Mat-5.3741 Theory of Elasticity (5 cp) L

Exercise 4

Problem 1

Let $y=w(x)$ be a curve in $x y$-plane. Radius of curvature $\rho(x)$ is derived as the radius of the circle that fits best to $w(x)$ at point x. The conditions for this are that the circle and the curve have the same value $w(x)$, the same derivative $w^{\prime}(x)$, and the same second derivative $w^{\prime \prime}(x)$ at the point x. Show that this gives

$$
\rho(x)= \pm \frac{\left(1+\left(w^{\prime}(x)\right)^{2}\right)^{3 / 2}}{w^{\prime \prime}(x)}
$$

Problem 2

Consider the rod problem : Find u such that

$$
\begin{aligned}
\frac{d}{d x}\left(E A \frac{d u}{d x}\right)+f & =0 \\
u(0) & =0 \\
E A u^{\prime}(L)+k u(L) & =0 .
\end{aligned}
$$

Write the problem as a minimization and a variational problem. What boundary condition do you get in the limit $k \rightarrow \infty$ (by physical arguments)? Prove this a little bit more rigorously, let $\left\|\|\cdot \mid\|_{k}\right.$ (depends on $k>0$) be the energy norm of the problem and let u_{∞} be the candidate for the limit solution. Prove that it holds

$$
\left\|\left|u_{\infty}-u\right|\right\|_{k} \leq k^{-1 / 2}\left|E A u_{\infty}^{\prime}(L)\right| .
$$

Problem 3

Consider the dynamics of a rod and show that the equation for the displacement $u(x, t)$ is

$$
\frac{1}{c^{2}} \frac{d^{2} u}{d t^{2}}=\frac{d^{2} u}{d x^{2}}
$$

with $c=$?. Solve with Fourier series and plot (animate) the solution for the following boundary conditions
a) $u(0, t)=0, u(L, t)=0$
b) $u(0, t)=0, E A \frac{d u}{d x}(L, t)=0$
and the initial conditions $u(x, 0)=f(x), \frac{d u}{d t}(x, 0)=g(x)$. Functions f and g you can choose as you wish.

Problem 4 (home exercise)

As derived in the book (p.75) the normal stress in the beam varies linearly with y;

$$
\sigma=-E u^{\prime \prime} y
$$

In addition, we showed that

$$
M=E I u^{\prime \prime}
$$

which gives

$$
\sigma=\frac{M}{I} y
$$

Consider now a beam with a square cross section and rotated 45° w.r.t. the x - and y axis (see figure). Show that for a fixed moment the maximal normal stress decreases if you take away material from the corners. Otimize the beam by computing the β for which the maximal stress is smallest.

