
Introdution to numeri and symboliomputingAntti Rasila, Susanna Liesipohja, Juha KuorttiMay 16, 2011

Contents
1 Introdution to MATLAB 21.1 Basis . 21.1.1 Output . 41.2 Vetors and matries . 61.2.1 Random numbers . 91.3 Branh and loop strutures . 91.4 De�ning funtions . 131.5 Polynomials . 141.6 Plotting and drawing . 151.6.1 Plotting 3D graphis 161.7 Useful links . 162 Linear algebra 172.1 Linear equations . 172.2 Matries and vetors in MATLAB 192.2.1 Solving linear equations in MATLAB 272.3 Gaussian elimination . 282.4 Matrix deompositions . 302.4.1 LU-fatorization . 302.4.2 Cholesky-deomposition 342.4.3 QR-deomposition . 362.4.4 Singular value deomposition 402.5 Linear least squares . 432.5.1 Least squares and MATLAB 482.6 Symboli linear algebra in MATLAB 50

1

3 Interpolation 533.1 Polynomial interpolation . 533.1.1 Lagrange interpolation 533.1.2 Determining oe�ients 553.2 Runge's phenomenon . 563.3 Pieewise linear interpolation 573.4 Splines . 593.4.1 Cubi spline . 603.5 Additional methods for interpolation in MATLAB 634 Numerial di�erential and integral alulus 674.1 Numerial derivation . 674.1.1 Estimating derivative with polynomial 724.2 Jaobian matrix . 734.3 Numerial derivation on omplex plane 754.4 Numerial integration . 774.4.1 Trapezoid rule . 774.4.2 Simpson's rule . 794.4.3 Numerial integration in MATLAB 814.4.4 Numerial integration on omplex plane 834.4.5 More advaned integration methods 864.5 Symboli di�erential and integral alulus 935 Nonlinear equations 985.1 Root �nding algorithms . 995.1.1 Braketing . 995.1.2 Fixed point iteration 1005.1.3 Seant method . 1035.1.4 False position method 1055.1.5 Newton's method . 1065.1.6 Brent's method . 1105.1.7 Roots of polynomials 1145.1.8 Root �nding in MATLAB 1175.2 Minimization algorithms . 1185.2.1 Golden setion searh 1195.2.2 Brent's method . 1215.2.3 Searh methods for multivariable funtions 1245.2.4 Searhing minimum in MATLAB 1282

6 Di�erential equations 1306.1 Numerial solutions to ODE's 1326.1.1 Euler's method . 1336.1.2 Runge-Kutta methods 1366.2 Solving ODE's in MATLAB 1396.3 Boundary value problems . 1416.4 Partial di�erential equations 1426.4.1 Wave equation . 1436.4.2 Heat equation . 146

3

Chapter 1Introdution to MATLABMATLAB is an interative omputing environment for doing numerial om-putations with vetors and matries. It is suitable for a variety of di�erenttasks involving sienti� and tehnial omputations. MATLAB was re-ated by Cleve Moler in the 1970's as a small program for teahing matrixalulations. It was reated by using Fortran. LINPACK and EISPACKlibrary routines were used internally for omputations. MATLAB was ini-tially a shareware program, and it quikly spread to other universities. In1984, Cleve Moler, Jak Little and Steve Bangert founded MathWorks andommersialized MATLAB. The urrent versions are ommerial produts,written in C. Several extensions have been added to the original MATLAB.1.1 BasisAs mentioned above, MATLAB an be used interatively as a sort of alu-lator. In this ase, the ommands will be written diretly into the MATLABprompt >>. One an exit the prompt by writing quit or exit.The program an also be written into a �le ending with .m, for examplemyfile.m, and run from the prompt by typing the �lename, in this asemyfile.The MATLAB ommands are organized into di�erent topis. Typing helpwill give a list of all the topis and typing help [topi℄ will give a list of allthe ommands grouped under that topi. Typing help [ommand℄ will givea short desription of the spei� ommand.The MATLAB ommands issued and the results obtained an be saved using4

the diary-ommand. For example,>> diary test.dry>> a=1; b=0;>> a+bans =1>> diary off>> type test.drya=1; b=0;a+bans =1diary offCalulations are done in �oating-point preision (approximately 16 digits inthe deimal system). The output an be hanged using the format ommand,but it will not hange the preision of the alulations. The default outputpreision is short, whih is of 5-digit preision. For example>> pians =3.1416>> format long>> pians =3.141592653589793A variable is given a value with the = operator. The most ommonly usedvariable is ans, it always ontains the result of the previous ommand. Morepreisely, if a ommand does not assign a value to a named variable then itis stored to the variable ans.Some names are reserved for ertain onstants, suh as pi (for π), and bothi and j represent the imaginary unit. Other reserved names are, amongothers, realmax, realmin, eps, Inf and NaN. Di�erent values an be assignedto these onstants, but they will revert bak to the default values after re-starting the program or using the ommand lear.A short example:>> 1/0ans =Inf 5

>> 0/0ans =NaN>> NaN=5NaN =5>> lear>> NaNans =NaN1.1.1 OutputA simple way to output data is to display a variable. This an be aom-plished by giving its name (without a semiolon) in interative mode. Al-ternatively you an use the disp funtion, whih shows values without thevariable name, as in:x=42;>> disp(x)42For a fanier output, MATLAB has various funtions for reating stringsfrom numbers, formatting data, et... One suh is fprintf, whih an alsobe used for printing into a �le. The syntax for this is:fprintf([fileId℄,[format℄,[input values℄)If [fileId℄ is omitted, the funtion will print diretly onto the sreen.[fileId℄ refers to the �le identi�er returned when opening the �le for writingwith fopen. For example, fileId=fopen('myfile.txt','w') would openmyfile.txt for writing. The ommand flose(fileId) would lose the �le.[format℄ is a string in single quotation marks that desribes the format ofthe output �elds. It an inlude ombinations of the following:
• A perent sign followed by a onversion harater, suh as %s for stringsand %d for an integer. Floating-point numbers an be printed with %ffor �xed notation and %e for exponential notation.6

• Field width and preision. For example, %6.2f would refer to a �oating-point number of �eld width 6 and preision 2.
• Flags, suh as - for left-justi�ed and + for printing a sign harater (+or −). For example, %+-d would print a signed integer justi�ed to theleft.
• Literal text to print.
• Esape haraters, suh as \n for a new line \t for tab and %% for theperent sign.Below are some examples on the use of fprintf.a=5; s='Hello world ';>> fprintf ('%d is an integer and %s is a string\n',a,s)';5 is an integer and Hello world is a string>> fprintf('Now %+d is a signed integer\n',a)Now +5 is a signed integerb=1.23456789; =0.0015;>> fprintf('Printing with preision 2: %.2f\n',b)Printing with preision 2: 1.23>> fprintf ('\t or with width 20: %20f\n',b)or with width 20: 1.234568>> fprintf('Printing as %f and as %e\n',,)Printing as 0.001500 and as 1.500000e-03For printing into a �le, one an do the following:>> fid=fopen('output.txt ','w');>> fprintf(fid , '%s\n',s);>> flose(fid);Now the sentene Hello world (and a row-hange) an be found in the �leoutput.txt. 7

1.2 Vetors and matriesIn MATLAB, the basi data struture is matrix. The most e�ient way ofprogramming MATLAB is to treat every variable as a vetor or a matrix.Assigning vetor values an be done in the followong ways:>>x = 1:1:4; % expression a:h:b produes a vetor with% numbers from a to b with interval h. If% no h is provided , 1 is assumed , eg. 1:10>>y = [0 1 0 1℄; % Vetor values an be% given individually also.Vetor dimensions have to be taken into aount when performing arith-metis. The produt x*y is not de�ned for two n-vetors, but the pairwiseoperations x.*y and x+y are:>>x.*yans =0 2 0 4>>x.+yans =1 3 3 5In the ase of vetors, the produt is de�ned as if they are n × 1-matries:hene we need to transform one vetor from a row vetor to a olumn vetor.We do this with the transpose operator '.>>xx = 1 2 3 4>>x'x = 1234>>x'*yans =0 1 0 10 2 0 20 3 0 30 4 0 4 8

>>x*y'ans =6If your vetor (or matrix) ontains omplex numbers, you need to take intoaount that the transpose operator will also hange a omplex number toits omplement, i.e., if z = a + bi then z̄ = a − bi.>> xi=[2+i 2 -i 4℄;>> xi'ans =2.0000 - 1.0000i2.00000 + 1.0000i4.0000The power operator is ^, and again, it only works elementwise:>>x.^yans =1 2 1 4Elementary funtions are also available for vetors:>> sin(x)ans =0.8415 0.9093 0.1411 -0.7568>>exp(y)ans =1.0000 2.7183 1.0000 2.7183You an de�ne a matrix just as you de�ned a vetor: to indiate a rowhange, use ;>>A = [1 2 ; 3 4℄A = 1 23 4>>b= [5; 6℄; % b must be a row vetor% You an now obtain inverse of A and multiply% b with it>>iA = inv(A) 9

iA =-2.0000 1.00001.5000 -0.5000>>x = iA*bx = -4.00004.5000% It is generally faster and easier to use MATLABs% built -in linear solver operator \>> x = A\bx = -4.00004.5000Some useful matrix ommands are also: eye (produes an identity matrix),zeros (produes a matrix of all zeros) and ones (produes a matrix of allones). It is also possible to selet spei� elements, rows oh olumns froma matrix. The ommand for this is A[i,j℄, where A represents a matrix, ithe row of that matrix and j the olumn. Here, i and j an be salars orvetors.% We reate a 3x3-matrix of all ones>> A=ones(3)A = 1 1 11 1 11 1 1% To pik a speifi element from matrix A, use A(i,j).% To pik a whole row (or olumn), replae j (or i)% with :>> A(1,:)ans =1 1 1>> A(2,:)=[2, 3, 4℄A = 1 1 12 3 41 1 1 10

>> A(3 ,2)=42A = 1 1 12 3 41 42 11.2.1 Random numbersRandom numbers an be generated by using the ommands rand and randn.The ommand rand(m,n) will produe an m × n-matrix of uniformly dis-tributed random numbers on (0, 1) and randn(m,n) will produe a matrix ofnormally distributed random numbers with mean 0 and standard deviation
1.dist = zeros(6,1);for j=0:99k = round(5*rand(1)+1);dist(k) = dist(k)+1;enddisp(dist)Output:1: 142: 153: 134: 185: 186: 221.3 Branh and loop struturesThe branh and loop strutures available in matlab are: for, while, if andswith. The main priniple is that you should only use these as a last resort.If possible, you should use e�ient vetor operations instead.The syntax of the for statement is:for [variable ℄=[vetor℄...end 11

If one wants to repeat the loop k times, it is handy to use the vetor statement1:k, whih produes a list of numbers 1, 2, . . . , k.# Example: 2nd powers of positive integersfor x = 1:4xx = x*xfprintf ('%d * %d = %d',x,xx)endOutput:1*1 = 12*2 = 43*3 = 94*4 = 16The syntax of the if statement in MATLAB is:if [ondition ℄...elseif [ondition ℄...else...endThe elseif and else branhes may be omitted. The ommands in the ifbranh are exeuted if the ondition is satis�ed, if not then the onditionsin the elseif branhes are evaluated. If none of the onditions given issatis�ed, the ommands in the else branh are exeuted.The most ommon onditions used are the omparison operations <, <=, ==,�=, >= and >. Note that for equality, the expression == is used in order toavoid onfusion with the value assignment operator =1. The expression �= isused for inequality.A while statement is used when one wishes to repeat the loop until someondition is no longer satis�ed. This struture is very useful when readinginput from a �le or from the user.The syntax of the while statement is:while [ondition ℄...end1This is signi�ant, as in e.g. the C language, the ondition if(x=1)... is always true.12

To avoid an in�nite loop, inside the loop there must naturally be somethingto invalidate the ondition when the desired number of loops is reahed.x = 5;guess = 0;while guess ~= xguess = input('Guess a number:');if (abs(guess - x)>10)disp('Your guess is very wrong')endendOutput:Guess a number:6Guess a number :100Your guess is very wrongGuess a number:5The syntax of the swith statement is:swith [swith expression℄ase [ase expression 1℄...ase [ase expression 2℄......otherwise...endThe statements assoiated with a ertain ase will be exeuted when theswith expression equals the ase expression in question.% Color evaluationolor='aqua';swith olorase {'red','pink','rose'} % multiple ase expressionsdisp('The olor is red.')ase {'blue','turquoise ','aqua'}disp('The olor is blue.')ase 'yellow'disp('The olor is yellow.')otherwise 13

disp('Unknown olor.')endRemark. One should avoid omparing non-integers with the == operator.For example, pi==3.14159265... is atually false. The MATLAB pi isonly alulated to a spei� length, and thus, does not atually equal π. Thefollowing program will demonstrate this fat:% Desired auray of approximationtol=10^ -4;mypi=1;while mypi~=0mypi=input('Guess the value of pi (0 exits):');if mypi==pidisp('Comparison to MATLAB pi is true')elsedisp('Comparison to MATLAB pi is false')endif (abs(pi-mypi)<tol)disp('Close to pi!')elseif (abs(pi-mypi)>1)disp('Far from pi!')elsedisp('Not lose enough to pi!')endendd Output:Guess the value of pi (0 exits):3.141592653589793238Comparison to MATLAB pi is trueClose to pi!Guess the value of pi (0 exits):3.141592653589793258Comparison to MATLAB pi is trueClose to pi!Guess the value of pi (0 exits):3.14Comparison to MATLAB pi is falseNot lose enough to pi!The �rst guess is an aurate approximation of π, but the seond one is not(the seond-to-last digit is wrong). However, the omparison to MATLABpi is orret in both ases. 14

1.4 De�ning funtionsA funtion an be de�ned with the funtion statement. The syntax of thisstatement is:funtion [output ℄=[funtion name℄([input℄)...This funtion should be saved in an m-�le and the name of the �le must bethe same as the funtion name. For example, the funtion below should besaved as solve2.m.funtion x = solve2(a,b,)D= b^2 - 4*a*;% Floating point number should not be diretly% ompared to zeroif(abs(a)<1e-6)disp('Error')returnelse if(abs(D)<1e-6)x = -b/2*a;returnelsex(1) = -b + sqrt(D)/2*a;x(2) = -b - sqrt(D)/2*a;endendOutput:>> solve2 (1,0,0)ans =0>> solve2 (1,0,1)ans = 0 + 1.0000i 0 - 1.0000i>> solve2(1,0,-1)ans =1 -1The above funtion solve2 solves the roots of a given seond order equation.The input parameters given for the funtion are three numbers a, b and c,orresponding to the oe�ients of the equation to be solved. In the �rst15

example, the equation x2 = 0 is solved (one root at 0); in the seond ase, theequation is x2 +1 = 0 (only imaginary roots) and in the third ase x2−1 = 0(two roots ±1).For simpler funtions, it may be easier to de�ne the funtions �diretly� intothe program. This an be done with the inline ommand or, more reently,the funtion handle �.>> f=inline('exp(x.^2)','x')f = Inline funtion :f(x) = exp(x.^2)>> g=�(x) x.^2g = �(x)x.^21.5 PolynomialsIn MATLAB, a polynomial is represented by a vetor whih onsists of itsoe�ients. To reate a polynomial one an simply enter eah oe�ient ofthe polynomial into the vetor in desending order. For instane, onsiderthe following polynomial:
p(x) = 2x4 − x2 + 5x + 17To give this in MATLAB, just write the vetor>> p=[2 0 -1 5 17℄;One may �nd the value of a polynomial using the polyval funtion. Forexample, to �nd the value of the above polynomial at x = 2,>> polyval(p,2)ans =55The roots of a polynomial an be obtained with roots([your polynomial℄).For example, the roots of the polynomial above are>> r=roots(p)r =1.2663 + 1.3591i1.2663 - 1.3591i 16

-1.2663 + 0.9273i-1.2663 - 0.9273iIf one knows the roots already, the oe�ients an be found using the inversefuntion poly. Two polynomials an be multiplied by using onv([poly1℄,[poly2℄)and dividing an be done in a similar way with the deonv funtion.1.6 Plotting and drawingCurves an be drawn with the ommand plot. For example, to plot a sineurve, one an do the following:>> x=0:.1:2* pi;>> plot(x,sin(x))It is possible to plot several urves at one. The appearane of the urvesan be hanged. For example, the ommand>> plot(x,sin(x),'r',x,os(x),'.b')plots the sine urve in red and the osine urve as blue dots.

