Y bez® =by+ > bp(F +27F), 0#£2€C, Pylz) = 2"b(2),
|k|<p k=1

(8.8) a(z) :==1/b(z) = 2 /Py (2), 2z€C, z# 2, v=1,..,2y,

where z,, v = 1, ..., 2y, are the roots of the Py, € Po, (called the characteristic roots). From
(8.7) we observe that together with z, also 1/z, is a characteristic root . As stated in [11],
all characteristic roots are simple and real; then clearly 2z, < 0, v = 1,...,2u and z, # —1,
v =1,...,2u, thus there is exactly p characteristic roots in the interval (—1,0). We omit the
relatively long and complicated proof of this statement of [11]. It is possible to check the
statement when the interpolant (8.1), (8.6) is constructed in the practice, since the algorithm

needs the values of z,, v = 1,...,2u, so they must be computed in any case. Let us turn to

examples:
1 3 1,
m=3: pu=1, b—l—blzga bO:Z’ PQ(Z):g(Z +6Z—|—1), 21,2:—3:|:\/§;
1 2 1, ,
m=4: pu=1, bfl—bl—ga bo_g, PQ(Z):E(Z +4z—|—1), 21’2:—2:|:\/§;
1
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wl,gi,/w%g—él 1 1
, 21 = —0,043096, 2z, ~ —0,430575, z3 = —, 24 = —;
2 z21 )

21,234 =

m=10: p=4, P(z) = &(z8 + 50227 + 1460825 + 882342° + 1561902*
, , ' 1 1 1 1
+882342° + 14608z“ + 502z + 1), 25 = —, 26 = —, 27 = —, 28 = —,
21 22 <3 24
21 = —2.121307 - 1073, 25 = —0,043223, 23 = —0,201751, 24 = —0,607997.

For two functions a(z) = Y ,czar2® and b(z) = Y,z bkz" defined by the absolutely
convergent Laurent series on the unit circle | z |= 1, it is easily seen that a(z)b(z) =
ez (zjez ak_jbj) 2%, k € Z.For a and b defined in (8.7), (8.8), this yields 3, ar—b; =
0,0, k € Z, where dy; is the Kronecker symbol. Replacing here k by k — [ we rewrite it as
Zjez ag—1-jbj = 0k_10, k,1 € Z, or introducing the new summation index j' = j +1, as

> jrez @—jrbji—1 = Ok Finally, writing j instead j', the equality takes the form
Zakfjbjfl = 5k,l1 k,l €Z.
JEZ

Similarly (or simply by a symmetry argument),

Zbkfjaj*l = (5]9’1, k,l €Z.
JEZ
The last two equalities mean that the matrix B = (by—;)k, jez of system (8.3) has the inverse
B! = A = (ag—;)k,jez- Thus our task can be reformulared as follows: find the coefficients
ax, of the Laurent series a(z) = Yz axz® for the function a defined by (8.7), (8.8).
Let us order the characteristic roots 21, ..., 29, so that z1,...,2, are in the interval (—1,0)

and 2,4, = 1/2,, v =1, ..., u. Since all roots are simple, the function a(z) := 1/b(z) = P;“(z)

has a representation
2p
zP cy

Pou(z) = z— 2

Multiplying by Hi’il(z — z)) = Py, (2)/b, we rewrite it as

o 2u 2u 21 2u—1
™ :ZCV H (z—2z\) =1 H(Z_Z/\)"'---+C2u H (z —zn).
Boov=1  p#a=1 A=2 A=1
Setting z = z, we determine the coefficients ¢, :
2t 2
v 14

Cy = = y
v bu H?j‘;/\zl(zy — Z)\) PQI/_L('ZV)
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Thus

1 2t 1
ZP’ )z —zy l;( _zy+Pl (z;l)z z,,1>

It follows from (8.7) that P, (27') = z 2“Pgu( ) leferentlatmg this equality and setting

—pt1
then z = z, we find that _P2u( _1)2172 = 2y QMPZM(ZV) or pfu( Yy~ —p;f"(‘;—l) Now we can
2u 2y 63 v
rewrite "
14 p—1 1 u -1 .
zZy Zy Zy, 2y 2u% 1 )
a\r) = _ _ N .
“ Vz—l Py, (av) (z —Zv  Z— zu_1> ,,Z Py, (zv) (1 — 2zl 11— 2,2
Expanding
2,2 1 >
1_Uz — :Zzl,fz_k for |z |>|z |, v=1,..,u,
Y k=1
1 o0
1—z2 Zzl”czk for |z|<|z|7!, v=1,.,4,
v

k=0
we arrive at the desired expansion

] 00
) =Y 5 (kz : k+kz_0z';zk> = S, O <| 2 1< 05,

v=1 kEZ

l/

where 0, = maxi;<,<, | zy |< 1 and

I3 p—1

2y z,, p—1
(8.9) o=y LIS cntl, k€T, e = Z ‘ '
v=1

Thus aj, decays exponentially. Clearly a are real, ay = a_g, k € Z. In the following theorem
we summarize the results and present formulae for ;7 a and D, | ag |.
Theorem 8.1. For a;, defined in (8.9), it holds

(8.10) Sa=1 3 |a |——’ ak = (~1)F | [£0, k€7,

kEZ kEZ 1)’
where P, is the characteristic polynomial defined in (8.7). The Wiener interpolant Qp m—1f
of f is given by (8.1), (8.6), (8.9) where 2,, v = 1,...u, are the roots of the characteris-
tic polynomial Py,(2) in the interval (—1,0) and fr = f((k + §)h), kK € Z. Moreover,

| Qnm—1 | Bo®)—»Bo®) < Dopez | @k | -
Proof. The first one of relations (8.10) immediately follows from (8.7), (8.8):

Zak—a ) =1/b(1) —1/Zbk—1

keZ k=—u
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Next we prove the third one of relations (8.10). We start from equalities

=1/b(z) = o . N c
a(z) =1/b(z) = Pou(z) by H§i1(z —z) by H?\il(z+ Y

Setting —z into the place of z, we have

a(er) = — =D _ (—2)
bu I (=24 [ 2a ) buIlAo (=24 [ 2a D [The (—2+ | 25 )
B ZH(=1)H
bu Tl (2= [ 22 DTTAZ (2= | 250 )
1
buIT4o (= 2x [ 2 DT (I 25 | —2)
T, |2 |

S b (= a2 DI (-2 [ 2)