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

One may label the axes with the ommands xlabel('[labelname℄'), for thex-axis, and ylabel('[labelname℄'), for the y-axis. A title an be added to17

the graph with title('[title℄'). Curves an be labeled with the ommandlegend([urve1℄,[urve2℄,[urve3℄,[... et.℄).1.6.1 Plotting 3D graphisSpatial urves given in parameters an easily be plotted with the funtionplot3 simply by adding z-oordinates.Surfae plotting an be done with the funtion surf. But �rst, one shouldgenerate the appropriate X and Y arrays using the funtion meshgrid.In the example below, where we are plotting the funtion f(x, y) = xe−x2−y2 ,X and Y represent the �plane� and Z represents the �height�.>> x= -2:.1:2; y=x;>> [X,Y℄=meshgrid (x,y);>> Z=X.*exp(-X.^2-Y.^2);>> surf(X,Y,Z)Output:

−2
−1

0
1

2

−2

−1

0

1

2
−0.5

0

0.5

1.7 Useful links 18

Chapter 2Linear algebra
2.1 Linear equationsAn equation with variables x1 . . . xn that an be written in the form

a1x1 + a2x2 + · · · + anxn = b, n ≥ 1is alled linear equation. The oe�ients a1 . . . an and b an be real or omplexnumbers.A system of linear equations is a olletion of one or more linear equationsinvolving the same variables. Using matrix algebra, the linear system

a11x1 + a12x2 + . . . + a1nxn = b1,

a21x1 + a22x2 + . . . + a2nxn = b2,...
am1x1 + am2x2 + . . . + amnxn = bm,an be written in the form

Ax = b;A =

a11 . . . a1n

a21 . . . a2n... ...
am1 . . . amn

,x =

x1

x2...
vn

,b =

b1

b2...
bm

.The matrix A is a m × n matrix, the vetor x a vetor with n omponentsLet A ∈ Cn×n. A is said to be invertible, if there exists suh B ∈ Cn×n,that AB = I, where I ∈ Cn×n is the identity matrix. Then the matrix B is19

alled the inverse of matrix A, and is denoted A−1. If A−1 exists, A is alledinvertible. Using this de�nition, we get following theorem.Theorem 2.1. The linear system of equation Ax = b,A ∈ Cn×n,x ∈
Cn,b ∈ Cn has a single solution only if A is invertible. The solution is
x = A−1b.Generally, system of linear equations an have an exat solution only if ithas exatly as many linearily independent equations as it has unknowns. Inthis situation the system of linear equations

a11x1 + a12x2 + . . . + a1nxn = b1,

a21x1 + a22x2 + . . . + a2nxn = b2,...
an1x1 + an2x2 + . . . + annxn = bn,translates into a n × n matrix and n vetors. However, number of equationsand unknowns do not always oinide. In this ase we get a system

a11x1 + a12x2 + . . . + a1nxn = b1,

a21x1 + a22x2 + . . . + a2nxn = b2,...
am1x1 + am2x2 + . . . + amnxn = bm,

.This system an be written as a matrix equation
Ax = b,where A is a m × n matrix, x an n-vetor, and b a m-vetor.If m < n, that is, if there are fewer equations than there are unknowns,system is alled underdetermined. Solving an underdetermined system ofequations will not usually produe an exat solution, but the solution willhave degrees of freedom depending on the oe�ient matrix: the number ofwhih is determined by how many unknowns remain in the solution vetor

x. The solution an be interpreted as a spae where the objets de�ned bythe equations interset. 20

Example 2.2. Solve an underdetermined system of equations
Ax = b =

1 3 3 2
2 6 9 5
−1 −3 3 0

x1

x2

x3

x4

=

1
5
5

 .Using elementary row operations we get the solution:
x =

−2 − 3x2 − x4

x2

1 − x4

3

x4

.The vetor x is a solution for the equation Ax = b with arbitrary values of
x1 and x4, thus giving an in�nitely many solutions.If in system ?? m > n, the system is alled overdetermined; that is, thereare more equations in the system than there are unknowns. Computing anexat solution to a overdetermined system may be possible. However, themore there are onstraints (equations), the less likely it is that they all holdfor a spei� point. Thus solving overdetermined systems usually inludessearhing a best possible solution: a solution that does not neessarily holdfor all the equations in the system, or any of them, but it almost holds forall of them. This is usually ahieved by linear least squares, whih will bedisussed in depth in later hapters.Later we will introdue some methods for �nding the inverse of a matrix inMATLAB.2.2 Matries and vetors in MATLABThe basi data type in MATLAB is a real valued matrix, and default assump-tion for every operation is that the operands are matries. Some operationsare, however de�ned also elementwise, so as to make ertain operations easyand e�ient, and it requires a ertain amount of alertness to avoid any ob-vious pitfalls.The basi multipliation, denoted by *, is matrix multipliation. It is de�nedfor matries A and B, where A ∈ Cm×n and B ∈ Cn×k. It also works on asalar multipliation, that is cA is a legitimate operation, for c ∈ C. If the21

matrix dimensions do not math, MATLAB will produe an error. One anobtain an elementwise produt with operator .*. The elementwise operatorwill produe the Hadamard produt of two matries of same dimensions.% Define two square matries and two% non square matries>> A = [3 2 3; 3 4 3; 4 5 1℄A = 3 2 33 4 34 5 1>> B = [1 2 4; 1 4 6; 1 7 7℄;>> D = [1 2; 4 3 ; 7 6℄D = 1 24 37 6>> K=[3 4 5; 5 6 7℄K = 3 4 55 6 7% Multipliation of two square% matries works>> A*Bans =8 35 4510 43 5710 35 53% Hadamard produt of two square% matries>> A.*Bans =3 4 123 16 184 35 7% Produt of 3x2 and 2x3 matries>> D*Kans =13 16 1927 34 41 22

51 64 77% Elementwise produt doesn 't work>> D.*K??? Error using ==> timesMatrix dimensions must agree.% Multiply B by four>> 4*Bans =4 8 164 16 244 28 28Same applies to the power operator: the operator � literally means that the�rst operand is multiplied by itself as many times as the seond operandorders. If the �rst operand not a square matrix, the operation is not de�ned.Thus the the power operator should be used only as an elementwise operation:. �% Examples of the power operator :% First on real number>> 3^5ans =243% then on a square matrix% Note that this is a defined% operation beause A*A is a% defined operation .>> A^2ans =27 29 1833 37 2431 33 28% We try then the elementwise% power operator . Notie the% differene with the regular% power operator .>> A.^2ans =9 4 99 16 9 23

16 25 1% Power operator doesn 't work on a non% square matrix beause D*D is not defined>> D^4??? Error using ==> mpowerMatrix must be square.% However , an elementwise operator is defined:>> D.^4ans = 1 16256 812401 1296The usual division sign - /, should be used only on matries with a singlevalue. In ase of single value, it works as one would expet: it performsa division. However, if given matrix values, the values it produes are notwhat one would expet, and obtainable in muh more intuitive way throughthe bakslash-operator, whih we will disuss later. Those interested in us-ing it should familiarize themselves with the mldivide manual page. Theelementwise version of division-operator is ./, whih is useful on a numberof oasions. Beause sometimes both elementwise operation, and matrixoperation an be invoked, aution is required.Addition and subtration are elementwise operations: A+B is the standardmatrix addition, whih requires that both A and B have the same dimen-sions. The addition and subtration operators have also been overloaded toinlude operations like 2 + A. This operation is de�ned as �add 2 to everyelement of A.� There, however, is not an elementwise operation, that wouldallow one to add two matries having the same number of elements, but dif-ferent dimensions, together. All of the above holds for the subtration aswell.% Examples of addition% Sum of two matries of equal sizes is ok>> A+Bans =4 4 74 8 95 12 8% So is adding 2 to every element of A24

>> 2+Aans =5 4 55 6 56 7 3% This doesn 't work beause K and L have% different dimensions>> K = [1 2 3℄K = 1 2 3>> L = [1;2;3℄L = 123>> K+L??? Error using ==> plusMatrix dimensions must agree.Most of MATLAB's built-in funtions, like exp, sin and os are de�nedelementwise.% Define an even spaed real valued vetor H>> H = 1:0.5:3H = 1.0000 1.5000 2.0000 2.5000 3.0000% Take an sin of eah element of the vetor>> sin(H)ans =0.8415 0.9975 0.9093 0.5985 0.1411Another topi that will require some attention is the matrix and vetor di-mensions. As mentioned, almost all the operations are dependent on thedimensions of the operands. Oftentimes, like when rafting a funtion, onedoes not wish to �x the matrix dimension, but dynamially adapt to the di-mensions. The way to do this is to use funtions length and size. Funtionlength is primarily meant for work with vetors, and it returns the largestdimension of argument. For example length(ones(4,2)) would return 4.The funtion size returns a vetor ontaining all dimensions. It is moreversatile than length, but to work, it requires an assignment. For example,if one wishes to know the number of rows in a vetor a, this works:25

>> dims = size(a);>> rows = dims(1);Another operation that is frequently needed in order to handle the dimen-sions is the transpose. MATLAB defaults the transpose to onjugate version,working as transpose on real matries, but returning the onjugate transposeon omplex matries. The onjugate transpose operator is the '. If onewishes to obtain a non-onjugate transpose, a funtion transpose is avail-able. For work on more omplex strutures than two-dimensional arrays,MATLAB provides the funtion permute.% Create a omplex matrix C% Reall that i is overloaded% to at as a omplex oeffiient>> C = A+B*iC =3.0000 + 1.0000i 2.0000 + 2.0000i 3.0000 + 4.0000i3.0000 + 1.0000i 4.0000 + 4.0000i 3.0000 + 6.0000i4.0000 + 1.0000i 5.0000 + 7.0000i 1.0000 + 7.0000i% Notie the onjugate or hermitian transpose ,>> C'ans =3.0000 - 1.0000i 3.0000 - 1.0000i 4.0000 - 1.0000i2.0000 - 2.0000i 4.0000 - 4.0000i 5.0000 - 7.0000i3.0000 - 4.0000i 3.0000 - 6.0000i 1.0000 - 7.0000i% Should you ever need it, a non hermitian transpose% is also available .>> transpose (C)ans =3.0000 + 1.0000i 3.0000 + 1.0000i 4.0000 + 1.0000i2.0000 + 2.0000i 4.0000 + 4.0000i 5.0000 + 7.0000i3.0000 + 4.0000i 3.0000 + 6.0000i 1.0000 + 7.0000i% Transpose of a real valued vetor>> K'ans =123The matries an be indexed with two numbers, as usual, the �rst being therow-index, the seond being the olumn index, and indexes starting from 1.26

This is the way matries should be indexed. There is, however, an alternateway to index matries. Matries an be indexed with a single number, theindex running down olumn wise. That is, A(3) = A(3,1). While one maydo this, for the sake of larity, it is highly disouraged. The reason thisoption is available is due to the properties of omputer arhiteture and C,the language that MATLAB is written with.MATLAB allows aessing entire rows, olumns, and submatries of anymatrix. This is ahieved with the range operator :. If not given any range, itdefaults to whole row or olumn, for example: the ommand A(:,1) returnsthe �rst olumn of A, while A(2,:) would return the entire seond row of A.Instead of seleting the entire row or olumn, one an selet only a part ofit by giving the range operator parameters: A(1:5,1) would return the �rst�ve elements the �rst olumn of A. Seletion of submatries follows suit:instead of giving one range, we give two: A(2:3,3:4) would return a matrixthat would ontain A's elements a2,3, a2,4, a3,3 and a3,4. This seletion an beextended further: seletion index an be any olletion of positive integers,and the seletion still works, as long as they are within index bounds of A,for example seletion A([1 3 5℄,2) returns elements a12, a32 and a52.Seletion methods are not limited to numerial indexing; it is also possibleto invoke so alled logial indexing. Logial indexing is ahieved throughreating a logial array, and giving it as a index. Logial arrays are returnedby logial operators, & ,| and � , relational operators, suh as ==, �=,>and <, as well as any logial funtions, suh as any, isinf and isequal.Using these operators and logial indexing, we an, for example, selet allthe positive elements of a matrix.% Define a large enoug a matrix>> A = [-2 3 2 4 -4 0; -3 -4 -5 -11 2 43 -5 3 2 3 4; 1 -3 2 -4 5 -6; 1 2 3 -4 6 5℄A = -2 3 2 4 -4 0-3 -4 -5 -11 2 43 -5 3 2 3 41 -3 2 -4 5 -61 2 3 -4 6 5% Selet the third row of the matrix>> A(3,:) 27

ans =3 -5 3 2 3 4% The alternate indexin way: A(12) is the% the same as A(rem(12,5),mod(12 ,5)+1).% While there are situations it an be% more effiient than the usual way , readability% suffers.>> A(12)ans =-5% Seleting submatries is quite similar to% single elements or rows and olumns: just% give to ranges% Here we have seleted rows 2 3 4 and 5, and% olumns 3 4 5 and 6.>> A(2:5,3:6)ans =-5 -11 2 43 2 3 42 -4 5 -63 -4 6 5% Finally a look into the logial seletion routines :% selet all the elemnts of A less than -4>> A(A<-4)ans =-5-5-11-6% A more ompliated logial ondition : selet% elements of A smaller than 0 but greater than% -5.% Note that this requires the use of a elementwise% logial operator &, whih is defined for the use% with logial matries and vetors .>> A((A<0)&(A>-5))ans =-2-3-4 28

-3-4-4-4There are several matries, that ome up often in linear algebra, most no-table being the unit matrix. Most of these are provided in MATLAB's matrixlibrary, whih generates them aording to given parameters. The ommandeye produes the unit matrix of given dimensions. The ommand ones pro-dues a matrix omposed entirely of ones, and the ommand zeros, aord-ingly, produes a matrix made up of zeros. Some of the more exoti built-inmatries are, for example, the Hilbert matrix and the magi square. TheHilbert matrix is produed by ommand hilb. The Hilbert matrix is de-signed to have ertain very poor numerial properties. The magi square is asquare matrix with equal olumn, row and diagonal sums, and it is produedby the ommand magi.2.2.1 Solving linear equations in MATLABThe primary tool for solving linear equations in MATLAB is the \-operator.To solve a linear equation of the formAx = b we use the ommand x = A \b.The bakslash operator is very versatile: if the matrix A is overdetermined,i.e, there are more rows than there are olumns, a solution in least-squaresense is provided. If the system is underdetermined, it �nds the basi solutionwith at most m nonzeros. Here are a few examples:% Example onerning the Hilbert matrix>> A= hilb(10);>> x = ones(10 ,1);>> b = A*x;>> sol = A\b;>> norm(x-sol)ans =8.7188e-04% The previous lsq -example with the bakslash -operator>> A = [1 1; 2 1; 3 1 ; 5 1; 7 1; 9 1 ; 10 1℄;>> b = [444 458 478 506 523 543 571℄;>> b = b'; 29

>> x = A\bx =13.0798434.14982.3 Gaussian eliminationProbably the most famous method for solving an n × n system of linearequations is the Gaussian elimination algorithm, named after Carl FriedrihGauss. The idea of the algorithm is to, for eah olumn of the oe�ientmatrix, eliminate the elements below the diagonal using row operations, andwhen an upper triangular matrix is ahieved, we do a bakward substitution,solving xn from the last equation, and substituting the solution to the seondlast equation, and thus gaining solution to xn−1, and so forth.Example 2.3. Solve a system of linear equations using Gaussian elimination,when the system is:

3x1 − x2 + x3 = 2,

−x1 + 3x2 − 2x3 = 1,

2x1 + 2x2 − x3 = −3,

.Eliminate all the elements below the �rst element on the �rst olumn: weadd the �rst row multiplied by 1
3
to the seond. Then add the �rst multipliedby −2

3
to the third row, and we get:

3x1 − x2 + x3 = 2,

0x1 + 8x2 − 5x3 = 5,

0x1 + 8x2 + x3 = −13,

.Then eliminate the seond element of the third row by adding the seondrow multiplied by −1 to it, and you get:

3x1 − x2 + x3 = 2,

0x1 + 8x2 − 5x3 = 5,

0x1 + 0x2 + 6x3 = −18,

.30

We then obtain x3 = −18
6

= −3, and plae it in the equation on the seondrow, and get x2 = −5
4
, and �nally we get x1 = 5