Bl {7 (§ T(s
S ] (52 ot T (S0 2] = st 121
by A=1 \k=0 A=1 \k=0

k€eZ
with some ¢; > 0, k € Z. Returning to z instead of —z, we obtain a(z) = 3,5 (—1)Fci2”.
The Laurent expansion a(z) = >,z ax2” is unique, therefore ay = (—1)Fcy = (=1)% | ay |,
k € Z, as asserted in (8.10). Equivalently, | ax |= (=1)ay, k € Z. Now the second one of
relations (8.10) follows by the same argument as the first one:

Yo lae = ak(-1)F = a(=1) = 1/b(-1) = (=1)" /Pyu(-1).

kez kEZ
The proof of the inequality || Qnm—1 |lBo®)»Bo®)S Xkez | @k | is elementary and left as an
exercise. Other claims have been already established. [

The values of ), | ax =1/ | Pou(=1) |= 1/ | Popgm(—1) | for m = 2,...,10 are given in
the following table:

I e e e}
2 1 2

3 2 1.5

4 3 1.6

5 4.8 1.5625

6 7.5 1.5738

7 11.803279 1.5699

8 18.529412 1.5711

9 29.111913 1.5707
10 45.725806 1.5708

(one can guess that | Poym(—1) | / | Poymt1(—1) |= 7/2 = 1.570796... as m — oo; for
m = 20 this ratio is 1.570796327). We see that || Qum—1 | Bo®)—BC(®) has for m < 10
bounds that enable a numerically stable interpolation.
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It is easily seen that the null space N (%) of the matrix B = (by_;)k jez in the vector
space X of all bi-infinite vectors (d;);jez is of the dimension 2x and is spanned by (zﬂ)jez;,
v =1,...,2u, where z,, v =1, ..., 2u, are the characteristic roots. Thus any nontrivial element
of N(B) in X is exponentially growing either as j — oo or as j — —oo. Together with the
Marsden formula for z*, k = 0, ...,m-1 (see Section 8.1), we conclude that z* coincides with

its Wiener interpolant. Thus

Qn,mflg =g for g€ ,mel-

8.4. A difference representation of the Wiener solution (a;). Denote by s(Z) the vector
space of (fast decaying) bisequences a = (a;), ez that satisfy the condition

Vr >0 3¢, < 0o such that |a; [<c¢ |7|7", 0#£ 3 €Z.
For instance, exponentially decaying sequences belong to s(Z). Introduce also the subspaces

5sym(Z) = {Q € 5(Z) P a—j = ay, JE Z},
50(Z) ={a €5(Z): Y a; =0}
JEL

and denote by e the bisequence (e;); ez with e; = §;¢ (the Kronecker symbol).

Introduce the difference operators
D% :s(Z) > s(Z), (D%a); =aj+1 —aj, j € Z (forward difference),
D™ :s(Z) = s(Z), (D a); =aj —aj_1, j €Z (backward difference)
and their one side inverses
aj,

It s(Z) > 5(Z), (J*a) =ty E<OL o,
'8 5 ) ajr = 3 )

J”:8(Z) — s(Z), (J_Q)k:{ Zf:_c’oaj’ <0 }, keZ.

_Z;ilﬂ—l aj, k=0
Namely, a straightforward check shows that for any a € s(Z), it holds

(8.11) DtJta=a— Zaj e, D”J a=a— Zaj e,
JEZ JEZ
JtDta=a, J D a=a.
(Observe that D* : s(Z) — s(Z) does not have a two side inverse since e does not belong
to the range of D¥;on the other side, J*e = 0.) Finally, introduce the second order central
difference operator

D=D"D™ =D D" : s(Z) - s(Z), (Da)j =aj_1 —2a; +aji1, j € Z,
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and its one side inverse

J=J5T : s(Z) — s(Z).
(Caution: J+*J~ # J~J7T although D*D~ = D~ D™; nevertheless, J*J a = J~J'a for
@ € Sgym(Z).) Equalities (8.11) imply

DJa=(D*D)(J* T )a=D (D*J")(J a)=D |J a— | (J a)j]e

JEL
=a—|Y aj|e—|D.(J a);|De acs(z),
JEZL JEZ
JDa= (JTJ ) (DtD )a=J"(J D )DTa=J"DTa=a, acs(Z);

note that J*a € s¢(Z) for a € Ssym(Z), and the formula for DJa simplifies to

(8.12) Ja=a— (Z aJ> € € Sgym(Z) for a € sgym(Z).

JEZL

It is also easy to check that Ja € ssym(Z) for a € ssym(Z).
Lemma 8.2. For p € N and a € sgym(Z), it holds

(8.13) DPJPg =g — > (J%); | Dle.

Hence, a € ssym(Z) has the representation

p—1
(8.14) a=>|> (J%); | D'e+D"J?a, peN
g=0 \ jEZ

Proof. For p =1, (8.13) is (8.12). Assume that, for ap € N, (8.13) holds for all a € ssym(Z),
and check that then this is true also for p+ 1. Indeed, by the induction assumption and (8.12),

p—1

D P = D(DPJP)(Ja) =D | Ja— Y | D (J%a); | De
q=0 \j€eZ
p—1 P
S e 3 Sy | prema- 3 Soray | e 3
jEZ, q=0 \ jez =0 \jeZ

Lemma 8.3. For a = (ag)kez defined in (8.9), we have the representations

p—1 U ( + ZI/) put+g—1
8.15 =ec+ Y 7D+ D'JPa, peN, 7= .
( ) a € + - 'Yq € + a p 7(1 — (1 _ ZU)2q+1P2/ (zu)
qg=1 v=1 u
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Proof. We have to compute the coefficients }_,.,(J%); in (8.14). By (8.9),

[ p—1

= v gl
a; = z), j€L.
J ; lelu(zu) v

For the sequence z(*) = (z,‘,ﬂ)jez we find

1 zk k<0
Y, = v
(J z )k ]-_ZI/{ _z]3+1’ k>0 },

1 z R k<0 Z
JeN = (T 2= —— ¢ v 0 =T kK ke,
( & )k ( g )k (1 _ ZV)Q lej+1, k > O (1 _ ZV)Q 14
Hence u ] - .
Uahe=2 7oy Pl FEP
v=1
and by repeating this formula,
K Zq Zu_l ‘ |
(8.16) (J9) = - Y2 kez, geN
,;1 (1—2,)% PQ'M(z,,)
Since Y ez z,‘,k| = %‘f—j:, we obtain
Iz +q-1
(1+ 2z,)28
Jla)y, = , €N
2= 2 (T et B )

Recalling also that ), ., ax = 1, (8.14) takes the form (8.15). O

8.5. Quasi-interpolants. Formula (8.15) enables a new representation form for the coeffi-
cients dj of the Wiener interpolant (Qnm—1f)(z) = > pcz Gk Bm—1(nz — k).

Theorem 8.4. Let f € C(R) be bounded or of a polynomial growth. For the coefficients
dy, of the Wiener interpolant (8.1), (8.6), it holds

p—1
(8.17) dy = %D s+ ) (JP)-;Dfj, k€Z, pEN,

q=0 JEL
where 79 = 1 and other coefficients +, are given in (8.15), D°fy = fi, D'fy = Dfy, =
DTD™ fy = fr_1 — 2fx + frs1 is the central second difference, D?f, = D(D ;) is the central
fourth difference etc., fr = f((k + %)h) and JPa€ S5y (Z) is presented in (8.16).

Proof. We need some formulae of summation by parts. For a € s(Z) and a bounded or

polynomially growing sequence f, an elementary check confirms that

Y fiD%aj=~=Y (D" fj)aj, Y fiD"a; =~ (D7 f;)a.

JEZ JEZ JEZ JEZ
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For D = DT D~ these formulae imply

(8.18) > fiDaj=> (Dfj)aj, > fiDPaj = (D"f;)a;

JEL JEZL JEL JEZ
Recalling that e = (e;) = (8;0), we obtain (8.17) from (8.6) with the help of (8.15) and (8.18):
p—1
dy =Y ap—jfj =Y fe-jaj = Y fi—j(D_ D%+ D’ JPa);
JEL JEL JEL a=0

p—1
= Z’Yq Z Difyx_j)e; + Z(Dpfk—j)(JpQ)j = Z’Yqufk + Z(Jpg)k—ijfj-
=0 jez JEL =0 JET
We took 1nto account that D; fy_; = Dy fr—; where the designations D; fi_; and Dy, fy_; mean
that the second central difference Df;_; is taken with respect to j or k, respectively; due to
the equality of these differences, we may omit the indexes j or k by D. O

Let us look at (8.17). Approximating the coefficients dj by

p—1
(8.19) dP™) = 5" DS,
q=0
the interpolant (Qnm—1f)(z) = >_;cz djBm—1(nz — j) will be approximated by the co-called

quasi-interpolant

(8.20) ( nml del Bp—1(nz —j), peN
JEZL
Quasi-interpolants are determined locally from local information about f. For z € [ih, (i+1)h],
(8.20) reduces to (Qg’j;l_)lf)(.m) = Z;:i_mﬂ d;p_l)Bm_1(nm — 7) and occuring here dgp_l)
exploit the values fy = f((k+%5)h) for k =i—m—p+2,...,i+p—2. Thus quasi-interpolants
can be used for the approximation of functions given on an interval.
Theorem 8.5. If f € C"(R), 0 < r < 2p, and if f()(z) is bounded in R then
(8:21) SUp | (@num-1)(@) = (Qufn 1) (@) |< 27 sup | 17 (@) |
[AS]

z€R

Z|z,,|“11+|z,,|
(z) | 1= 2, |
(Recall that g = int((m — 1)/2) and —1 <z <0,v=1,..,u.)
Proof. We have (Qnm—1/)(@) — (Q¥2"1 £)(2) = Ypen(dr — d¥ V) Br_i(nz — k). Since
By 1(nz —k) >0 and ),y Bp1(nz — k) = 1, this implies

| (Qun1)(@) = QP10 f) (@) |< sup | di d? Y = sup | S (JPa)i—; DP S |

kEZ jez

Z Jpak|sup|Dpf]|
kez
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We used formulae (8.17) and (8.19) for dj and d(p_l). Further, by (8.16),

Py, < E2 Ik
> (Pa) |< ZZ (2 D% | Bl (2 )||Z"|

kEZ k€Z v=1

:zu: |ZV|p |ZI/|M_1 1+|ZV|
< (14| 2 )% | Py, (20) | 1= | 20 |

z |“*1 I+ |2, | _
< 2 2]) | v 2 217 U
Z ()] 1—|z,,| Cmi

we took into account that the functlon T grows on [0,1] and hence its maximal

(1+ )
value in this interval is attained at £ = 1 and equals to 272P. So we have

| (Qum—1f)(z) — QT 1)(2) |< 2%, sup | DV |
J

It remains to estimate sup;cz | DPf; | under the assumption that f (")() is bounded and
0 <r < 2p. For even r, we estimate

| DPfj|=| DP"2D2 f; |[<|| DT P72 || D™ |72 || D2 f; ||
where we use the supremum norm for the bi-infinite vectors (f;) ez and the induced norm for
the operators. In particular, | Dt ||=|| D~ ||= 2. The central difference D2 f; of the order
7 can be represented in the form

Db f; = DI f((j+ 50 = W FO(E) witha &€ ((G+5 = Db (G + 5 + ).

Hence sup;cy | DPf; |< 2277 "h" sup,e | ™) (z) |, and estimate (8.21) follows in the case of

r+1

even r. For odd r we represent DPf; = DP~ "2 D* . D~ D= f] and estimating in a similar

way as above we obtain again (8.21). O
For r = 0 estimate (8.21) implies
~1
| @nm—1 — Qszzjmjl | Ber)—BO®) S Cn-
The values of ¢, for m = 3,...,10 are given in the following table:

m 3 4 5 6 7 8 9 10
., 2 3 49554 8.0512 13.1157 21.2309 34.2665 55.1381

Together with the estimate of || @nm-1 ||Bc®)—BC(R) Presented in the end of Section 8.3 we
see that

I Qnm 1 IBe®)—Be®) <l Qnm—1 Il Be®)—»Be®) + || @nm—1 — Qnm 1 IBe®)—Bo®)

remains for m < 10 in acceptable bounds for numerics.

8.6. Error bounds for quasi-interpolants and the Wiener interpolant. We first es-
tablish an error estimate for the quasi-interpolants and after that we exploit Theorem 8.5 to
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extend the estimate for the Wiener interpolant. Introduce the notation

Emfap)(f) —glergm Jax, | f(z) —g(z) | .