4
.The algorithm for Gaussian elimination in MATLAB ode is:Listing 2.1: Algorithm for Gaussian eliminationfuntion x = gauss_el (A,b)n = length(A);% part a - eliminationfor i = 1:n-1for j = i+1:n% alulate sale fatorm = A(j,i)/A(i,i);% perform row operation :% eliminate the elements below diagonal% on olumn iA(j,:) = A(j,:) - m*A(i,:);b(j) = b(j) - m*b(i);endend% part b - bakward substitutionx = zeros(n,1);x(n) = b(n)/A(n,n);for i = n-1: -1:1x(i) = (b(i) - A(i,i+1:n)*x(i+1:n))/A(i,i);endGaussian elimination is prone to numeri instability when working on nearlysingular matries. The Hilbert matrix is one example of a nearly singularmatrix. Problems rise if at some part of the algorithm the absolute valueof the divisor âkk (i.e. a diagonal element after k-steps of elimination) isvery small. This easily leads to loss of preision due to the nature of �oatingpoint arithmeti, and auses the error to aumulate. These situations angenerally be avoided through pivoting the matrix, that is, hanging the orderof rows and/or olumns, and applying the same permutations both to thesolution vetor and the right-hand side of the equation.Example 2.4. We now establish why Gaussian elimination without pivotingis not a stable algorithm. The funtion gauss_elim is the same as theprevious one. We try to numerially solve a system of linear equations Ax =31

b where A is a Hilbert matrix (the Hilbert matrix is omposed as follows:
Hij = 1/(i + j − 1)) using Gaussian elimination.>>X = ones(13 ,1);% We set up a syntheti solution to be a% vetor omposed of ones>>A = hilb(13);% MATLAB provides some speial matries ready ,% Hilbert 's is one of them>>b = A*X>>sol = gauss_elim(A,b);% sol now holds the solution yielded by gauss_el>> norm(sol -x)ans =11.0527As is obvious, the Gaussian elimination does not provide aurate resultswhen dealing with matries that are badly onditioned. In numeri ases,it is reommended to use the matrix deompositions, whih we will disussnext.2.4 Matrix deompositionsIt is often di�ult to solve the equation Ax = b. Therefore in numerimatrix omputation we usually try to present A as a produt of two or morematries of some simpler form. This kind of representation is alled matrixdeomposition. As we will see, matrix deompositions will often give us notonly an easier way to solve the linear system, but give us information aboutthe deomposed matrix as well.2.4.1 LU-fatorizationIn the Gaussian elimination the matrix A is �rst redued into an uppertriangular form, from whih it is easy to obtain solutions through bak sub-stitution. The idea behind the LU-fatorization is to present A as a produtof two matries, L and U, of whih U is upper triangular, and L is lowertriangular. We then an solve the equation Ax = b by solving two triangular32

matrix equations:
{

Ux = z

Lz = b
, that is, Ax = LUx = Lz = bThe working idea of the LU-algorithm is to perform the Gaussian eliminationalgorithm on matrixA, and take reord of the multiplier that was used to zerothe elements below the diagonal on eah olumn. Here is a quik example:Example 2.5.

A =

1 −1 3
3 −5 12
0 2 −10

 .We see that in order to eliminate the elements a21 and a31 the �rst row mustbe multiplied by 3 and 0 respetively before subtrating from the seond andthird rows. Thus we get

1 −1 3
(3) 8 3
(0) 2 −10

where numbers in parenthesis represent the reorded multipliers. These willform the lower triangular matrix L. On the seond step we get

1 −1 3
(3) 8 3
(0) (1

4
) −43

4

 .The diagonal elements an be inluded either in L or U. The other matrixwill have ones on the diagonal. Now we have the L and U,
L =

1 0 0
3 1 0
0 1

4
1

 ,U =

1 −1 3
0 8 3
0 0 −43

4

that satisfy
LU = A.When doing alulations with paper and pen, it is generally easier to use theso alled Doolittle algorithm. In this algorithm, the diagonal elements of L33

are �xed to ones.

a11 a12 . . . a1n

a21 . . . a2n...
an1 . . . ann

=

1 0 . . . 0
l21 1... 1
ln1 . . . ln(n−1) 1

u11 u12 . . . u1n

0 u22 u23
...

0 . . . u(n−1)n

0 0 unn

.Here is an example.Example 2.6. Let's form the LU deomposition for the matrix A, when
A =

6 5 12
30 18 51
−24 −76 −98

 =

1 0 0
l21 1 0
l31 l32 1

u11 u12 u13

0 u22 u23

0 0 u33

 .The 3 × 3 matrix gives us 9 equations, eah with only one unknown. Fromthe �rst row we get
u11 = 6, u12 = 5, u = 13 = 12.On the seond row, we get

l21u11 = 30 ⇔ l21 = 5,

l21u12 + 1 · u22 = 18 ⇔ u22 = 18 − l21u12 = −7,

l21u13 + 1 · u23 = 51 ⇔ u23 = 51 − l21u13 = −9,and on the third

l31u11 = −24 ⇔ l31 = −4

l31u12 + l32u22 + u23 = −76 ⇔ l32 = (1
u22

) − (76 − l31u12) = (1
−7

)(−76 − (−4 · 5)) = 8

l31u13 + l32u23 + u33 = −98 ⇔ u33 = −98 − (l31u13) − (l32u23) = 22and thus:
A = LU =

6 5 12
30 18 51
−24 −76 −98

 =

1 0 0
5 1 0
−4 8 1

6 5 12
0 −7 −9
0 0 22

 .The Doolittle algorithm stops, if there appears a zero element on the diagonalof U, but it is not limited to invertible matries, in fat it an be omputedon matries C ∈ Cm×n. In this ase the L ∈ Cm×m and U ∈ Cm×n, and theelements below ukk, k = 1 . . .m, will be zeros.34

LU-deompositions in MATLABMATLAB an ompute the LU-fatorization on any omplex matrix A withthe ommand lu. The result, however, is not true a lower triangular matrix:MATLAB permutes the parameter matrix A so as to ahieve maximum e�-ieny, and the L it gives is the produt of the permutation matrix and theatual L. To get true lower- and upper triangular matries, we get a thirdreturn value: the permutation matrix P.Example 2.7. Here is an example on how to use LU-deomposition in MAT-LAB.>>A = [-1 1 4;-6 -4 0; 0 4 1℄A = -1 1 4-6 -4 00 4 1>>[l u ℄ = lu(A)l = 0.1667 0.4167 1.00001.0000 0 00 1.0000 0u = -6.0000 -4.0000 00 4.0000 1.00000 0 3.5833>>norm(l*u-A)ans =1.1102e-16>>[l u p ℄ = lu(A)l = 1.0000 0 00 1.0000 00.1667 0.4167 1.000035

u = -6.0000 -4.0000 00 4.0000 1.00000 0 3.5833p = 0 1 00 0 11 0 0>>norm(l*u-p*A)ans =1.1102e-162.4.2 Cholesky-deompositionAnother matrix deomposition is the Cholesky-deomposition, named afterAndré-Louis Cholesky. It is not as general as LU-deomposition, but thenumber of omputations required in order to do the deomposition is smaller.The matries it an deompose are also ommon in real-life appliations.De�nition 2.8. Matrix A ∈ Cn×n is said to be Hermitian if it holds truethat A∗ = A, i.e., A is its own onjugate transpose. This is analogial tothe symmetry of the real matries. Note that MATLAB's '-operator givesyou the onjugate transpose.De�nition 2.9. A HermitianmatrixA ∈ Cn×n is positive de�nite if 〈u,Au〉 >
0 for all u ∈ Cn\{0}.A matrix A ∈ Cn×n that is hermitian and positive de�nite an be presentedwith a single upper triangular matrix, as a produt

A = U∗U.When you have this U, you an simply use the method presented in LU-deomposition to solve the linear system Ax = U∗Ux = U∗z = b. Beause
U∗ is a triangular matrix, this an be solved through bak substitution.36

The algorithm to produe U is:
ukk =

√

√

√

√akk −
k−1
∑

l=1

|ulk|2

ukj =
1

ukk

(

akj −
k−1
∑

l=1

ulkulk

)

.If the number under the square root is ever negative, A is not positive de�niteand the algorithm halts, thus making the Cholesky-deomposition an e�ienttool in studying the positive de�nity of the matrix.Example 2.10. Compute the Cholesky-fatorization of the matrix A, when,
A =

13 11 6
11 11 4
6 4 10

 .Values of upper triangular matrix U an be omputed with this table:entry general formula value for U

u11
√

a11

√
13

u12 a21/u11
11√
13

u13 a31/u11
6√
13

u22

√

a22 − u2
21

√

11 − (121
13

)

u23 (a32 − u12u13)/u22 (4 − 6√
13

· 11√
13

)/
√

121
13

u33

√

a33 − u2
13 − u2

23

√

10 − 36
13

− (11 − 121
13

)You get an upper triangular matrix U:
U =

√
13 11√

13

√

11 − (121
13

)

0
√

11 − (121
13

) (4 − 6√
13

· 11√
13

)/
√

121
13

0 0
√

10 − 36
13

− (11 − 121
13

)

,having the property A = UTU. 37

Cholesky-deomposition in MATLABTo obtain the Cholesky-deomposition in MATLAB, use the funtion hol:>>A = [4 3 6; 4 7 6; 6 2 14℄A = 4 3 64 7 66 2 14>>A=A*A'61 73 11473 101 122114 122 236>>u = hol(A)ans =7.8102 9.3467 14.59620 3.6931 -3.90620 0 2.7735>>norm(u'*u-A)ans =1.8201e-142.4.3 QR-deompositionAny omplex square matrix A ∈ Cn×n an be deomposed as
A = QR,where Q is a unitary matrix, and R is a upper triangular matrix. If A isnonsingular, then the fatorization is unique, if it is required that the diagonalelements of R are positive.De�nition 2.11. A matrix A ∈ Rn×n is orthogonal if AAT = ATA = I.A matrix A ∈ C

n×n is unitary if AA∗ = A∗A = I.QR-deomposition is often used to solve problems in leas square sense. It isthe used in an algorithm for omputing the eigenvalues of a matrix.38

There are several methods to ompute the QR-deomposition, suh as House-holder transformations and Givens rotations. We use the Gram-Shmidt pro-ess. The Gram-Shmidt proess is applied to olumns of the matrix A offull olumn rank, using the inner produt 〈u,v〉 = u∗v.De�nition 2.12. Let V be an n dimensional vetor spae. A projetion ofa vetor x ∈ V onto the subspae spanned by a vetor b is the vetor uinto the same diretion as b with length |u| = |x| cos θ, where θ is the anglebetween the vetors x and b. Beause
cos θ =

x · b
|x||b|and beause u is in the diretion of b we get

u = |x| x · b
|x||b|

b

|b| .Hene we an de�ne: a projetion of a onto the subspae spanned by e isprojea =
〈e, a〉
〈e, e〉e,where the inner produt 〈·〉 is de�ned as x∗x.

x

y

y−projection
vector v

x−projection of v

of v

39

Orthonormalize the olumns of A = [a1, a2 . . .an].
u1 = a1, e1 = u1

||u1|| ,
u2 = a2 − proje1a2, e2 = u2

||u2|| ,
un = a3 − proje1a3 − proje2a3, e3 = u3

||u3|| ,...
un = an −

∑n−1
j=1 projejan, en = un

||un|| .By rearranging the above equations so that the ai's are on the left hand side,and using the fat that ei's are unit vetors you get:
a1 = 〈e1, a1〉e1,
a2 = 〈e1, a2〉e1 + 〈e2, a1〉e2,
a3 = 〈e1, a3〉e1 + 〈e2, a3〉e2 + 〈e3, a3〉e3,...
an = ∑n

j=1〈ej, an〉ej.This an be written in the matrix form
A = QR,where

Q = [e1e2 . . . en] and R =

〈e1, a1〉 〈e1, a2〉 〈e1, a3〉 . . .
0 〈e2, a2〉 〈e2, a3〉
0 0 〈e3, a3〉Example 2.13. Compute a QR-deomposition for the matrix A, when

A =

2 1 3
−1 0 7
0 −1 −1

 .The olumns of A are:
a1 =

2
−1
0

 , a2 =

1
0
−1

 , a3 =

3
7
−1

 .Then use the Gram-Shmidt proess to orthonormalize the vetors:
q1 =

a1

||a1||
=

2√
5

− 1√
5

0

 ,40

q2 =

(

A2 −
〈a2,q1〉
〈q1,q1〉

)

1

||a2||
=

1√
30
2√
30

− 5√
30

,

q3 =

(

a3 −
〈a3,q1〉
〈q1,q1〉

− 〈a3,q2〉
〈q2,q2〉

)

1

||a3||
=

1√
6

2√
6

1√
6

.Thus you obtain the orthogonal matrix Q:

A =

2√
5

1√
30

1√
6

− 1√
5

2√
30

2√
6

0 − 5√
30

1√
6

.The matrix R is

R =

〈a1,q1〉 〈a2,q1〉 〈a3,q1〉
0 〈a2,q2〉 〈a3,q3〉
0 0 〈a3,q3〉

 =

√
5 2√

5
− 1√

5

0 6√
30

22√
30

0 0 16√
6

.The QR-deomposition is:

A = QR =

2 1 3
−1 0 7
0 −1 −1

 =

2√
5

1√
30

1√
6

− 1√
5

2√
30

2√
6

0 − 5√
30

1√
6

√
5 2√

5
− 1√

5

0 6√
30

22√
30

0 0 16√
6

.The QR-deomposition an be omputed more generally for an m×n matrix

A, as long as m ≤ n.QR-deomposition in MATLABQR-deomposition is o�ered as a MATLAB funtion qr. Here is a brief ex-ample on how to solve linear systems using QR-deomposition. The funtiontriusolve is a self-made funtion to do the bak substitution; reating oneis an exerise task.Example 2.14. Here is an example on how to use QR-deomposition tosolve a system of linear equations. 41

>>A = [3 -5 7; 0 4 5; -6 -9 -8℄A = 3 -5 70 4 5-6 -9 -8>>x = ones(3,1);>>b = A*xb = 59-23>>[q r℄ = qr(A)>> ba = q'*b;>> xs = triusolve (r,ba);>>norm(A*xs-b)ans =6.6465e-152.4.4 Singular value deompositionEvery m × n matrix with omplex entries an be presented as the produt
A = USV∗,where U ∈ C

m×m and V ∈ C
n×n are orthogonal matries, and S ∈ C

m×nis a diagonal matrix with entries sorted by magnitude. If the matrix A isinvertible, the inverse is
A−1 = VS−1U∗.This is easy to ompute, as the inverse of a diagonal matrix is just a diagonalmatrix with inverses of the original diagonal elements.MATLAB uses the QR-algorithm to ompute the singular value deompo-sition. If one wishes to ompute it manually, the following proedure ispropably the easiest:1. Find the eigenvalues and orthonormalized eigenvetors of A∗A, i.e.,

A∗A = VΛV∗.42

2. Sort the eigenvalues aording to their magnitude, and let σj =
√

λj.3. Find the �rst r olumns of U via
uj = σ−1

j Avj, j = 1, . . . , r.4. Pik the remaining olumns so that U is unitary.Example 2.15. Compute the singular value deomposition UΣVT for ma-trix A, when
A =

1 2
2 2
2 1

 .Begin by getting the A∗A:
A∗A =

[

9 8
8 9

]

.Continue by omputing eigenvalues for theA∗A, and obtain λ1 = 17 and λ2 =
1. The orresponding eigenvetors are :

v1 =

[

1
1

] and v2 =

[

1
−1

]

.Thus, by taking the square roots of the eigenvalues you get
Σ =

√
17 0
0 1
0 0

 .and by normalizing the eigenvetors you get
V =

[

1√
2

1√
2

1√
2

− 1√
2

]

.To get U ompute
u1 =

1√
17

Av1 =
1√
17

1√
2

1 2
2 2
2 1

[

1
1

]

=
1√
34

3
4
3

 ,43

and
u2 = 1Av2 =

1√
2

1 2
2 2
2 1

[

1
−1

]

=
1√
2

−1
0
1

 .To determine u3 you need only satisfy:
u∗

ju3 = δj3, where j = 1, 2, 3.With this in mind, you an pik
u3 =

1√
17

2
−3
2

 ,and get
A = UΣV∗ =

1 2
2 2
2 1

 =

3√
34

−1√
2

2√
17

4√
34

0 −3√
17

3√
34

1√
2

2√
17

√
17 0
0 1
0 0

[

1√
2

1√
2

1√
2

− 1√
2

]

.Condition numberWhen studying how well the matrix behaves numerially, its determinant,the usual method of determining, whether a system has solutions, does notgive aurate estimates on the expeted error. This is beause matries
A and λA have same numerial properties, but det(λA = λn det(A)). Abetter estimate on numerial properties of a matrix is given by a onditionnumber, de�ned by:

cond(A) =
σ1

σn

,where σ1 and σn are the biggest and the smallest singular value of the matrix
A, respetively.The bigger the ondition number, are numerial properties of the matrix.For example the ondition number of the Hilbert matrix presented earlier isapproximately 1.5 · 1010. In MATLAB the ondition number is omputed bythe funtion ond.