This is the error of the best uniform approximation to f on the interval [a,b] by polynomials
of degree < m.
Theorem 8.6. For p € N, z € [ih, (i + 1)h], ¢ € Z, it holds

(8.22) | f(z) — (ngfnﬂ )(@) |< BV Em, (i—pr2—mh(i4p-1+2m (),
p—1
=24 922 <24 (V2 — 1 1)em
qg=1

where mp, = min{m — 1, 2p — 1} and the constant ¢, is defined in (8.9).
Proof. From (8.21) with r = 2p we observe that stpml 19 = Qnm—19 for g € Pyp_1. As
explained in the end of Section 8.3, Qnm-19 = g for g € Pm—1. Thus an:nl 19 = g for

g € Pp,, mp = min{m — 1, 2p — 1}. We obtain f — Qnm 1 :(f—g)—Qnm 1(f g) and
for z € [ih, (i + 1)h],

8.23)  fl@) - QLN NE@) =f@)—g@) — Y dP VBu_i(nz —k), g€ P,

k=i—m-+1
where d,(cp_l) now corresponds to f — g (cf.(8.19)),
p—1
_ m m
a7 = 39D e~ ). S =10+ ), g = gl(k + D).

q=0

Since | DI(fr, — gx) |< 2% max|;_x|<q | fj — g5 |, ¢ > 1, we obtain the estimate

p—1
1)
1S 1 D — 00 1< [+ 5 1 12 smax 1 fi— g,
q=0 g=1 =

and (8.23) yields
| f@) = (@, 1) (@) |<| f(a) —g(z) |+ max |dP V]

i—m+1<k<i

< f(@) —g(@) | H1+ Y 17 12%] max  max | f((G+ 2)h) — g((G + 2)h) |

poa i—m+1<k<i |j—k|<p—1 2 2
<Y max FIGEYIGIP

(i—p+2—"5)h<E<(i+p—1+F)h
Since g € Pp, is in our argument arbitrary, this proves (8.22). It remains to estimate the
constant ¢ ) =2 + Ep;i | 74 | 2%4. According to (8.15), (8.9)

|2 |9 (A= |2 ]) 2 [*! zi(1 — z)
< > 1.
'7(1'—2 (I+ [ )2+ [ Py(z) | — ogozt (1 +a)2att ™ 9=
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The maximum of the function z — % in [0, 1] is attained at z = z, := 1+ % -4 /% + q%.
Since zd(14z4) 720 <272 (1 —x,)/(1+z4) = (29+ 1)*%, we obtain | v, |< (2¢+ 1)7%2_2qcm
and
p—1 p—1

p—1
> %2 < en Y 2t ) E Sen [ (24D bt = (/B D - 1)
q=1 g=1 0

that completes the proof of the theorem. O
Remark 8.7. Exploiting the Chebyshev interpolant II/,_,f € P,_1 in the role of g we
obtain by Lemma 7.2 that for f € C™[ah, bh], it holds

Mhm max | f™(z)].

(8.24) 5m—1,[ah,bh](f) < m122m—1 ah<z<bh

The smallest value of p for which estimate (8.22) has the order O(h™) is p = p + 1 (still with
p = int((m —1)/2)):

(8.25)
m+2p—1)" m
swp [ f@) =@ @) < e D sip [ |
ih<z<(i+1)h m: (i—pt1-2)h<z<(i+ut+2)h
w
M =24+ 7 |24 <24 (V2u+1- Dem.
g=1

Example 8.8. For m = 3 (quadratic splines), p = 2, x € [ih, (i + 1)h], formulae (8.19),
(8.20) and (8.22) yield after elementary calculation v, = —3,

i

@ = 3 (=57 + g0+ 20+ D) = 51kt S)n) Bt — ),
| 1@) = @UMN@) 1< 2606 s () < 0B max | [0z

(i—3)h<z<(i+35)h

Example 8.9. For m = 4 (cubic splines), p = 2, = € [ih, (i + 1)h] similar calculations yield

— _1
Y= "%

QU@ = 3 (=G (Ck 1) + Ak + D) = 7k + D)) Balrne — ),
k=1—3

(1) 8 625 B

| f(z) = (@,3f)(z) [< 553,[(i72)h,(i+3)h](f) < 1152 | fW(z) |-

ma
(i—2)h<z<(i+3)h
Now we return to the Wiener interpolant Qp m—1f determined by (8.1), (8.6), (8.9).
Theorem 8.10. If f € C(™(R) and f(™)(z) is bounded in R then

(8.26) sup | f(2) = (Qnm—1f) (@) [< ch™sup | f0) () |,
z€R TER
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" (1) (m+2p—1)™

! o—m
c, = C ———+4c,2
m m m192m—1 m

with ¢}, and Y defined in (8.21) and (8.25).
Proof. Theorem 8.5 with r = m yields
sup | (@nm—1f) = (@ 11)(@) |< &2 W™ sup | [ () | .
z€R TER
Together with (8.25) this implies (8.26). O
Remark 8.11. Modifying the choice of p and r we obtain the estimate

sup | () = (Qum-1f)(@) |< emeh"sup | fT ()], 0<r <m,
T€R z€R

where we assume that f € C)(R) and f(")(z) is bounded in R. A detailed proof is left as an
exercise.
Remark 8.12. If f is bounded and uniformly continuous on R then

sup | () = (Quum—1£)() | 0 as n — oo.
z€eR

The proof can be constructed using the equalities ), Bp—1(nz—k) =1land ), ar =1
for ay in (8.6) implying

@) = @um—1)(@) = 3 D" ax j[f (@) = F((j + 50 Bros (n — k).

° 2
kEZ JEL
For z € [ih, (i + 1)h], i € Z, this takes the form
%
..m
F@) = @una D@ = Y Dl @) = (G + G Br-s(na — k).
k=i—m+1 j€Z

For a given e-accuracy, also the second sum can be reduced to a finite one with | j — &k |< N,.
The arguments z and j + 3 become close to one another uniformly with respect to z, and we
can make use of the uniform continuity of f. A detailed argument is left as an exercise.

8.7. Interpolation of periodic functions. Introduce the space Cper(R) of continuous 1-
periodic functions equipped with the usual supremum norm,
I lloo= max, [u(@) [=sup | u(z) | -
Introduce also the space Cpe, (R) = C™(R) N Cper(R) of C™-smooth 1-periodic functions.
Previos results concerning the Wiener interpolant and qusi-interpolants, in particular The-
orem 8.10, can be applied to 1-periodic functions. Formula (8.6) can be rewritten so that the
summation extends only over one period. An equivalent form of Wiener interpolant can be

presented using the periodization of B-splines as follows.
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Introduce the B-splines By, y—1,j(2) = Bpm—1(nz — j), their periodization

Enm 1,] ZBnm 1,](-'13‘|‘k ZBm—l(n$+nk_j)a J E€Z,
kEZ kEZ

and the subspace of 1-periodic splines

Clearly, Bn m—1,j = Bn m—1,j+n, J € Z, hence dlmSn m—1 = n; a basis of Sn m—1 18 constituted,
for instance, by Bn,m 1,j> J = 1,...n. Define the interpolation projection operator Qnm 1
Cper(R) — Sy m—1 by the conditions

Qum-f € Snm-1, @um-rf)((+ ) = f((+ FIR), i €Z, | € Cour(R).

2
The coefficients d; of Qn,m_l f= E?Zl djén,m_l,j can be determined solving the n x n system

of linear algebraic equations

(8.27) > diBnmors((i + %)h) = f((i+ %)h), i=1,..,n.

For f € Cper(R), it holds @n m—1f = Qnm—1f. Theorem 8.10 enables to establish the estimate

|l f - Qnm 1f oo < c nn " I f(m) loos [ € Cg(l%r(Rm)a

where the constant ¢, is independent of n and f. Using other ideas, the smallest possible
value of the constant has been determined in the literature. We formulate this result without
proof.

Theorem 8.13 ([4], p. 260). For f € R™) and even n, it holds

per(
(8.28) I f = Qum—1if lloo< Y ™0 ™ || £ |0

where 7y, is the so-called Favard constant defined by

B 4 & (_1)k(m+1)
Tm = kz_o (2k + 1)1

and satisfying the inequalities and the limit relation

2

s 4 T
_:72<’y4<---<_<...<’)’3<’)/1:—;
8 e 2

The constant ¢, = YT n (8.28) is the smallest possible for the class of functions
f € per(]Rm). Moreover, (8.28) realizes the Kolmogorov n-width of the set F(™ := {f ¢

m

fym—>;asm—>oo.

-m

Cper(R) | ™ Jloo= 1} in Cper(R) which for even n occurs to be equal to Y, 7 ™n ™™ (see
Section 1.1 for the definiion of the Kolmogorov n-width). Hence, for arbitrary n-dimensional

subspace Ey, of Cper(R), no approximation procedure (linear or nonlinear!) exists that assignes
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to f € Cler(R) an f, € Ey so that || f — fn ||e< €n || f™) |4 for all f € Cpe:(R) with an

en < YT MM .

n

Probably, Theorem 8.13 can be used to reduce the constant ¢/, also in Theorem 8.10. The
argument idea could be as follows: for fixed zy € R and given f € C™(R), take a function
fe Cper(R) such that f(z) = f(z) for | £ — 29 |< 6 = const, then the difference between
(Qnm—1f)(zo) and (@n,m,lf) (zo) is small due to the exponential decay of the sequence ay

defining the Wiener interpolant @y, ,,—1f ; a problem arises about as small as possible norm

1™ oo

9. SPLINE COLLOCATION AND QUASI-COLLOCATION FOR WEAKLY SINGULAR INTEGRAL
EQUATIONS

9.1. Operator form of the quasi-collocation method. Let us return to the weakly sin-
gular integral equation (5.1) , u = Tu+ f, with K € ™, f € C"™¥(0,1), m >2,0<v < 1.
Using the smoothing change of variables we rewrite (5.1) in the form (5.15), v = Tyv + f,, in
the inteval 0 < ¢ < 1. Introduce the extension operator (already expoloited in Section 7)

f(O), _5 S t S 0
Es: C[0,1] = C[=6,144), (Bsf)(t) = f(t), 0<t<1
f(), 1<t<1496
and the spline quasi-interpolation operator

n—1

I
QY i :Cl-6,1+0 = C0,1], QL _w)®) = Y | > vDW; | Bui(nt —i)
i=—m+1 \ ¢g=0
where g = int ((m —1)/2), D = DTD~ is the second order central difference operator, 7,
is defined in (8.15) and v; = v((i + 5)h). We approximate (5.2) by the finite dimensional
equation

(9-1) Un = Qy({jzn_1E6T<p'Un + QSzlen—lEdf‘p'

In analogy to the collocation method, we call this method spline quasicollocation method.
Note that Q%,LZnAEJ : C[0,1] — C]0,1] is not a projection operator but this is no obstacle to
obtain an effective method.

Theorem 9.1. Let K € ™", f € C™¥(0,1), m > 3, v < 1, and let ¢ : [0,1] — [0,1]
satisfy the conditions of Theorem 5.3. Further, assume that N (I —T') = {0} (or equivalently,
N(I—-T,) = {0}). Then there exists an ng, such that for n > ng the quasicollocation equation

(9.1) has a unique solution v,. The error of v, can be estimated by

(9:2) 1o = floo< en™ || 0™ [|og
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where v(t) = uy(t) = u(p(t)) is the solution of (5.15), u(x) is the solution of (5.1); by Corollary
5.4, v € C™[0,1]. The constant ¢ in (9.2) is independent of n and f (it depends on K, m and
).

Proof. This formulation is almost identical to that in Theorem 7.5, the only difference
is that now the claims concern the spline quasicollocation method (9.1). The proof of the
theorem repeats the argument in the proof of Theorem 7.5. There is no need to reproduce all
the details of the proof again. We comment only on details that are different from those in
the proof of Theorem 7.5.

First of all, we have to justify the pointwise convergence of stf anlEJ to I in C]0,1]. This

follows by Banach—Steinhaus theorem (Theorem 2.2): (i) clearly

I nglf)n—lEd llcro,11—cp0, <l stf)n_1 lc—s,1+6)>cl0,]< const, n € N;
(ii) the set
v = (v e ¢™0,1] : v (0) =0 (1) =0, j=1,..,m}
is dense in C[0,1], EsV™ C C™[—5,1 + 4] and by (8.25) QW) _ Esv — v for v € V(™ as

n,m—1
n — oo with the estimate

9.3) o= Q%) _ 1 Bsv l|oo< ch™ || 0™ ||os -

Now similarly as estimate (7.19) in the proof of Theorem 7.5, we obtain for the solution v of
equation (5.2) and solution v, of equation (9.1)

(9.4) 10 = n oo i |0 = Q) Esv [|oo
where
kin = (I = ng,tr)nﬂEJT«p)_l lco,11-c10,11< [ — e, R AST 0
n
en = Ty — Qf{f%flEaTw ||c[0,1]—>c[0,1]—> 0 asn — oo.