44

SVD in MATLABMATLAB's built-in funtion svd gives out the singular value deompositionof any matrix given to it. As an example we solve a linear system involv-ing the the Hilbert matrix. Reall that this didn't work with the Gaussianelimination algorithm.>> a = hilb(8);% We use MATLAB 's matrix library to get the Hilbert matrix>> ond(a)ans =1.5258e+10>> [u s v℄ = svd(a);>> x = ones(8,1);% The predetermined solution is a vetor onsisting of ones.>> b = a*x;>> sol = v*(eye (8)/s)*u'*b;>> norm(sol - x)ans =3.8549e-06The problem with this method of solution is inversing the diagonal matrix
S. While this is easy from the theoretial point of view, it may numeriallybe extremely di�ult, as it requires the omputation of numbers 1/α where
α is very small.2.5 Linear least squaresWe have been given N pairs (xi, yi), and we believe that the yi:s follow amodel of the form f(x, a1, a2, . . . aM). The question now is: how do we besthoose the parameters ai, so that the model f(x, a1, a2, . . . aM) best �ts thedata (xi, yi). The model f is said to be linear if it is linearly dependent onthe parameters ai, otherwise it is non-linear. To �t the model we usually

45

apply the least-square method, where we minimize the sum
S =

N
∑

i=1

(yi − f(xi, a1, . . . , aM))2.To solve this, we needs to satisfy:
∂S

∂ai
= 0, i = 1, . . .M.In ase of a linear model, one an interpret the model f applied to observationpoints as a matrix, and the parameters ai as unknowns, and thus gain thelinear equation

Fa = ywhere F ∈ C
M×N , a ∈ C

M and y ∈ C
N .Theorem 2.16. If A ∈ Cm×n then the equation A∗Ax = A∗y has at leastone solution x ∈ Cn, and

||y − Ax|| ≤ ||y −Az|| ∀z ∈ C
n.Example 2.17. Fit a linear model to the points:

yi xi444 1458 2478 3506 5523 7543 9571 10Fitting a linear model means that you will minimize the sum
S(a) =

7
∑

i=0

(yi − (axi + b))2whih yields the equations
a + b = 444
2a + b = 458
3a + b = 478
5a + b = 506
7a + b = 523
9a + b = 543
10a + b = 571 .

46

This linear system an be written in matrix form Ax = b where
A =

1 1
2 1
3 1
5 1
7 1
9 1
10 1

,x =

[

a
b

]

,b =

444
458
478
506
523
543
571

.

You then obtain the LSQ-solution by solving x = (ATA)−1ATb. The matrix
ATA is

[

269 37
37 7

]

, its inverse is [

7
514

− 37
514

− 37
514

269
514

]

, and ATb is [

19582
3523

]

.Thus you gain the solution vetor x:
x =

[

6723
514

223153
514

]

, or numerially [

13.08
434.15

]

.

0 2 4 6 8 10 12
440

460

480

500

520

540

560

580

x−values

y−
va

lu
es

47

Example 2.18. The linearity in linear least squares does not limit its usesto �tting lines: only the linearity of oe�ients is required. This examplewill showase this. We have some data points (xk, yk):
xi yi21 2123 4325 9027 16429 221 .Quik study of the values shows, that �tting a line will not work this time.However, the distribution of the data points suggests, that a polynomial ofseond degree might work. Now, instead of �tting line ax+ b, �t a quadratipolynomial ax2 + bx + c.The data points and quadrati polynomial give us a system of equations

441a + 21b + c = 21

529a + 23b + c = 43

625a + 25b + c = 90

729a + 27b + c = 164

841a + 29b + c = 221

.

This yields an overdetermined linear system
Ax = bwhere

A =

441 21 1
529 23 1
625 25 1
729 27 1
841 29 1

,x =

a
b
c

 ,b =

21
43
90
164
221

Now solve this as in previous example: ompute the ATA and seek solutionsto equation
ATAx = ATbby obtaining the inverse (ATA)−1 and multiply from left both sides of theequation with it. 48

For the �nal solution x = (ATA)−1ATb MATLAB's symboli toolkit gives:
x =

97/56
−4239/70

147079/280

 .Considering, that the data was synthetially generated by getting valuesof the funtion f(x) = 1
2
x2 − 200 and adding some error, this falls quitefar. However, graphial study indiates, that the solution �ts the data quiteniely.

20 21 22 23 24 25 26 27 28 29 30
0

50

100

150

200

250

300

The least square method is not limited to �tting linear models. Though thelinear interpretation of the model is lost, the premise of the problem doesnot hange: one wishes to minimize the sum
S(α) =

N
∑

i=1

(yi − f(xi, α))2.Doing this manually may turn out to be extremely di�ult, but in numerialsense, it is possible to gain a good solution through standard minimizationalgorithms. Di�erent methods of seeking funtion minimums are disussedlater, but an example is given, that illustrates the idea of seeking the mini-mum. 49

2.5.1 Least squares and MATLABIn MATLAB one an use the '-operator, and form the matries as in theprevious example, or one an use the Moore-Penrose pseudo-invariant thatyields the same results. It is given by MATLAB funtion pinv. Also thestandard method for solving linear equations in MATLAB, disussed morepreviously, automatially gives the LSQ solution if the system is overdeter-mined or otherwise unsolvable. Here is the previous example in MATLAB:>> A = [1 1; 2 1; 3 1 ; 5 1; 7 1; 9 1 ; 10 1℄;>> b = [444 458 478 506 523 543 571℄;>> b = b';>> x = pinv(A)*bx =13.0798434.1498The �tted model need not be linear: the proper solution would be gainedthrough omputing the partial derivatives in respet to parameters, and solv-ing the system of equations they give, but as this is usually umbersome aproess, it is possible, and oftentimes even preferable to use a funtion min-imum seeking algorithm.Example 2.19. In this example we wish to study the age dotorate studentsin math department omplete the Ph.D. It is believed, that the funtion
f(x, β) = β1x

2e−β2x �ts the data we have, and wish to �nd a β, that satis�esthe least square ondition.

50

The following ode does the minimum searh.Listing 2.2: Non-linear �tlear; lose all;x = 20:65;y = [0 0 0 1 2 3 15 65 71 80 55 48 46 26 25 25 16 9 18 ...8 8 6 4 6 5 5 2 6 4 2 0 0 1 1 1 0 1 1 0 0 0 0 0 1 0 0℄;f = inline('beta(1)*x.^2 .* exp(-beta(2)*x.^2)','x','beta');fobj= inline('norm (fmodel(x,lam)-y)','lam' ,...'fmodel', 'x', 'y');beta0 = [2 0.01 ℄;[beta fval eflag℄ = fminsearh(fobj ,beta0 ,[℄,f,x,y);bar(x,y,'');hold on;plot(x,f(x,beta),'r');xlabel('Age of Ph.D'); ylabel('Number of Ph.Ds');When plotted, the f(x, β), x ∈ [20, 65], and β the vetor produed by theprevious algorithm, produes this graph.
51

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

Age of Ph.D

N
um

be
r

of
 P

h.
D

s

2.6 Symboli linear algebra in MATLABMATLAB's symboli toolbox ontains a number of tools with whih to per-form linear algebra symbolially. Here we present a short introdution tosymboli linear algebra with MATLAB. Most of the funtionality of the nu-merial MATLAB is available in the symboli toolbox as well. Now the fousis shifted on the symboli matrix and vetor operations.A list of variables an be designated symboli with the ommand syms, orfor just a single variable, or number, sym. The variable designated symbolian now be used to de�ne a matrix just as usual. The symboli matrix annow be operated just as a numerial one; most of the operations de�nedon numerial matries are de�ned also on symboli ones. One should keepin mind though, that fairly fast numeri operation does not translate intofairly fast symboli one. For example, invoking deomposition algorithmson symboli matries an take an exorbitant amount of time. The full listof operations available in symboli toolbox an be seen at help page helpsymboli.Here is an example of how to determine a symboli matrix, and to obtainit's inverse.>> B =[sym(2) sym (3) sym (8);sym(-13) sym(5) sym(6);sym(-1) sym(13) sym(9)℄B = 52

[2, 3, 8℄[-13, 5, 6℄[-1, 13, 9℄>> inv(B)ans =[3/95, -7/95, 2/95℄[-111/1045, -26/1045, 116/1045℄[164/1045, 29/1045 , -49/1045℄It is also possible to inlude non-numeri symbols to matries, thus gain-ing more general solutions. Here is a symboli matrix, and its null spae,harateristi polynomial, and determinant.>> A = [2 b ; 4 2*b 2* ; a 1 b℄A =[2, b, ℄[4, 2*b, 2*℄[a, 1, b℄>> null(A)ans =-(b^2-)/(-2+b*a)-(-2*b+a*)/(-2+b*a)1>> poly(A)ans =x^3-3*x^2*b+2*x*b^2-2**x-2*x^2+2*x*b-a**x53

>> det(A)ans =0To make use of the generalisations, we use the substitution funtion substo replae the symbols with the values we wish alulate it with. Here isan example. A symboli matrix is de�ned , and its symboli determinantaquired, and used to ompute the values of the determinant at 2,−1 and 4.>> syms a b >> A = [a b 3;7*a - 2*b; -2*a ℄A =[a, b, 3℄[7*a, -, 2*b℄[, -2*a, ℄>> d =det(A)d =-a*^2+4*b*a^2-7*a**b-42*a^2+2**b^2+3*^2>> subs(d,{a,b,},{2, -1, 4})ans =-104
54

Chapter 3InterpolationInterpolation is a method of onstruting new data points within the range ofa disrete set of known data points. If the goal is to generate new data pointsoutside of the range of the presented set of data points, we are disussingextrapolation, whih is onsiderably more hazardous.This hapter will serve as an introdution to a few of the more ommon meth-ods of interpolation, suh as polynomial, linear and spline (more spei�ally,ubi spline) interpolation.3.1 Polynomial interpolationGiven n points in the plane, (xk, yk), k = 1, 2, . . . , n, with distint xk's,there is a unique polynomial in x of degree less than n whose graph passesthrough the points. There are many di�erent formulas for this polynomial,but they all de�ne the same funtion. The polynomial in question is alledthe interpolating polynomial beause it exatly reprodues the given data
P (xk) = yk, k = 1, . . . , n.3.1.1 Lagrange interpolationOne representation on the interpolating polynomial is the Lagrange form

P (x) =

n
∑

k=1

n
∏

j=1
j 6=k

x − xj

xk − xj

yk.55

Example 3.1. Let us onsider the following data set>> x = 0:3;>> y = [-5 -6 -1 16℄;The Lagrangian form of the polynomial interpolating this data is
P (x) =

(x − 1)(x − 2)(x − 3)

−6
· (−5) +

x(x − 2)(x − 3)

2
· (−6)

+
x(x − 1)(x − 3)

−2
· (−1) +

x(x − 1)(x − 2)

6
· 16By de�ning>> xi =0:.01:3;>> yi=lagrange (x,y,xi);where the funtion lagrange interpolates the values using the lagrange method(homework problem).The resulting polynomial an now be plotted with the ommand>> plot(x,y,'or',xi,yi,'-')Output:

0 0.5 1 1.5 2 2.5 3
−10

−5

0

5

10

15

20

56

3.1.2 Determining oe�ientsPolynomials are not usually represented in the Lagrange form, but in itspower form,
P (x) = c1x

n−1 + c2x
n−2 + · · ·+ cn−1x + cn.The oe�ients of the power form an, in priniple, be omputed by solvinga system of simultaneous linear equations

xn−1
1 xn−2

1 · · · x1 1
xn−1

2 xn−2
2 · · · x2 1...

xn−1
n xn−2

n · · · xn 1

c1

c2...
cn

=

y1

y2...
yn

.The n × n-matrix V in the linear system above is alled the Vandermondematrix. Its elements are
vk,j = xn−j

k .Example 3.2. De�ne x and y as>> x=0:3;>> y = [-5 -6 -1 16℄;The Vandermonde matrix an be generated in MATLAB with the ommandvander:>> V=vander(x)V = 0 0 0 11 1 1 18 4 2 127 9 3 1Now, the linear equation V=y' an be solved with>> =V\y' = 1.00000.0000-2.0000-5.0000In onlusion, the resulting interpolating polynomial is
P (x) = x3 − 2x − 5.57

3.2 Runge's phenomenonThe idea with polynomial approximation is that the degree of the polynomialinreases as the amount of sample points inreases. This does not usuallyhave the desired e�et, and as the amount of sample points inrease, the lessaurate the approximation is. One suh example is Runge's phenomenon.Observe the equally spaed polynomial approximation of the funtion f(x) =
1/(1 + x2) in the interval [−5, 5]. As the amount n of sample points xk =
−5 + (k − 1) · 10/(n − 1), (k = 1, . . . , n), inreases, the funtion starts towildly osillate lose to the end points of the interval. Thus, the interpolatedpolynomial will only produe useless results.Example 3.3. When plotting the polynomial interpolation of the funtionabove for 7 sample points and omparing it with the graph of the originalfuntion, one an learly see a di�erene. If the number of sample points isinreased, the osillations will beome even wilder.% Runge 's phenomenon% Files needed: lagrange .mxi= -5:.01:5;n=7; %number of sample pointsk=1:n;x=-5+(k -1).*10./(n-1); % sample pointsf=�(x) 1./(1+x.^2); %Runge 's funtionyi=lagrange (x,f(x),xi); % interpolated valuesplot(xi,f(xi), xi,yi, x, f(x), 'or ')legend('original funtion ', 'interpolated funtion ', ...'data points ')

58

Output:

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

original function
interpolated function
data points

Lesson: Methods for polynomial approximation (like Lagrange interpolation)should not be used for large values of n (n ≥ 6). If there are many samplepoints, one ould, for example, use a pieewise ubi interpolation method(like ubi spline).3.3 Pieewise linear interpolationA simple piture of a data set an be reated by plotting the data twie, onewith irles at the data points and one with straight lines onneting thepoints.
59

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

To reate the lines, MATLAB uses pieewise linear interpolation. First, theinterval index k must be determined, so that
xk ≤ x ≤ xk+1.Now, a line between the points (xk, yk) and (xk+1, yk+1) an be mapped usinganalytial geometry. The interpolant between the points an be written as:

L(x) = yk + (x − xk)
yk+1 − yk

xk+1 − xk
= Ayk + Byk+1, (3.4)where

A =
xk+1 − x

xk+1 − xk
and B =

x − xk

xk+1 − xk
. (3.5)The points xk are sometimes alled breakpoints or breaks.The pieewise linear interpolant L(x) is ontinuous in referene to x, but itsderivate is not ontinuous. The derivate is

L′(x) =
yk+1 − yk

xk+1 − xkfor all x ∈ [xk, xk+1], and it jumps at the breakpoints.60

3.4 SplinesSpline interpolation is a built-in funtion in MATLAB and an be aessedwith the ommand spline([datapoints℄,[datapoint values℄, [interpolant℄).The funtion returns the interpolated values.There are several methods for spline interpolation, but what all the methodshave in ommon, is its pieewise polynomial nature. It works in a similar wayas pieewise linear, but instead of linear funtions, one uses polynomial fun-tions of a �xed degree whose derivatives are ontinuous at the breakpoints(alled knots when disussing spline).The lassial approah is to use polynomial funtions of degree 3, this is thease of ubi spline, whih MATLAB also uses.Example 3.6. Plot the spline interpolation of Runge's funtion (presentedin the setion on Runge's phenomenon).xi= -5:.01:5;n=10; %number of data pointsk=1:n;x=-5+(k -1).*10./(n-1); % data pointsf=�(x) 1./(1+x.^2); %Runge 's funtionyi=spline(x,f(x),xi); % interpolated valuesplot(xi,f(xi), xi,yi, x, f(x), 'or ')legend('original funtion ', 'interpolated funtion ', ...'data points ')

61

Output:

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

original function
interpolated function
data points

In ontrast to polynomial interpolation, here the auray will inrease asthe amount of data points inreases.We will now have a loser look at the theory behind ubi spline.3.4.1 Cubi splineThe polynomials used in ubi spline are of third degree, and must haveontinuous seond derivatives and satisfy the interpolation onstraints.Suppose, that in addition to the tabulated values of yk one would also havethe tabulated values to the funtion's seond derivatives, that is, a set ofnumbers y′′
k . Now, one an add to the right-hand side of the equation forpieewise linear interpolation, i.e.