By Corollary 5.4, v € V™ for the solution of (5.15), thus estimate (9.4), (9.3) holds for the
solution of (5.15) and (9.1) implying (9.2). O

9.2. Matrix form of the spline quasicollocation method. It is somewhat helpful for the
()

nym—1

n—1 1%
(Q%flv)(t) = Z < Z wq”Hq) Bp1(nt —1), 0<t <1,

i=—m+1 \g=—p

implementation of quasi-interpolations to represent () v in the difference-free form

with appropriate weights w,. We already used this representation form in Examples 8.8 and
8.9.
The solution v, of the quasi-collocation equation (9.1) has the form

n—1

(9.5) ()= Y ciBmoi(nt—1)

1=—m+1
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in which we have to determine the n + m — 1 unknown parameters ¢;, 1 = —m +1,...,n — 1.
The two terms in the r.h.s. of (9.1) are
n—1 I
(Qnm 1Esfo)(t) = Z (Z wq(EJfkp)H-q) Bp—1(nt —1)
t=—m+1 \g=—u
and
n—1 u
(Qnm 1 EsToon)(t) = Z ( Z wq(Echp'Un)iJrq) Bm-1(nt —1).
t=—m+1 \g=—p
Here
(EsTyvn)(t) =
fol K,(0, s)vp(s)ds, t<0 n—1 01 K,(0,s)Bm—1(ns — j)ds, t<0
fol K,(t,s)vp(s)ds, 0<t<1 p= Z 01 K,(t,s)Bm-1(ns —j)ds, 0<t<1
fol K,(1,s)vp(s)ds, t>1 j=—m+1 fol K,(1,8)Bp—1(ns — j)ds, t>1
thus
n-1 fol Bp,—1(ns — j)ds, (i+%3)h <0
(EJTgoUn)i = Z fO h S) m— 1(ns —j)ds, 0< (Z + %)h <1 Cj-
j=-m+l fo o(1,8)Bp—1(ns — j)ds, (i+%)h>1

From equality of coefficients by By,—1(nt —i), i = —m +1,...,n — 1, in the L.h.s and r.h.s. of

equation (9.1) we obtain the following system of linear equations for the determining of the

parameters ¢;, t = —m +1,...,n — 1, of vy,:
(9.6) c = Z o;ici+ B, t=-m+1,..,n—1,
j=—m+1
where
= Z WqOi+q, ai,j Z quZ’i‘q,]? ’L., =—-—m-+ 1 yeeey TV — 1,
g=—u q=—u
f(0), (i+%)h <0
oi=9q foli+3)h), 0<(i+F)h<1 o,
fw(l), (i+%)h>1
fol (ns — j)ds, (t+3)h <0
=4 Jo K hs) (ns —j)ds, 0<(i+%)h<1
fo »(1,8)B(ns — j)ds, (i+5)h>1
Having found ¢;, i = —m + 1,...,n — 1, by solving the system (9.6), the quasi-collocation

solution vy, is given by (9.5).

9.3. Periodization of weakly singular integral equations and collocation method.

Introduce the one dimensional projection operator

IT: Clo,1] — CI0,1], (v)(z) = [v(1) —v(0)]=z

Cjs
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(clearly I12 = II). Equation (5.15), v = T,,v + f,, is equivalent to the system of two equations
My = TIT, v + IT, (I — M)v + 11 f,,

(I-Mv={I-M)T,(IIv) + (I —INT,(I —Mv+ (I - 1) f,
with unknowns ITv and (I —II)v =: v. With respect to the unknowns a := v(1) —v(0) € R
and v € C[0,1], this system can be written as

1
(9.7) az@a-l—/o o(s)v(s)ds + B, v(t) =aT(t /K (t,5)0(s)ds + f,(t)

where

ﬁ = fcp(l) - fcp(O)a f(p(t) = fcp(t) - ,Bt,

o(s) = Ky(1,s) — K,(0,s), 6 :/0 o(s)sds,

1 ~
1) = /0 K,(t,s)sds — 0, K, (t,s) = K,(t,s) — to(s).

If (a, ) is a soluion to system (9.7) then v(t) = at + v(t) is a solution of equation (5.15).
Observe that

70) =7(1), Kp(0,5) = Ky (1, )
we extend 7(t) and Iz'¢(t, s) into 1-periodic functions of ¢ maintaining the same designations
for the extensions. For v € C|0,1], v = (I — II)v we also have v(0) = v(1), and the may treat

v and fcp as l-periodic functions. So we can consider system (9.7) as an equation in the space
X =R x Cper (R),

(£)-(2 2)()(5)

where

1
Y: Cper(R) = R, 25:/0 o(s)v(s)ds,

Ty i Cour(R) = Coar(R), (T,5)(t) = /0 R, (t, s)(s)ds

We build the collocation solution of (9.8) with the help of periodic interpolation projection
operator @n,m,l introduced in Section 8.7:

an B N 0 B M N (079 _ ﬁ »
(99) ( 571 ) N ( Qn,m—l; Qn,m—lTSO ) ( 5” ) ! ( Q”’m_lfw ) .

.. . (67 t . .
This is a system with repect to ( " > € Rx Sy ;m—1 C Rx Cper (R); the approximate solution

Un

v, to equation (5.15) is given by

(9.10) vn(t) = ant +op(t), 0 <t <1
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The matrix form of system (9.9) reads as follows: v, = Z?Zl Cjén,m,l,j ,

n 1 _
(9.11) tn = 00+ / 0(8) 1 (s)ds c; + B,
— Jo
ZBnm 1,] 7'+ 9 )h) anT +Z/ h 3) nmfl,j(s)dsc]-
FFp TR, =1,

This is a system of n+1 linear algebraic equations with respect to n+1 unknowns «y,, ci, ..., cp.
Here 7(t), K,(t,s) and f,(t) are understood as 1-periodic functions of ¢.

Theorem 9.2. Assume the conditions of Theorem 9.1. Then there exists an ng, such that
for n > ngy the collocation system (9.11) has a unique solution «ay,, ¢1, ..., ¢,. The accuracy of
v, defined by (9.10) can be estimated by (9.2).

Proof. X := R x Cper(R) is a Banach space with the norm || (a,?) [|=| a | + || U |-

10
Denote by Ix = 0 I where I is the identity operator in Cpe (R) and

T = f % X=X, Tp= b P X = X
T Ttp Qnm 1T Qn,m—chp

The operators 7 : X — X and 7, : X — X are compact that easily follows from the
compactness of the operator T, : Cper(R) = Cper(R). If

(5)-(25)(5)

for some (a,v) € X then v := at+7 is the solution of the homogenous equation v = T,,v, and
by the assumption of the Theorem, v = 0 that implies « = 0,7 =0. Hence Ix — 7T : X —» X
has a bounded inverse (Ix — 7)~! : X — X. Further, since ﬁp ¢ Cher(R) = Cher(R)
is compact and || ¥ — @n,m_15 lo— O for every ¥ € Cper(R), we have by Theorem 2.6
| (I— @n,mq)fp | Cper(R)—Cper (R)— 0 that implies || 7 — Ty [ x»x— 0 as n — oc. For n such
that || (Ix — T) 7! |xoxl| T — Tn llx>x< 1, also Ix — 7y, is invertible and