L(x) = Ayk + Byk+1, (3.7)where
A =

xk+1 − x

xk+1 − xk

and B =
x − xk

xk+1 − xk

, (3.8)62

a ubi polynomial whose seond derivative varies from y′′
k at the left of theinterval and y′′

k+1 at the right. This will produe the desired ontinuous se-ond derivative. By also onstruting the ubi polynomial so that it hasvalues of zero at xk and at xk+1, then adding it in will not hange the be-haviour at the knots (i.e. the value yk at xk in the interval [xk−1, xk] is equalto the value yk at xk in the interval [xk, xk+1]).This an be ahieved with
y = Ayk + Byk+1 + Cy′′

k + Dy′′
k+1, (3.9)where A and B are de�ned as above in (3.8), and

C =
1

6
(A3 − A)(xk+1 − xk)

2 and D =
1

6
(B3 − B)(xk+1 − xk)

2. (3.10)One an easily hek that y′′ is in fat the seond derivative of the interpo-lating funtion. The derivatives of equation (3.9) with respet to x an betaken by using the de�nitions of A, B, C and D to ompute dA/dx, dB/dx,
dC/dx and dD/dx.The �rst derivative is now

dy

dx
=

yk+1 − yk

xk+1 − xk
− 3A2 − 1

6
(xk+1 − xk)y

′′
k +

3B2 − 1

6
(xk+1 − xk)y

′′
k+1 (3.11)and the seond derivative is

d2y

dx2
= Ay′′

k + By′′
k+1. (3.12)In the alulations above, it was assumed that the y′′

k 's were known. In orderto alulate them, one must require that the �rst derivative of the polynomialis also ontinuous. Now, the required equations an be obtained from (3.11)by setting the value for x = xk in the interval [xk−1, xk] to be equal to thevalue for x = xk in the interval [xk, xk+1]. With some rearrangement, thisgives
xk − xk−1

6
y′′

k−1 +
xk+1 − xk−1

3
y′′

k +
xk+1 − xk

6
y′′

k+1 =
yk+1 − yk

xk+1 − xk

− yk − yk−1

xk − xk−1for all k = 2, . . . , N − 1.Now yk, where k = 1, . . . N , an be solved from this system of N − 2 linearequations. In order for the solution to be unique, the boundary onditionsat xk+1 and xk must be spei�ed. The most ommon ways of doing this is toeither 63

• set one or both of y′′
1 and y′′

N to zero, whih will give us the, so alled,natural ubi spline, or
• set either of y′′

1 and y′′
N to values alulated from (3.11) so as to give the�rst derivative of the interpolating funtion at either or both boundariesa spei� value.Example 3.13. Let the set of sample points (xk, yk) be (1, 2), (2, 1), (3, 5), (4, 3).Using equations (3.8) for A and B, we get the following

A =

2 − x
3 − x
4 − x

 and B =

x − 1
x − 2
x − 3

 .Using these values for A and B, and equations (3.10) for C and D, we get
C =

1
6
((2 − x)3 − 2 + x)

1
6
((3 − x)3 − 3 + x)

1
6
((4 − x)3 − 4 + x)

and D =

1
6
((x − 1)3 − x + 1)

1
6
((x − 2)3 − x + 2)

1
6
((x − 3)3 − x + 3)

.In equation (3.9) the pieewise ubi polynomial was de�ned as

y = Ayk + Byk+1 + Cy′′
k + Dy′′

k+1.By using the derivate (3.11) of this polynomial and rearranging it, as de-sribed, and investigating it at the knots, we reeive the following linearsystem equations
{

1
6
y′′

1 + 2
3
y′′

2 + 1
6
y′′

3 = 5
1
6
y′′

2 + 2
3
y′′

3 + 1
6
y′′

4 = −6whih has the solutions

y′′
1 = t1

y′′
2 = − 4

15
t1 + 1

15
t2 + 52

5

y′′
3 = 1

15
t1 − 4

15
t2 − 58

5

y′′
4 = t2

t1, t2 ∈ R.The values for t1 and t2 an now be set to zero and the pieewise ubipolynomial is
y =

26
15

x3 − 26
5
x2 + 37

15
x + 3, when x ∈ [1, 2]

−11
3
x3 + 136

5
x2 − 187

3
x + 231

5
, when x ∈ [2, 3]

29
15

x3 − 116
5

x2 + 1333
15

x − 105, when x ∈ [3, 4]64

3.5 Additional methods for interpolation in MAT-LABOne funtion in MATLAB, that allows the user to speify the desired inter-polation method, is interp1. It an be aessed with the ommandinterp1 ([datapoints℄,[datapoint values℄,[interpolant℄,......[method℄,[extrapolation℄).The argument [method℄ spei�es the spei� interpolation method, availablemethods are
• 'linear', whih spei�es linear interpolation. This is the defaultmethod, and will be used if no method is spei�ed.
• 'nearest', whih uses nearest neighbor interpolation. The interpo-lated value in a spei� point will be the same as the value of thenearest datapoint.
• 'spline', whih uses pieewise ubi spline interpolation.
• 'phip', whih uses shape-preserving pieewise ubi interpolation,also known as pieewise ubi Hermite interpolation.
• 'ubi', whih is the same as 'phip'.
• 'v5ubi', whih is ubi interpolation used in MATLAB 5. Thismethod does not extrapolate and if the datapoints are not equallyspaed, 'spline' is used instead.Example 3.14. De�ne the datapoints and the interpolant as>> x=1:10;>> y=rand(1 ,10);>> xi =1:.1:10;The nearest neighbor method:>> yi=interp1(x,y,xi,'nearest ');>> plot(x,y,'or',xi,yi)Output: 65

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

The shape-preserving pieewise ubi method:>> yi=interp1(x,y,xi,'ubi ');>> plot(x,y,'or',xi,yi)Output:

66

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

The argument [extrapolate℄ an be used to evaluate points outside of thegiven interval of data points.If the argument is spei�ed as 'extrap', the funtion will use the spei�edmethod to evaluate any out of range values in [interpolant℄.Example 3.15. Let x and y be de�ned as in the last example, and de�nethe interpolant as>> xi =1:.1:11;Now, the interpolant is de�ned outside of the range of datapoints, and thepoints outside of the range must be extrapolated.>> yi=interp1(x,y,xi,'spline ','extrap ');>> plot(x,y,'or',xi,yi)Output:
67

1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

The [extrapolation℄ argument an also be spei�ed as a salar to be re-turned for any out of range values. Here, 0 and NaN are often used.The funtion an also be de�ned, for example, aspp=interp1(x,y,[method℄,'pp'),whih will use the method spei�ed in the arguments (exept for 'v5ubi')to generate the pieewise polynomial form of the datapoint values. Thenppval an be used to evaluate that pieewise polynomial. For example,ppval(pp,xi), where pp is de�ned as above, is equivalent tointerp1(x,y,xi,[method℄,'extrap').

68

Chapter 4Numerial di�erential andintegral alulus
4.1 Numerial derivationThe derivative of a funtion measures how its values hanges as its parametershange. It is de�ned via limiting values of di�erene quotient.De�nition 4.1. The derivative of funtion f at x0 is the limit

f ′(x) = lim
h→0

f(x0 + h) − f(x0)

h
.When f is a funtion of one real variable, the derivative is the slope of thetangent line drawn to the graph of the funtion at real number x0.From the perspetive of the numerial omputation the de�nition is skewed:it tells the behaviour of the funtion either before or after the derivationpoint. Applying it numerially will give results with error term proportionalto h.One wishes to know behaviour of the funtion both before and after thederivation point. This is ahieved by �tting a seant line travelling throughthe points ((x0 − h), f(x0 − h)) and ((x0 + h), f(x0 + h)), and omputing itsslope. As h approahes 0, the seant line approahes the tangent line of thefuntion at x0:

f ′(x) ≈ f(x + h) − f(x − h)

2h
, if h ≈ 0. (4.2)69

In numerial sense, using this so alled three point rule, will yield results witherror terms proportional to h2.In order for the formula 4.2 to work, the parameter h must be seleted ap-propriately; while the intuition says, that the smaller the |h|, the better theresults, the truth is, that a small value of h will result in extremely badloss of preision. Literature on the subjet suggests that usually seletion
h = (meps)0.5 yields the best results. Furthermore, it may be neessaryto ensure that the seleted h is presentable in �oating point arithmeti. Ifit is not, then the di�erene of x0 and x0 + h is not exatly h, whih willlead to additional aumulation of error. Considering this phenomenon inMATLAB is not neessary beause of the optimization proedures, but inompiled languages one should take steps to ensure proper representation of
h. The formula 4.2 is suseptible to bad properties of funtion: if the valuesof the funtion f vary widely on the interval (x − h, x + h), the results itprovides are not aurate. Here is an example ode on how to implementthis in MATLAB: Listing 4.1: Numerial derivativefuntion df = numdif(f,x,h)% x is an n-vetor[m,n℄ = size(x); one = ones(m,n);df = (feval(f,x+h*one)-feval(f,x-h*one))/(2*h);Here is an example on how to use the funtion numdif, and then an example,why this method of derivation should be only applied with are.Example 4.3. We numerially derivate a funtion whose derivative is easyto de�ne:

f(x) = cos(4x) − sin(2x),and then ompare it to the real derivative,
f ′(x) = −4 sin(4x) − 2 cos(2x).Listing 4.2: Example of numerial derivative>> f = inline('os (4*x)-sin(2*x)','x');>> x = 0:0.02:3;% We now ompute the numerial% derivative on the interval x% eps is MATLAB built -in value70

% for mahine epsilon>> df = numdif(f,x,eps .^0.5);% To establish the auray of% the numeri derivative ,% we ompare it to the atual derivative>> y = -4*sin(4*x) - 2*os (2*x);% we plot the differene of the numeri% an the atual derivative>> plot(x, y-df);

0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8
x 10

−9

As an seen, the maximum error seems to be of magnitude 6 · 10−9, whih isomparably tolerable. Next presented is a warning example on the e�ets ofa poor hoie of h:Listing 4.3: Consequenes of poorly seleted h>> f = inline('os (4*x)-sin(2*x)','x');71

>> x = 0:0.02:3;% We now ompute the numerial derivative% on the interval x>> df = numdif(f,x,eps);% To establish the auray of the% numeri derivative ,% we ompare it to the atual derivative>> y = -4*sin(4*x) - 2*os (2*x);% we plot the differene of the numeri% an the atual derivative>> plot(x, y-df);

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

2

3

As is obvious, seleting too small an h an yield staggeringly bad results.Example 4.4. There are situations where not even a proper hoie of param-eters an help to salvage the auray of numerial derivative. To showase72

this the behaviour of numerial derivative of funtion
f(x) = sin(x4)on the interval (3, 6) is studied. It is then ompared to the true derivative of

f ,
f ′(x) = x3 cos(x4)>> f = inline('sin(x.^4)','x');>> fd = inline('(4*x.^3).*(os(x.^4))','x');>> x = 3:0.02:6;>> plot(x,numdif(f,x,eps.^0.5) - fd(x));

3 3.5 4 4.5 5 5.5 6
−5

−4

−3

−2

−1

0

1

2

3

4
x 10

−6

The piture shows, that the errors are of magnitude 4 ·10−6, whih, while notunbearable, an in ertain situations be meaningful. One should also note,that the funtion's variation in values ontinues to inrease in frequeny, thus73

making numerial derivation highly suspet.In addition to poorly behaving funtions, there are funtions that are not dif-ferentiable, either at spei� points or at all, but whose numerial derivativesan be obtained. For example, it is well known that the funtion f(x) = |x|does not have derivative at 0. However, when omputed with the funtionnumdif this is not instantly obvious.>> numdif(�abs ,0,1e-8)ans =0Only times the numerial derivative is not tehnially obtainable are at dis-ontinuity intervals of the evaluated funtion. One should however keep inmind that even if a derivative is numerially obtainable, it does not meanthat it exists.4.1.1 Estimating derivative with polynomialThe previous estimate for a derivative of a funtion was based on linearapproximation of the funtion on the interval (x − h, x + h). This leads oneto wonder, whether it is possible to inrease the auray of the derivationthrough better approximation of the funtion.If a funtion f is approximated with a polynomial, basing the approximationon points xi = x + ih, i = −n, . . . , n, one an aquire a polynomial using theLagrange interpolation method. Suppose then that n = 2 has been hosen,and been used to reated the estimate p2, with p2(xi) = f(xi). The derivativean now be approximated:
f ′(x0) ≈ p′2(x0).Di�erent approximations to funtions derivatives, and their auray havebeen widely disussed in literature. We rest the matter by giving the resultthe previously presented polynomial estimate yields, though without proof.

f ′(x0) ≈
1

h

(

1

12
f(x−2) −

2

3
f(x−1) +

2

3
f(x2) −

1

12
f(x2)

)

.Here is the MATLAB implementation to the �ve point rule:74

funtion dy = diff(y,h)% The 5-point rule% the parameter y is% the values of the% funtion on the interval% we wish to obtain the% derivatives , h is the step fator% To ompute dy at single point x0% set interval x = x0 -2*h:h:x0+2*h% y=f(x), and invoke diff% dy = diff(y,h);for p =-2:2a= (2*p^3-3*p^2-p+1)/12; b= (4*p^3-3*p^2-8*p+4)/6;= (2*p^3-5*p)/2;d= (4*p^3+3*p^2-8*p-4)/6; e= (2*p^3+3*p^2-p -1)/12;oe=[oe; [a -b -d e℄℄;end;% We now make sure that y is of proper size[d1,d2℄=size(y);if ((min(d1,d2)>1) | (max(d1,d2) <5))error('Argument error in numder');end;dy =y;dy (1)=(1/h)*sum(oe(1 ,:).*y(1:5));dy (2)=(1/h)*sum(oe(2 ,:).*y(1:5));for p=3:d2 -2dy(p)=(1/h)*sum(oe (3 ,:).*y(p-2:p+2));end;dy(d2 -1)=(1/h)*sum(oe(4 ,:).*y(d2 -4:d2));dy(d2)=(1/h)*sum(oe (5 ,:).*y(d2 -4:d2));4.2 Jaobian matrixWhen studying funtions with more than one omponent and variable, abest tool to observe the di�erentiation of a funtion is the Jaobian matrix.Jaobian matrix ontains all �rst-order partial derivatives of a vetor- orsalar-valued funtion on it's olumns.75

Suppose F : Rn → Rm has omponents
F (x1 . . . xn) = (F1(x1 . . . xn)), F2(x1 . . . xn) . . . Fm(x1 . . . xn)).Then its Jaobian matrix is