G =l Ix = To) 7" lIxox

< | (Ix =T) 7" llxox

T 1| Ux =) U xox| T—Tallxosx
as n — 00. In particular, collocation system (9.11) is uniquely solvable for all sufficiently large
n. For the solution (a,v) of (9.8) and the solution (an,vy,) of (9.9) we have

(IX - 771){(%777 - (Otn,an)} = (IX - 7;L)(Olaa) - (/6; Qvn,mfl.f:p)
= (IX - T)(aaa) + (T - 7%)(04,5) - (,3, Qvn,mflfw)

= Ix = T)™" Ixox=:¢
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= (,3, fcp) + (Oa Ol(I - C~271,m—1):7:+ (I - @n,m—l)fwg) - (IBa @n,m—lf(p)
= (0,0t(I - Qvn,mfl);‘k (I - @n,mfl)ipa"_ (I - @n,mfl)ﬁp) = (O, (I - Cjn,mfl)a)
that implies

la—an |+ |7 =V |lo=| (0, 0) = (n,Vn) |x< Cn || (T - Cjn,m—l)5 oo -

By Theorem 8.13, || (I—@n,m,l)ﬁ loo< Y ™h™ || 7™ ||s. For the solution v(t) = at+3(t)
of equation (5.15) and the collocation solution w,(t) = a,t + v,(t), these estimate yield

| v — v [Jo< ch™ || ™ ||0o completing the proof of the Theorem. [

EXERCISES AND PROBLEMS

1. Prove the compactness in C[0, 1] of the Fredholm and Volterra integral operators with a
continuous kernel, see Section 2.4.
2. Prove the Faa di Bruno differentiation formula (2.1). Hint: induction.

2 , o\
3. Establish the Leibnitz rule for (% + 6_y) :

1 ! j I—j
(5+5) latu)b(o)] = > ( j ) (t5) olon) (s +5) o)

4. Show that the kernel (3.1) with 0 < v < 1 belongs to ™" if a € C™([0,1] x [0,1]) or,
more generally, if a € S™ 9, § > 0.

5. Show that the kernel K(z,y) = a(z,y)log | z — y | with a € C™([0,1] x [0,1]) belongs
to 8™ or, more generally, if a € S™%, § > 0.

6. Prove the claims of Lemma 3.1.

7. Prove Lemma 4.1.

8. Present a detailed proof of Theorem 4.3.

9. Prove the compactness of the imbedding C™"¥(0,1) C C[0,1], m > 1, v < 1.

10. Prove (5.4) and the compactness of the imbedding operator.

11. Prove that the spaces C""¥(0,1) and C"™"(0, 1] are complete.

12. Prove that uv € C™"(0,1) for u,v € C™"(0,1) and

| wv [[gmow0,1)< € | w [lomw o)l v [lomy (0,1

with a constant ¢ that is independent of u and wv.

13. Prove that || u' ||cm-1v41(0,1)<|| % [[gmwv (0,1) for uw € C™*(0,1), m > 1, v < 0.

14. Prove that equation (6.1) with K € S™Y(A), m > 0, v < 1, f € C[0,1] has a unique
solution u € C[0,1].

15. Present a detailed proof of Lemma 7.1.

16. Assume the conditions of Theorem 7.5 but purely f, € C[0,1]. Prove that || v—vy, ||o—
0 as n — co. Relax the condition also for K assuming that K € S, v < 1.
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17*. Present and prove a counterpart of Theorem 7.5 in case m = 1 using piecewise constant
interpolants with the central dislocation of the interpolation points, cf. Section 7.3. Examine
the superconvergence of the collocation solution at the collocation points, i.e., the convergence
with a speed exceeding the global convergence speed || v — vy, ||oo< ¢h || V' ||oo, cf. [12].
Examine full discretizations of the method and two grid iteration schemes of complexity O(n?)
flops to solve the discretized collocation system . Solve numerical examples and comment on
them.

18. The nonvanishing coefficients by, = b}* = By—1(k+ ), | k |[< p = int((m —1/2), can be
computed recursively using the the recursive definition of By, 1 (see Section 8.1). Establish
for m > 3 the recursion formula

1
4(m — 1)(m — 2) ((

19. Compute b3, | k |< 2. Find characteristic roots.

b = m — 2k)267"2 + 2(m? — 2m — 4k*)b7 % + (m + 2K) b;cn+12)

. ~1
20. Prove that B(m 1)( ) =(=1) i , forih <z < (i+1)h,i=0,..,m— 1.
i

21. Prove the estimate || Qum—1 ||Bo®)—BO®)S 2kez | akl, see Theorem 8.1.

22. Show that for m > 3, the null space N( ) of the matrix B = (by_;)k, jez in the space X
of all bi-infinite vectors (d;);ez is of the dimension 2y and is spanned by (ZZ)jeZ, v=1,..,2u,
where z,, v = 1,...,2u, are the characteristic roots.

23. Present a detailed proof of (8.11).

24. Prove that Ja € sgym(Z) for a € sgym(Z).

25. Present the formula for the quasi-interpolant Q%ﬁ f and an error estimate for it in the
spirit of Examples 8.8 and 8.9. The characteristic roots for m = 6 (m — 1 = 5) are given in
Section 8.3.

26. Prove Remark 8.11. Characrerize the constant cy, .

27. Present a detailed proof of Remark 8.12.

28. The function Br,—1(z) := ) ;ezaiBm—1(z — j) with a; given in (8.9) is the so called
fundamental spline: By, 1(i+5) = 6;0, 1 € Z (prove this!), and hence the Wiener interpolant
Qnm-1f of f € BC(R) can be represented in the form (show this!)

(Qnm lf kaﬁm 1 ’TL:L‘—k), fk:f((k—l__)h)

kEZ
Observe that suppfy,—1 = R but 8,1 decays exponentially as | z |— co. Finally, prove that

| @n,m—1 | Bo®)—BO®)= glgﬁiz | Bn—1(x + k) |
keZ
(the function ym—1() := Y ez | Bm—1(x + k) | is 1-periodic). Thus || Qnm-1 || Bo®)—BC(®R)
can be determined numerically. One can conjecture that £, 1(z) vanishes only at points
z=1i+%,0#i€Z, and B],_;(x) # 0 at these points.
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29*. Establish the counterpart of Theorem 9.1 for the collocation method

Un = Qn,m—lEJTgo'Un + Qn,m—lEquo-

Present the matrix form of the method. Examine suitable full discretizations of the collocation
and quasi-collocation methods and present two grid iterations to solve the systems trying
to restrict all the computations to O(n?) flops; of course, the accuracy O(h™) should be
maintained by the approximate solution. Solve numerical examples an comment on them.