∂F1

∂x1
. . . ∂F1

∂xn...
∂Fn

∂x1
. . . ∂Fm

∂xn

.As one an see, if (x1, . . . , xn) are the orthogonal Cartesian oordinates, asusual, the k:th row of Jaobian is the gradient of the k:th omponent of thefuntion F .To numerially ompute the Jaobian matrix we use the method in one di-retion at time, �lling the Jaobian matrix olumn wise.Listing 4.4: Algorithm for numerial Jaobi matrixfuntion Jf = jaobian_matrix(f,x,m,n)% here f is the funtion to be derivated ,% x is the point of derivation ,% m is the number of omponent funtions ,% and n is the number of parameters.% we begin by initializing JfJf = zeros(m,n);h = eps .^0.5;% e will define the diretion we wish to partially derivatee = zeros(n,1);% funtion f will produe m partial derivatives ,% thus filling the olumnfor j=1:n%set the diretione(j) = 1;Jf(:,j) = (f(x+e*h) - f(x-e*h))/(2*h);e(j)=0;endJaobian matrix desribes the orientation of the tangent plane of the funtionat a given point; one an think it a generalized gradient.Jaobian matrix an through the inverse funtion theorem say, whether afuntion has an inverse at some point or not. The inverse funtion theorem76

states, that matrix inverse of the Jaobian matrix of an invertible funtionis the Jaobian matrix of the inverse funtion. Hene,
Jf−1(f(p)) = Jf(p)−1.Beause the existene of inverse funtion is usually more interesting thanatually determining what it is, it is often enough to ompute the determinantof the Jf , alled Jaobian determinant, or just Jaobian. The Jaobian plays alarge role in many �elds of mathematis, suh as partial di�erential equations.Jaobian matrix an also be used to linearly approximate the funtion onshort intervals, and it is essential when applying the Newton method onvetor funtions.4.3 Numerial derivation on omplex planeIt is often desirable to perform numeri di�erential alulus on omplex fun-tions. This is possible in MATLAB using the built-in omplex variables i and

j.Complex funtions are funtions that map omplex variables into omplexplane. Any omplex number an be separated in to real and imaginary parts:
z = x + yi,where z ∈ C, x, y ∈ R. Similarily any omplex funtion an be divided intoreal and separate parts:

f(z) = u(x, y) + iv(x, y),where u, v : R2 → R and x, y ∈ R.Complex derivation at point z0 ∈ C is de�ned as a limiting value on a omplexfuntion f

f ′(z0) = lim
h→0

f(z0 + h) − f(z0)

h
,where h ∈ C.One should notie, that while this de�nition seems very muh like like itsounterpart on the real line, the fat that h ∈ C makes matters a bit ompli-ated. Instead of two possible diretions of approah, there are now in fatin�nitely many diretions from where h an approah 0. It usually pays to77

express the omplex number in polar oordinates to make the determinationof the limiting value easier.Evaluating the derivative numerially may sometimes be deeivingly easy:while the method need not neessarily be di�erent than the one we observedbefore for real funtions. As a rule MATLAB does not need any speialinstrutions on how to deal with omplex variables:>> f = inline('z.^2','z')f = Inline funtion :f(z) = z.^2>> numdif(f,2+2*i,1e-8)ans =4.0000 + 4.0000iProblems rise when we enounter funtions that are not di�erentiable; whendealing with omplex funtions these are not always easy to identify. Forexample the omplex onjugate: f(z) = f(x + iy) = x− iy = z is not di�er-entiable anywhere on omplex plane, but numdif still provides the numeri-ally evaluated derivative. This is somewhat deeiving, beause the partialderivatives for the similar real valued funtion f(x, y) = (x,−y) exist andare ontinous at every point of R
2.Usually di�erentiability at any one single point is not an interesting property.If U is some open disk of C and a omplex funtion f is di�erentiable at everypoint of U , f is alled holomorphi in U . The holomorphity of a omplexfuntion, while similar in nature to di�erentiability of a real valued funtion,is muh more strit a requirement. There is a link between the two, however.If we separate the real and imaginary omponents of a omplex funtion

f(x + iy) = u(x, y) + iv(x, y), in order for f to be holomorphi, the realvalued funtions u and v must satisfy the partial di�erential equations
∂u

∂x
=

∂v

∂y
and ∂u

∂y
= −∂v

∂x
.These are alled Cauhy-Riemann equations. Holomorphism is an importantonept in funtion theory. It will be revisited when omplex integration isstudied.

78

4.4 Numerial integrationIntegrals are an area of mathematis where numerial solutions are oftensought out, beause for many funtions it is impossible to de�ne an exatintegral. Even if it is possible, oftentimes it takes far less work and yieldsgood enough results to make numerial solutions su�ient. The term numer-ial quadrature, or just quadrature, is more or less synonym for numerialintegration.The basi problem onsidered by numerial integration is to approximate asolution to a de�nite integral
∫ b

a

f(x)dx.First thought would probably be to ount funtion's Riemann sums with suf-�iently dense partition, but while Riemann sums provide a good theoretialtool for de�ning the integrals, in appliations the skewed results they provideare usually insu�ient.4.4.1 Trapezoid ruleThe idea of partitioning the interval is a useful one, but instead of approx-imating the funtion on the short interval in partition by a onstant valueat either end, like the Riemann sums do, funtion's values are approximatedwith a line drawn through the funtions values at the endpoints of the inter-val. This method produes us a number of trapezoids, whose area is easilydetermined, and the sum of those areas is, depending on the smoothness ofthe funtion, and the seleted partition, a good approximation of the inte-gral.Using the knowledge that area of any trapezoid is de�ned as
A = (b − a)

f(a) + f(b)

2
,approximate the de�ned integral:

∫ b

a

f(x)dx ≈ 1

2

N
∑

i=2

(xi − xi−1)(f(xi) + f(xi−1)).In the formula N is the number of intervals studied. It depends on the inte-grand and the interval [a, b] what the N should be, and should the intervals
[xi−1, xi] be of uniform length or not.79

−1 −0.5 0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

40

Figure 4.1: Trapezoids drawn on urve y = x3 + 2x + 4.Trapezoid rule in MATLABMATLAB has a built-in funtion alled trapz. It takes two vetors as argu-ments, ontaining the values xi and yi.Here is another way to implement the trapezoid rule: one that uses uniforminterval length, and takes a funtion as an argument.Listing 4.5: Algorithm for trapezoid rulefuntion A = trapez(f,a,b,n)h = (b-a)/n;A = 0;for i = 1:n-1x = a + h*i;A = A + 2*f(x);endA = A + f(a) + f(b);A = 0.5*A*h;The funtion trapez is used like this>>trapez(�sin , 0, pi, 10) 80

ans =1.9835% Sine integral of sin from 0 to pi is% os(0) - os(pi) = 2% this is quite aurate with as few as 10% intervals ..Expanding the formula to more dimensions is not impossible, or di�ult,though one should keep trak of the quantity the trapezoids present.4.4.2 Simpson's ruleSimpson's rule is based on interpolation of the integrand funtion with aquadrati polynomial P (x). The polynomial P (x) takes the same values asintegrand at the endpoints a and b, and at the midpoint m = a+b
2
. UsingLagrange interpolation method, it is disovered, that

P (x) = f(a)
(x − m)(x − b)

(a − m)(a − b)
+ f(m)

(x − a)(x − b)

(m − a)(m − b)
+ f(b)

(x − a)(x − m)

(b − a)(b − m)
.

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

P(x) = The interpolant

f(x)=exp(−x)−sin(x2)+2*cos(x)

The interpolant P (x) is polynomial of seond degree, and hene easy to81

integrate:
∫ b

a

P (x)dx =
b − a

6

(

f(a) + 4f

(

a + b

2

)

+ f(b)

)

.One should notie, that in order for the Simpson's rule to produe goodapproximations, the integrand funtion should be relatively smooth over theinterval [a, b]; relatively meaning that the quadrati interpolant is auratesome aeptable degree. However, if the integrand funtion osillates heavilyor it laks derivatives at some points, or it has some other �bad� property,an aurate interpolation over a long interval may be impossible.To orret the situation where integrand funtion behaves badly the usualapproah is to break the interval [a, b] into a number of subintervals. TheSimpson's rule an then be applied to eah subinterval individually, and thesum of these approximations is usually a good approximation of the de�niteintegral over the entire interval.Suppose that f is the integrand funtion, and the interval [a, b] is dividedinto n subintervals, n being an even number. Then the omposite Simpson'srule gives
∫ b

a

f(x)dx ≈ h

3

(

f(x0) + 2

n/2−1
∑

j=1

f(x2j) + 4

n/2
∑

j=1

f(x2j−1) + f(xn)

)

,where xj = a + jh for j = 0 . . . n and h = (b− a)/n. Here is an implementa-tion in MATLAB odefuntion S = simpson(f,a,b,n)% f is the name of the integrand ,% a and b define the interval% n is the desired number of% subintervals% Here 's the first term of the sumS = f(a);n = 2*n;% make sure n is even% h is the length of the% subdivision. 82

l = (b - a)./n;% the uneven additionsfor j = 1:2:n-1x = a + l*j;S = S + 4*f(x);end% the even additionsfor j = 2:2:n-2x = a + l*j;S = S + 2*f(x);endS = S+f(b);S = h*S/3;Simpson's rule an be extended to more than one dimensions, but is limitedto studying retangular shapes.4.4.3 Numerial integration in MATLABMATLAB o�ers a range of built-in funtions to numerially alulate de�niteintegrals. Most of them are based on adaptive Simpson's rule, so they anbe expeted to produe aurate results on funtions that are relatively wellbehaved.The simplest one to use is the funtion quad. It uses the Simpson's rule toestimate the de�nite integral of a funtion of single variable on an interval
[a, b]. It's variant, quadl takes the same parameters, but uses the Lobatto-quadrature instead. The previously mentioned funtion trapz essentiallyomputes the integral using trapezoid rule. Here are a few examples on howto use these funtions.% First we set up the integrand funtions ,% and the integral funtions to observe the% auray of different methods.f = inline('sin(2*x) + 4*os(2*x)','x');g = inline('x.^3 + 2*x -5','x');F = inline('2*sin(2*x)- 0.5*os(2*x)','x');G = inline('0.25*x.^4 + x.^2 - 5*x','x');% first the trapezoid rulex = 0:0.2:4; 83

s1 = trapz(x,f(x));s2 = trapz(x,g(x));%disp(s1 - (F(4) - F(0)))% prints% -0.0341disp(s2 - (G(4) - G(0)))% prints% 0.1600% we then use the quad funtions1 = quad(f,0,4);s2 = quad(g,0,4);disp(s1 - (F(4) - F(0)))% prints% 3.7260e-09disp(s2 - (G(4) - G(0)))% prints% -7.1054e-15% Finally we observe the quadl - the Lobatto rules1 = quadl(f,0,4);s2 = quadl(g,0,4);disp(s1 - (F(4) - F(0)))% prints% 8.5916e-11disp(s2 - (G(4) - G(0)))% prints% -7.1054e-15MATLAB's integration methods are not limited only to funtions of sin-gle variable: the funtions dblquad and triplequad ompute the integralsover retangular planes and volumes respetively. The syntax they use isdblquad(f,xmin,xmax,ymin,ymax), where f is a funtion handle to fun-tion that takes two parameters, a vetor x and a salar y, and returns valuesin a vetor V ontaining the values of the integrand.
84

4.4.4 Numerial integration on omplex planeIntegral of omplex funtion f is alled omplex integral. It is notated as
F (z) =

∫

C

f(z)dzwhere C is a path on omplex plane. Before disussing what this notation a-tually means, one needs to de�ne a path and a integral of a omplex funtionover real interval.De�nition 4.5. Let [a, b] be an interval on real line, U be an open subset of
C , and let γ : [a, b] → U be ontinous. Then γ is alled a path. If γ(a) = γ(b)path γ is alled a losed path. For the purposes of omplex integrals pathsare usually hosen so that they are also di�erentiable.De�nition 4.6. Let [a, b] be an interval on real line , and let f : [a, b] → Cbe a ontinous funtion f(t) = v(t) + iu(t), where v and u are real valuedfuntions. Integral of funtion f over the interval

∫ b

a

f(s)ds =

∫ b

a

v(s)ds + i

∫ b

a

u(s)ds.With the two previous de�nitions we an de�ne a omplex integral over aurve C. Let γ map some real interval [a, b] to the path C. Now the omplexintegral is
∫

C

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt.Example 4.7. Integrate f(z) = 2z + 3i over paths C1 and C2, when C1 :
[−1, 1] → C, C1(x) = ix, and C2 : [−π

2
, π

2
] → C, C2(x) = cos(x) + i sin(x).

85

Re

Im

C1

C2

Derivative of the path C1(x) = ix is simply i. This means that the omplexintegral is:
∫

C1

2z + 3idz =

∫ 1

−1

(2is + 3i)ids =

∫ 1

−1

−2s − 3ds = −6.Derivative of the path C2 = cos(x)+ i sin(x) is C ′
2(x) = − sin(x)+ i cos(x) =

i(cos(x) + i sin(x)). Using this yields the omplex integral
∫

C2

2z + 3i =

∫ −π
2

π
2

(2(cos(s) + i sin(s)) + 3i)i(cos(s) + i sin(s))ds =

i

(∫ −π
2

π
2

2(cos(s) + i sin(s))2ds +

∫ −π
2

π
2

3i(cos(s) + i sin(s))ds

)

=

i(3i · 2) = −6.The reason the two omplex integrals yield the same result is that the in-tegrand funtion, f(z) = 2z + 3i is holomorphi. It also means, that itis path independent: the value of the omplex integral does not dependon the seleted path, provided that the funtion is holomorphi on the en-tire path. Observe now a omplex integral of g(z) = |z| along the paths86

C1 and C2. We use Euler's formula to make the C2 more manageable:
C2(x) = cos(x) + i sin(x) = eix, and C ′

2(x) = ieix.
∫

C1

g(z)dz =

∫ 1

−1

|is|i ds = i,while
∫

C2

g(z) =

∫ −π
2

π
2

|eis|ieisds =

∫ −π
2

π
2

ieis = 2i.Beause g is not holomorphi, the integrals along di�erent paths di�er.Computing omplex integrals in numerially does not di�er greatly fromreal integrals: essentially the idea of dividing the interval and summing thetrapezoids works in omplex ase as well.>> f = inline('2*z+3*i','z')f = Inline funtion :f(z) = 2*z+3*i% funtion trapez is the same one% defined in the setion on trapezoid% integrals>> trapez(f,-i,i,100)ans =-6% MATLAB 's own integral tool has no% problems either>> quad(f,-i,i)ans =-6Numerially the real and omplex integrals do not di�er, when dealing withholomorphi funtions. When the only the endpoints of the integral pathmatter, the integral an always be evaluated along the straight line fromthe beginning of the path to the end of the path. However, if the integrandfuntion is not holomorphi, this is not the ase, as was seen in the previousexample. In these ases it is neessary use the de�nition to ompute theintegral.>> quad(�abs ,-i,i)ans = 87

0 + 1.0000i>> g=inline('abs(os(x)+i*sin(x))*i.*(os(x)+i*sin(x))')>> quad(g,-0.5*pi ,0.5*pi)ans = 0 + 2.0000i4.4.5 More advaned integration methodsBoole's ruleBoole's rule approximates the integral
∫ x5

x1

f(x)dxby omputing values of f at �ve equally spaed points, so that xk = x1 +
(k − 1)h and h = x5−x1

4
. In the Handbook of Mathematial Funtions withFormulas, Graphs, and Mathematial Tables, the estimate is expressed as:

∫ x5

x1

=
2h

45
(7f(x1) + 32f(x2) + 12f(x3) + 32f(x4) + 7f(x5)) + error.The error term is:

− 8

945
h7f (6)(c)where c ∈ [x1, x5]. Here is an example of Boole's method implemented inMATLAB.funtion I = boole(f,a,b)h = (b-a)/4;S = [f(a) f(a+h) f(a+2*h) f(a+3*h) f(a+4*h)℄;I = 2*h/45*(7*S(1)+32*S(2)+12*S(3)+32*S(4)+7*S(5));Beause the only fator that an be a�eted in the error term is the lengthof the integration interval, it might be a good idea to adapt the method forintervals too long. Here is an example on how to implement the adaptation.A word of warning though: this example makes use of reursion. Reursion,as a rule, is extremely resoure onsuming, and should be avoided at all osts.funtion S = boole_re (f,a,b)if(abs(a-b)<0.5)S = boole(f,a,b); 88

return;endmiddle = (a+b)/2;S = boole_re (f,a,middle) + boole_re (f,middle ,b);Romberg's methodRomberg's method reates a triangular array onsisting of numerial esti-mates of the de�nite integral it approximates. It applies Rihardson extrap-olation ontinuously on the trapezoid rule, until desired auray is ahieved.The method an be de�ned indutively:
R(0, 0) = 1

2
(b − a)(f(a) + f(b))

R(n, 0) = 1
2
R(n − 1, 0) + hn

∑2n−1

k=1 f(a + (2k − 1)hn)

R(n, m) = R(n, m − 1) + 1
4m−1

(

R(n, m − 1) − R(n − 1, m − 1)