30*. Establish a counterpart of Theorem 9.2 for the the quasi-collocation method and
present the matrix form of the method. Examine suitable full discretizations of the collocation
and quasi-collocation methods for the periodized problem and present two grid iterations to
solve the systems trying to restrict all the computations to O(n?) flops; the accuracy O(h™)
should be maintained by the approximate solution. Solve numerical examples and comment
on them.

Exercises labelled by * propose topics for master theses, Exercises 29* and 30* even for doc-
toral theses. Also Exercise 28 can be extended up to a master thesis topic proving or disproving
the formulated conjecture, presenting computer graphs of S,—1(z) and 7ypy,—1(z), determinin-
ing || @nm-1 l|Bo®)—BC®) numerically for m = 3,...,10 and examining the asymptotics of

|| Qn,m—l ||BC(R)—>BC(R) as m — Q.
See the Comments and Bibliographical Remarks for further radical open problems.

COMMENTS AND BIBLIOGRAPHICAL REMARKS

With proofs, the results of Sections 2.1-2.4, except Theorem 2.8, can be found in any text
book on functional analysis. The proof of Theorem 2.8 , in its full extent, is based on the
Fredholm theory for compact operators, see [18]| for details. Strange enought, the Faa di
Bruno’s differentiation formula (Theorem 2.9) is not included into standard text books on
calculus although when the formula is already formulated, its proof by induction is instructive
and simple .

The smoothness/singularity problem for the solutions of weakly singular integral equations
has a long history, see [1], [5-8], [12], [17,18] and the literature quoted there; the results of
Section 5 can be extended to multidimensional weakly singular integral equations, see [8], [12].
In very last time, the smoothness/singularity results have been extended to integral equations
of the type

1
u(o) = [ Koy 9) Puly)dy + 1 (a)
0
where K € ™", m > 1, v <1,v+A <1, v+pu < 1. It occurs that the boundary singularities
y~*(1 — )" by the kernel shift the solutions from C™"(0,1) into the space C™»TAFH((), 1)

of functions that have the singularities of the type C™** in a vicinity of 0 and of the type
C™V*tH in a vicinity of 1. See [7] for precise (and more general) formulations and for proofs.
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Piecewise polynomial collocation method can be applied to integral equation (5.1) directly,
without a smoothing transformation. The optimal convergence order O(n~™) can be achieved
by using a suitable graded grid of the type

1/4\" . .
zi==(—], t=0,.un, Tzppi=1—2zp, 1=1,...,n,

where r > 1 is the grading parameter. For r = 1 the grid is uniform; for greater r the
grid points z; are more densely located near the end points of the interval [0,1]. On every
subinterval [z;,z;41], ¢ = 0,...,2n — 1, take m interpolation points & ; = z; + by(ziy1 — ),
Il =1,...,m, where 0 < by < ... < b, < 1 are parameters that are independent of 7 and
n. Using these interpolation points we can build a polynomial interpolant of degree m — 1
of a given function f € C[0,1] on every interval [z;,z;t1], ¢ = O0,...,2n — 1, independently
and compose from those partial interpolants a piecewise polynomial function on [0, 1] that we
denote by @ f. It occurs that for f € C™"(0,1) and sufficiently large r = r(m, v) described in
[12,[18], || f — Qnf lloo< en™™ || wimsv 1f™ ||loo . Assuming that f € C™*(0,1), K € 8™
and N(I —T) = {0}, the collocation method

Up = QnTUn + Qnf
applied to equation (5.1) converges with the optimal accuracy order
| u—tn o< en™ | wm-l—u—lu(m) oo -

In [5,6], this method is combined with the smoothing change of variables to reduce the re-
striction on the grading parameter r. In particular, the uniform grid (r = 1) can be used
setting suitable conditions on ¢; the collocation is performed still at points &, I = 1,...,m,
i =0,...,2n — 1; the boundary behaviour (5.20) of the solution is not exploited. The collo-
cation method introdoced and examined in Section 7 of the present lecture notes is different.
This method similarly as the two methods of Section 9 seem to be new. The periodization of
the problem allows to use not only periodic splines (as in Section 9.3) but also trigonometric
or wavelet trial functions, cf. [9], [15].

The spline interpolation problem has been found much attention in the literature, see,
in particular, the monographs [3], [4], [10], [11], [19]. Usually the interpolation problem is
formulated for an interval, say, for [0, 1], but [11] starts from the interpolation on R. For us
the interpolation on R is suitable since, due to boundary conditions (5.20) satisfied by the
solution of the transformed integral equation (5.15) on [0, 1], we have a simple way to extend
the solution onto R maintaining the C™-smoothness. Our idea to use the Wiener theorem
for the construction of the (Wiener) interpolant is equivalent to the idea of constructing the
interpolant with bounded derivative of order m —1 exploited in [11]. Technically, our approach
is simpler than this in [11] but equivalent to it, so we finally arrive at the same formula (8.10)
as in [11].
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In the literature, the spline quasi-interpolants have been usually introduced through the
condition that they reproduce the polynomials of degree < m — 1, without any connection
to the real interpolant, see [3], [10], [19]. In [10], the quasi-interpolants are systematically
exploited to estimate, in a varity of norms, the distance of a given function from the subspace
of splines. This approach leads to optimal convergence orders but the constants in estimates
remain undetermined or are rather coarse, for instance, || Qnm—-1 ||[c»c< (2m)™ for the quasi-
interpolation operators constructed in [10]. Our treatment of quasi-interpolants based on the
difference representation of the Wiener solution is different from that in the literature. An
advantage of our approach is that we obtain simple closed formulae for the quasi-interpolants
of any approximation degree and at least for m < 10 the norms of the interpolation and
quasi-interpolation operators are quite acceptable to be sure that the numerical schemes are
stable with respect to rounding errors.

The problem of a full discretization of the collocation schemes and of a fast solution of
the collocation systems remained untouched in these lectures. In the section Exercises and
Problems we formulated some problems to construnt fully discrete schemes of the optimal
accuracy order and complexity O(n?) flops for their implementation. Similarly as in [13—
16] in case of smooth kernels without singularities, a challenging problem is to reduce the
arithmetical work to O(n) flops maintaining the optimal accuracy || v—vp ||oo< ¢h™ || v |00
of the approximate solution under assumptions that f € C™¥(0,1), K € 8?™" m >2 v < 1
and N(I —T) = {0}. Actually a radical open problem is whether (or under which further
conditions on the kernel) this is possible at all; note that, in analogy to the case of smooth
kernels, we already strengthened the condition K € S™ up to K € S?™" but it is not clear
whether this is sufficient.

Fast solution is supremely important in the case of multidimensinal integral equations.
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