)where hn = a+b
2n .With n and m su�iently large,

∫ b

a

f(x)dx ≈ R(m, n)with the maximal error estimate for the R(m, n) being O(h2m+2
n).First olumn of this triangular array, that is, values R(i, 0), i = 0 . . . n, are thetrapezoidal integrals alulated with 2n +1 points. The �rst extrapolation isequivalent to the integral approximation using the Simpson's rule with 2n +1points.As far as omputation is onerned, the reursive alls within the loops arenot e�ient at all. A better solution is to table the values, and updatethe table as we move along the algorithm. While some small ine�ieny issu�ered by not being able to prealloate the matrix R, it is a small prie topay for avoiding the deep reursions that would otherwise be neessary.Here is an example implementation of Romberg integral in MATLAB.funtion q = romb(f,a, b, tol)% Approximates the integral from a to b of f(x)dx% to tolerane of tol by using the trapezoidal% rule with repeated Rihardson89

% extrapolation.% Make first estimate using one interval .n = 1; h = b-a;fval = [f(a); f(b)℄;R(1,1) = .5*h*(fval(1)+fval(2));% Keep doubling the number of subintervals until% desired tolerane is ahieved or max no. of%subintervals (2^10 = 1024) is reahed.% The array R will hold the triangular%array of estimates for F(b)-F(a)err = tol +80;% Initialize err to something > tol.disp(' q error est')s = 0;while err > tol && s < 10,s = s+1; n = 2*n; h = h/2;fvalnew = zeros(n+1,1);% Store omputed values of f to reuse% when h is ut in half. We prealloate% for speed.for i=1:2:n+1fvalnew (i) = fval((i -1)/2 + 1);end;% Compute f at midpoints of previous intervalsfor i=2:2:nfvalnew (i) = f(a+(i-1)*h);end;fval = fvalnew;trap = .5*(fval(1)+fval(n+1));for i=2:ntrap = trap + fval(i);end;% Use trapezoidal rule with new h value% to estimate integral . fval holds the% endpoints of 90

R(s+1,1) = h*trap;% Store new estimate in first olumn of tableau.% Perform Rihardson extrapolations.% That is, we fill the slots R(s,2) to R(s,s+1)for j=2:s+1,R(s+1,j)=((4.^(j-1))*R(s+1,j-1)-R(s,j -1))/(4.^(j-1) -1);end;q = R(s+1,s+1);% Estimate error. This is usually an overestimate of% the error in q.% It is a more appropriate approximation for the% error at previous stage.% The error will derease , as either n or m grows.err = max([abs(q-R(s,s)); abs(q-R(s+1,s))℄);% Print out approximation to integral and error at eah% step , for monitoring onvergene. For industrious% use , omment away. (Print is a ostly operation)disp([q err℄)end;Monte Carlo - methodsMonte Carlo methods form a lass of omputational algorithms, that rely onevaluating repeated random samples to ompute an approximate result to thegiven problem. Beause of their reliane on large number of pseudo-randomnumbers, they are almost uniformly suited for omputers, and tend to beused when aquiring the deterministi solution is impossible or unfeasible.The term itself was invented in Los Alamos National Laboratory by physiistsworking on nulear weapon projet during the seond world war.Our interest in Monte Carlo methods onern numerial integration. Thepreviously presented methods of numerial integration are based on takinga number of evenly spaed sample points, and determining the quadrature.However, there are ases when omputing the de�nite integral in some de-terministi way, even numerially, may turn out to be too di�ult. In theseases Monte Carlo integration method may prove to be a good hoie.91

Informally, the idea of Monte Carlo integration is to approximate de�niteintegral over domain D, by piking a simple domain E, whose area is easilydetermined, and whih ontains C. Random points are then seleted in E,knowing that some of these will also fall in C. The estimate for the integral
D is the area of E multiplied by the fration of random samples in D.

∫

D

f(x)dx ≈ area(E)
n

Nwhere n is the number of random samples that fell within D and N is thetotal number of random samples. As the number N grows, the approximationonverges towards the de�nite integral.Monte Carlo integration methods are very well suited to situations, whenthere is little or no mathematial struture behind the integrand: for exam-ple integration of a noisy experimental data. For this reason Monte Carlomethods are eminently used in omputational physis, while in other areasof mathematis deterministi methods are used.In order for Monte Carlo- integration to produe good results, the methodfor produing random points must be seleted with are; traditionally therandom points are uniformly distributed over the domain E, though othermethods have been suggested to derease the error.Example 4.8. In this example Monte Carlo integration is used to estimatethe volume of a ube with a radius of one. To do this, take a number ofrandom samples from [−1, 1]× [−1, 1]× [−1, 1], and perform the evaluation.% we estimate the volume of a sphere% with radius of one% using Monte Carlo integration% we get n random triples from ube% [-1,1℄x[-1,1℄x[-1,1℄% it ontains the sphere with radius% of onen=input('How many random samples do you want?');hit = 0;for i = 0:na = 2*rand(1)-1;b = 2*rand(1)-1; = 2*rand(1)-1; 92

if(a^2+b^2+^2 <= 1)hit = hit + 1;endenddisp('Estimated volume')disp(8*hit/n);disp('Real volume')disp(4/3*pi);Testing shows, that 3000 samples seems to produe quite good results, witherror of magnitude of 10−4.Gaussian quadratureThe onept of orthogonal funtions, �rst de�ned in theory of vetor spaes,gives us a useful tool to approximate a de�nite integral numerially.De�nition 4.9. First, de�ne a vetor spae with ontinuous funtions de-�ned on the interval [a, b]. Let f and g be suh funtions, and let W be athird funtion, a weight funtion. De�ne then the inner produt for funtions
f and g with

〈f, g〉 =

∫ b

a

W (x)f(x)g(x)dx.If 〈f, g〉 = 0, the funtions are orthogonal. If 〈f, f〉 = 1,, f is said to benormalized. If every funtion in a set of normalized funtions is orthogonalwith eah other, it is said to be orthonormal.Using the previous de�nition, one an reate a set of polynomials havingexatly one polynomial pj(x) of the degree j, j = 0, 1, 2,The onstrution is as follows. First set
p−1(x) ≡ 0, p0(x) ≡ 1,then

pj+1(x) = (x − aj)pj(x) − bjpj−1(x)where
aj =

〈xpj , pj〉
〈pj, pj〉

, bj =
〈pj , pj〉

〈pj−1, pj−1〉
, j = 1, 2, 3 . . .The fator b0 an be seleted arbitrarily, usual hoie is zero.93

Now, when approximating de�nite integral
∫ b

a

W (x)f(x)dx ≈
N

∑

j=1

wjf(xj)one an selet the weights wj and absissas xj so, that the formula holdsas equivalene for all polynomials of at most 2N − 1 degree; the evaluationpoints are the roots of the orthogonal polynomials, onstruted as shownbefore. The weights depend on the polynomials as well.One of the most ommonly used set of polynomials are the Legendre poly-nomials Pn(x). It an be de�ned as a ontour integral
Pn(z) =

1

2πi

∮

(1 − 2tz + t2)−1/2t−n−1dt.The ontour should enlose the origin, and no other singular points, and itis traversed ounterlokwise.Sale the integrand funtion to interval [−1, 1], and selet the weight funtion
W (x) ≡ 1. The evaluation points, or Gauss nodes, xi will then be the i:throot of the Pn, where n is the degree of the Legendre polynomial to be applied.The weights wi will be

wi =
2

(1 − x2
i)(P

′
n(xi)2)

.Here is an example ode for Gaussian quadrature using Legendre polynomi-als.funtion I = gauss_quad2(f,a,b,n)I = 0;% The funtion must be saled to% [-1 1℄. wp and ws are saling% weights.wp = (b-a)/2;ws = (a+b)/2;% Find the absissasR = legroots (n);% define a step for derivationh = sqrt(eps);for i= 1:length(R)r = R(i); 94

% Built in Legendre funtion :% subsequent rows represent% inreasing order: the first% row is the 0th order Legendre% funtion , i.e. Leg. polynomial.y = legendre (n,[r-h r+h℄);dy = (y(1,2)-y(1 ,1))/(2*h);% Determine the weightsw = 2/((1-r.^2) * (dy.^2));I = I + f(r*wp+ws)*w;endfuntion r = legroots (N)% The funtion r = legroots (N) omputes the roots of the% Legendre polynomial of degree N. For the purposes of% this ourse , just have faith that it does what it% promises .n = 1:N-1; % Indiesd = n./sqrt(4*n.^2 -1); % Create subdiagonalsJ = diag(d,1)+diag(d,-1); % Create Jaobi matrixr = eig(J); % Compute eigenvaluesThe Gaussian method an be made more aurate by inreasing the degree ofLegendre polynomial, or by seleting a di�erent set of orthogonal polynomialsand weight funtion altogether. In ase of the latter, ommon hoies inludeweight funtion 1√
1−x2

with Chebysev polynomials, and e−x with Laguerrepolynomials.4.5 Symboli di�erential and integral alulusWhile MATLAB is designed to be primarily a tool for numerial omput-ing, sine 2008 MATLAB symboli math toolkit has inluded the MuPADomputer algebra system, apable of performing symboli omputations. Itis somewhat inferior to its more famous ompetitors, Maple and Mathemat-ia, but it provides a good enough foundation on whih to perform symbolioperations.If used from MATLAB ommand line, the MuPAD funtionality is aessedthrough de�ning a variable symboli with the ommand sym. After delaringa variable symboli it does not hold a numeri value, like variable usually95

would. It is now onsidered a symbol, and all operations performed on itare now done through the MuPAD kernel, rather than MATLAB. Here is anexample:% First we define two symboli variables , x and a.>> x = sym('x');>> a = sym('a');% We now test the arithmetis>> a * x*aans =a^2*x>> a + a + a +a + aans =5*a% Numbers an also be given symboli% representation.>> sym (11)/sym (22)ans =1/2In addition to the basi operators, the symboli toolbox o�ers a wide varietyof di�erent operators. In this setion we, however onentrate on those thathave to do with basi alulus, starting with the obvious ones: derivationand integration. Symboli operators diff and int perform the derivation,or integration, if possible. They must be given a symboli expression as aparameter in order for them to work. Here are examples.% First define a symboli variable .>> x=sym('x');% Then define a symboli funtion :% it's only parameters are symboli% variables .>> t = 8*x^3 + 15*x^2 - 56*x + 8;% We integrate the polynomial with% respet to x>> int(t,x) 96

ans =2*x^4+5*x^3-28*x^2+8*x% We then derivate in respet to x>> diff(t,x)ans =24*x^2+30*x-56% Then something more omplex>> t = 1/(1+x^2);>> int(t,x)ans =atan(x)% Integration over areas works also>> y = sym('y');>> t = x^2+y^2;>> int(t,x,y)ans =1/3*y^3 -1/3*x^3+y^2*(y-x)% partial derivation works also...>> diff(t,x)ans =2*x% so do seond derivatives>> diff(diff(t,x),x)ans =2 97

% and finally the gradients>> h = x^3+ 4*y;>> A=[t h℄;>> diff(A,x)ans =[2*x, 3*x^2℄In addition to integration and derivation operators, MuPAD o�ers tools toobserve limits of funtions, onvergene of series, and �nally, to �nd Jaobianmatries and Taylor series for given funtions. Here are examples.% We start with simple limit:% the value of Napier 's onstant e>> n = sym('n');>> s = (1+1/n)^n% The limit defaults to% 0 if no value is given>> limit(s, n, inf)ans =exp(1)% Then another limit , this time at 0>> x = sym('x');>> f = sin(x)/x;>> limit(f)ans =1% Now we shall attempt to find a Taylor series%for a ompliated funtion at x_0 = 0;% the ommand syms is shorthand for reating% lists of symboli variables .>> syms x y>> f = sin(x)*x + exp(x) + 8>> taylor(f) 98

ans =9+x+3/2*x^2+1/6*x^3 -1/8*x^4+1/120* x^5% Without speifiations the funtion% taylor finds the Taylor polynomial% at 0, and omputes five first terms>> taylor(exp(-x),3,6)ans =exp(-6)-exp(-6)*(x -6)+1/2* exp(-6)*(x-6)^2% Here we speified that we want the first% three terms omputed at x_0 = 6% Finally we take a look at the symboli% Jaobian matrix>> f = [x^2+y*x; x*y+x; exp(x+y)℄;>> jaobian (f,[x y℄)ans =[2*x+y, x℄[y+1, x℄[exp(y+x), exp(y+x)℄

99

Chapter 5Nonlinear equationsIn previous hapters di�erent methods of solving systems of linear equationswere studied. Now more general types of equations are studied. Generally,objet is to �nd a vetor x = (x1, . . . xn),x ∈ Rn that satis�es the system ofequations

f1(x) = b1...
fn(x) = bn

, (5.1)where the funtions fj are non-linear. If the vetor x satis�es the systemof equations, it is alled root. The methods that were available for solvinglinear systems of equations are no longer generally valid, and one must �ndother methods of solutions.Before trying to seek exat solutions to a non-linear system of equations, youmust make sure the solution exists. In ase of linear algebra this was easilygleaned from theorems of linear algebra, in non-linear ase there is no singleway of determining the existene of a solution.There is also no general algorithm of solving a system of non-linear equa-tions, if there are more than on equation. In ase of just one equation, thebraketing method is general, sine it requires knowledge only about the val-ues of funtion. For a system of equations, there are algorithms, that work,if some fairly light assumptions an be made about the funtions fj . In orderfor several of these algorithms to work, somewhat aurate initial guess isrequired.Most of the algorithms to �nd the root of 5.1 are based on iterative methods.Sine it is usually impossible to numerially �nd the exat root, one needs to100

have some preset ondition to halt the iteration one the desired auray isahieved. It should also be noted, that the iterations do not always onvergetoward the root, and to avoid in�nite loops, a halting ondition should beset for this eventuality as well.5.1 Root �nding algorithms5.1.1 BraketingBraketing, or bisetion method, is a very general algorithm for disoveringthe roots of a funtion of one variable. Only thing it requires is, that thereexist an interval [a, b], where the funtion is ontinuous, and that the funtionhanges sign on the interval, i.e. f(a)f(b) < 0. Braketing makes use of theintermediate value theorem, whih says, that a funtion f is ontinuous onthe interval [a, b], it gets at least all the values [f(a)f(b)]. Should the f(a)and f(b) have di�erent signs, it implies that there is a value c, a ≤ c ≤ b,so that f(c) = 0. The basi idea of the braketing is this: �rst hek thatinterval endpoints have di�erent signs. Then evaluate the funtion at themidpoint m = b−a
2
. If the f(m) = 0 or numerially lose enough, stop thealgorithm and return m. If not hek the signs of f(m)f(a) and f(m)f(b).If f(m)f(a) is positive, it is known that the root lies on the interval [m, b],and if it is not, it's known that the root lies on the interval [a, m]. Thenselet the appropriate interval, and repeat the iteration, and keep repeatingit until you reah the root.Braketing is very robust algorithm: it produes good results and does notrequire omplex proedures to aquire the root. It is not without its weak-nesses, however. As a rule, the braketing method onverges slowly whenompared to other root �nding methods. Also, it �nds only one root; andonly that root. Finding other roots requires a priori knowledge where theroots lie, or adaptive implementation of the algorithm. Here is an exampleimplementation of braketing in MATLAB.funtion x0 = braket(f,xmin ,xmax)% finds a root of the funtion f on the% interval xmax , xmin. f should hange its% sign on this interval at least oneif(f(xmax)*f(xmin)>0)error('Positive or negative endpoints ');101

endm= (xmax -xmin)/2;m = xmin+m;while abs(f(m))>1e-8disp(f(m));if(f(m)*f(xmin)>0)xmin =m;elsexmax = m;endm = (xmax -xmin)/2;m = xmin + m;endx0=m;5.1.2 Fixed point iterationThe iterative methods to solve the system 5.1 are almost uniformly basedon the �xed points of funtion. The point x is said to be a �xed point offuntion f , if x = f(x). The idea is to write the iteration in the form
xk+1 = f(xk).The x is not restrited into being a real or omplex number: it an be avetor, or even a funtion. If the sequene (xk) onverges towards somevalue x0, and the funtion f is ontinuous, it holds that
x0 = f(x0).This method for �nding the root of equation x0 = f(x0) is alled �xed pointiteration. Next su�ient and neessary properties for funtion f to have inorder for the sequene (xk) to onverge are studiedBanah's �xed point theoremIn 1922 a polish mathematiian named Stefan Banah proved a theoremthat stipulates when a funtion has �xed points, and guarantees that theyare unique. He presented his theorem for metri spaes, whih allows the�xed point iteration to be used in not only real- and omplex spaes, but,for example, in the spae de�ned by ontinuous funtions on some interval.102

De�nition 5.2. Let B be a omplete vetor spae with salar �eld C. B isa Banah spae, if it has a norm || · || so that1. ||x|| ≥ 0 ∀x ∈ B,2. ||x|| = 0 ⇔ x = 0,3. ||γx|| = |γ|||x||, ∀γ ∈ C, ∀x ∈ B,4. ||x + y|| ≤ ||x|| + ||y|| ∀x, y ∈ B .De�nition 5.3. Let (X, dX) and (Y, dY) be metri spaes. The funtion
f : X → Yis alled Lipshitz-ontinuous, if there exists a real onstant K ≥ so that forall x1, x2 ∈ X

dY (f(x1), f(x2)) ≤ KdX(x1, x2).If 0 < K < 1, the funtion f is alled ontration.Theorem 5.4. (Banah's �xed point theorem). Let A be a losed subset ofBanah spae B, and let the funtion f be Lipshitz ontinuous ontration.Then the funtion f admits one, and only one �xed point x0. Furthermore,the iterative sequene xn = F (xn−1) onverges to x0 regardless of the seletionof the initial point.Proof. First remember, that B is a omplete vetor spae and hene, everyCauhy sequene onverges, and that the sequene (xk) is a Cauhy-sequeneif for every ǫ > 0 there exists a number nǫ so that
||xm − xn|| < ǫ, when m, n ≥ nǫ.The �xed point iteration xk = f(xl−1) gives us:

||xk+1 − xk|| = ||f(k) − f(xk−1)|| ≤ K||xk − xk−1|| =

K||f(xk−1) − f(xk−2)|| ≤ K2||xk−1 − xk−2 = . . .this gives us indutively
||xk+1 − xk|| ≤ Kk−l||xl+1 − xl||.103

Then show that (xk) is a Cauhy-sequene:
||xk+m − xk|| = ||xk+m − xk+m−1 + xk+m−1 − . . . − xk||

≤
k+m−1
∑

j=k

||xj|| ≤ Kk(Km−1 + Km−2 + . . . + K + 1)||x1 − x0||

= Kk 1 − Km

1 − K
||x1 − x0||.Beause 0 < K < 1, (xk) is a Cauhy-sequene. Therefore the losed subset

A ontains the limiting value
s = lim xk, s ∈ A.Furthermore f(s) = f(lim xk) = lim f(xk) = lim xk+1 = s, so s is a �xedpoint of f . Show then, that this �xed point is unique through ounter as-sumption: suppose that s1 and s2 are �xed points of f , and ||s1 − s2|| > 0,we get

||s1 − s2|| = ||f(s1) − f(s2)|| ≤ K||s1 − s2||whih leads to situation K ≥ 1, whih ontradits the supposition that thefuntion f is a ontration. Therefore s1 = s2, and �xed points are unique.You an now use the �xed point iteration to solve equations of the form
f(x) = x, if the funtion f satis�es the required onditions. Cheking theontration-ondition is an be simpli�ed in Eulidean spaes: funtion f isa ontration, if |f ′(x)| < c, c ∈ (0, 1).Here is a simple implementation of how �xed point iteration ould be imple-mented in MATLAB.funtion fp = banah(f)% f is assumed to be a funtion% of single vetor variable .% A fixed point of f is% returned if it was found% in less than 100 iterations.% Otherwise 0 is returned .fp = 0;tr = 0; 104

h = sqrt(eps);% We make an elementary hek of% Lipshitz propertyif((f(fp+h)-f(fp-h)/2*h)>1)error('Not a ontrating funtion ')endwhile((abs(fp-f(fp))>1e-8) && (tr <100))fp = f(fp);end5.1.3 Seant methodSeant method uses sequene of seant lines drawn to the graph of the stud-ied funtion. Roots of these lines will, given good enough an initial guess,onverge towards the root of the funtion. Good enough guess means, thatone must have knowledge, that a root exists on some interval (a, b).Seant line of a urve is a line that loally intersets with urve at twodi�erent points. Seant method uses the line that is drawn to interset theurve of the funtion at the points of initial guess ass interpolant for thefuntion on this interval. It then makes a new estimate on a new interval,using the root of the seant line as a new endpoint. Here is the reurreneformula for the seant method:
xn = xn−1 − f(xn−1)

xn−1 − xn−2

f(xn−1) − f(xn−1)
.The two values, x0 and x1, required for the �rst reursion are the initialguess, and ideally should lie lose to the root.

105

x0

f(x 0)

x1

f(x 1)

x2

f(x 2)

x3

f(x 3)

Seant method, when it onverges, is somewhat slow, but usually betterthan braketing method. There are, however, ases when braketing willprove to be more e�ient: espeially if a smooth funtion's seond derivativehanges sign near the root. Seant method an be extended to more than ondimensions: it is then all Broyden's method. Here is an example MATLABimplementation of the seant method in one dimension.funtion x = seant(f,x0,x1)% Seant method for MATLAB% parameter f is a funtion% handle or inline funtion .% x0 and x1 are the initial% guess points.xold = x0;xnew = x1;tr =0;% initialize xnew as x0% for onveniene purposes% We set up a halting onditions% both for finding the root% and for the ase that% the series (x_n) does not% onverge .while(abs(f(xnew))>1e-8)aux = xnew; 106

xnew = xnew - f(xnew)*((xnew -xold)/(f(xnew)-f(xold)));xold = aux;tr = tr+1;endx = xnew;One should note, that the algorithm makes no suppositions for the initialvalues: the root does not have to lie between them. This means, that themethod does not neessarily onverge at all. Next an algorithm is presentedthat requires the root to be braketed between the interval's endpoints.5.1.4 False position methodFalse position method (sometimes alled Regula Falsi-method) ombinesbraketing and seant methods. It begins as the braketing method does:by seleting an interval, with funtion values at interval ends having oppo-site signs. Then, instead of hoosing the midpoint for new interval endpoint,hoose the root of seant line drawn at these two points, and then hoosingthe new interval so, that the funtion values at the endpoints have di�erentsigns. Formally:
ck =

f(bk)ak − f(ak)bk

f(bk) − f(ak)
{

ak+1 = ck if f(ck)f(ak) < 0

bk+1 = ck if f(ck)f(bk) < 0
.In ase the studied funtion is ontinuous and the initial ondition f(a0)f(b0) <

0 holds, one will always �nd a root with this method. This method is gener-ally faster than braketing, but as with seant method, there are ases when�nding the funtions roots requires many iterations.

107

x

y

x0

f(x 0)

x1

f(x 1)

x2

Here is a MATLAB implementation of method of false position.funtion x = regfalsi (f,a,b)if(f(a)*f(b)>0)error('no sign hange on interval ');endxnew = a;xold = b;tr = 0;while(abs(f(xnew))>1e-8 && tr <100) = (f(xold)*xnew -f(xnew)*xold)/(f(xold)-f(xnew));if(f(xnew)*f()<0)xold = xnew;xnew = ;elsexnew = ;endendx = xnew;5.1.5 Newton's methodProbably the most famous method for �nding roots of a funtion is the New-ton's method, named after sir Isaa Newton. The method will �nd sues-sively better approximations for roots of a real valued funtion using tangent108

lines �tted to the funtion. Newton's method requires that the studied fun-tion is di�erentiable.The idea behind the method is to use approximation gained by alulatingthe funtions Taylor series:
T (f ; x0) = f(x0) + f ′(x0)(x − x0) +

1

2
f ′′(x0)(x − x0)

2 + . . .at point x0 + ǫ. Obtain
f(x0 + ǫ) = f(x0) + f ′(x0)ǫ +

f ′′(x0)

2
ǫ2 . . .When ǫ is very small, one an approximate the funtion value by keepingterms only to the �rst order:

f(x0 + ǫ) ≈ f(x0) + f ′(x0)ǫ.If you now set f(x + ǫ) = 0, and use the previous approximation to omputethe ǫ, you get:
ǫ0 = − f(x0)

f ′(x0)
.One an see, that the approximation is the equation of the tangent line of thefuntion f at the point (x0, f(x0)). It interepts the x-axis at point (x1, 0).Set now, that x1 = x0 + ǫ0. This gives an idea for an algorithmi approahfor �nding a root: set

ǫn = − f(xn)

f ′(xn)and alulate xn by
xn = xn−1 − ǫn.If the obtained sequene (xn) onverges, it onverges towards a �xed point,whih is preisely the root. This gives us the traditional formula for Newton'siteration:

xn+1 = xn − f(xn)

f ′(xn)
.Whether the sequene given by Newton's iteration onverges is a ompliatedquestion; however for the purposes of this ourse it is enough to say, thatin a su�iently small neighborhood of a simple root of a twie di�erentiablefuntion, Newton's method onverges quadratially to that root.109

Figure 5.1: First two steps of Newton iteration

x0

f(x 0)

f(x0)+f ’(x)x
0

x1

f(x 1)

x2

f(x 2)
x

y

f(x)

Another interesting question is that if a funtion f has more than one root,whih one will it onverge towards, if it onverges at all. The answer issomewhat unexpeted: on omplex plane roots of funtions with more thantwo roots yield a rational map of C, and the Julia set of this map is a fratal,or to put it more poetially: this is a manifestation of haos.Here is an example MATLAB implementation of Newton's method in singledimension.funtion root = mynewt(f,x0)% f is the funtion we whose% roots we wish to find , x0 is% the initial guess.% mynewt uses the numdif funtion% that was introdued in the% numerial alulus setion.% If a suitable solution is% not found in 100 iterations% attempt is abandoned . 110

tr =0;x =x0;h = sqrt(eps);while(abs(f(x))>1e-8 && tr <100)df = numdif(f,x,h);x = x - (f(x)/df);tr = tr+1;endroot = x;Newton's method an be generalized for vetor funtions F : Rn → Rn bysubstituting the the funtions derivative by Jaobian matrix of the funtion.This puts somewhat more requirements for the funtion, as the Jaobianmatrix must be invertible at the evaluation points, and as we rememberfrom the alulus setion, this means the funtion must have an inverse insome small environment near the evaluation point.Searhing for the root of the funtion F is analogous to solving a system ofequations

f1(x1 . . . xn) = 0

f2(x1 . . . xn) = 0...
fn(x1 . . . xn) = 0

.Assuming that the funtion F = (f1(x), . . . fn(x))T ,x = (x1 . . . xn) is di�er-entiable, following holds:
F (x0 + δ) ≈ F (x0) + Jf(x0)δ,where JF (x0) is the Jaobian matrix of F evaluated at x0.As in one dimensional ase, using suessive linearisation approximations forthe funtion F yield:

0 ≈ F (xn+1) ≈ F (xn) + JF (xn)(xn+1 − xn).This gives us the Newton-iteration step:
xn+1 = xn − JF (xn)−1F (xn).If the initial guess x0 is loated lose enough to the root, the sequene (xn)onverges to the root. 111

Here is an one MATLAB implementation of the Newton's method in multipledimensions.funtion root = vetorNewton(f,x0)% f is a inline funtion or a funtion handle.% f should an nx1 vetor as a parameter , and% it should return an nx1 vetor.x = x0;tr = 0;while((abs(norm(f(x)))>1e-8) && (tr <100))jf = jaob(f,x,length(x0), length(x0));x = jf\(jf*x-f(x));tr = tr +1;endroot = x;funtion Jf = jaob(f,x,m,n)% f is a funtion with m omponents ,% x is a vetor with n omponents ,% the result is an m by n matrix.Jf = ones(m,n); h = 1e-4;for j =1:ne = zeros(n,1); e(j) = 1;Jf(:,j) = (feval(f,x+h*e)-feval(f,x-h*e))/(2*h);end;5.1.6 Brent's methodSine there exist situations where seant method and false position - methodlose in e�ieny to the braketing method, one an pose a question: an thesemethods be ombined in a way whih makes best use of the best propertiesof all three methods? It turns out that there is: Brent's method ombinesthe seant method, braketing and inverse quadrati interpolation.The idea is as follows: you wish to solve an equation of the form f(x) = 0. Aswith braketing method, you need two points, a and b, so that f(a)f(b) < 0.This means that if f is ontinuous, aording to intermediate value theorem,it must have a root between a and b.Before presenting the Brent's method, we will study the so alled Dekker'siteration, on whih the the Brent's method is based on. Dekker's iteration112

uses three points at eah step of the iteration: bn, the most reent estimate forthe root of f , an, is a point for whih f(an)f(bn) < 0, and |f(bn)| ≤ |f(an)|,and the previous iterate, bk−1. For the �rst iteration set b−1 = a0.At eah step of iteration, two possible values for the next iterate are om-puted; �rst one by the seant method:
s = bn − bn − bn−1

f(bn) − fn−1
,and the seond using the braketing method:

m =
an + bn

2
.If bk < s < m, then bn+1 = s, otherwise, bn+1 = m. Then a new ontrapoint is seleted. If f(an)f(bn+1 < 0), no hange is neessary, and an+1 = an,otherwise an+1 = bn. �nally test, if |f(an+1)| < |f(bn+1)|. If the inequalityholds, then an+1 is (probably) a better estimate for the funtion root, so swapthe values an+1 and bn+1.Brent's method introdues several additional tests to ensure a fast onver-gene. First, if f(an), f(bn) and f(bn−1) are distint, the method uses inversequadrati interpolation instead of seant method.Inverse quadrati interpolation is another root �nding method for funtion

f(x), using Lagrange's quadrati interpolation to approximate the inverse of
f . The quadrati inverse formula is a reurrene relation:

xn+1 =
f(xn−1)f(xn)

(f(xn−2) − f(xn−1))(f(xn−2) − f(xn))
xn−2+

f(xn−2)f(xn)

(f(xn−1) − f(xn−2))(f(xn−1) − f(xn))
xn−1+

f(xn−2)f(xn−1)

(f(xn) − f(xn−2))(f(xn) − f(xn−1))
xn.Seond, set some tolerane δ, and, if previous step used braketing, an in-equality

|δ| < |bn − bn−1|must hold. If it doesn't, next iteration will also use braketing.If previous iteration used inverse quadrati interpolation or seant method,an inequality
|δ| < |bn−1 − bn−2|113

must hold in order for another interpolation to be made: otherwise braketingwill be used.These tests are performed, beause in Dekker's method a situation may arise,where |bn+1 − bn| will be very small, leading to extremely slow onvergeneof (bn).Additionally, in order for an interpolation to be performed at step n of algo-rithm, if step n − 1 used braketing this inequality has to hold:
|s − bn| <

1

2
|bn − bn−1|in order to perform a interpolation at step n. If step n−1 used interpolation,an inequality

|s − bn| <
1

2
|bn−1 − bn−2|has to hold to ontinue performing interpolations.These inequalities ensure, that onseutive interpolation step sizes halve ev-ery two iterations, and furthermore, ensure that interpolation step size willbe less than δ, thus foring the use of bisetion method, one the root hasbeen loalised to a small enough an interval.Brent's method is somewhat ompliated, but it is very popular method of�nding roots: for example MATLAB's funtion fzero uses it. Here is anexample implementation in MATLAB.funtion root = brent(f,x0,x1)% The funtion brent will attempt% to find the funtion root on% a given interval . The funtion% must a single variable real valued% funtion , and it must hange sign% on the given interval% The parameter f is funtion handle% or a string holding the funtion name% x0 and x1 must be real numbers that% satisfy f(x0)*f(x1)<0.% Chek the initial onditionif(f(x0)*f(x1)>0)error('no sign hange on (a,b)');end 114

a= x0;b = x1;% make sure the endpoints% are in right orderif(abs(f(x0))< abs(f(x1)))b = x0;a = x1;end = a;s = a;% mflag keeps trak of the previous step:% if true(1) previous step was bisetion% if false (0) it was an interpolation% or seant step.mflag = true;delta = 1e-4;d = 0;% onditions for ending the iteration :% small enough a funtion value or small% enough a an intervalwhile(abs(f(b))>1e-8||abs(f(s))>1e-8||abs(b-a)<1e-10)% Do we use interpolation or the seant rule ?if(norm(f(a)-f())>1e-11 && norm(f(b)-f())>1e-11)s = inversequadrati(f,a,b,);else% Seant rules = b-f(b)*((b-a)/(f(b)-f(a)));end% Now a list of onditions that define ,% if we take a bisetion rule instead1 = (0.25*(3* a+b)<s || s<b);5 = (mflag == 1 && abs(s-b)>= abs(b-)/2);2 = (mflag == 0 && abs(s-b)>= abs(b-)/2);3 = (mflag == 1 && abs(b-)<delta);4 = (mflag == 0 && abs(-d)<delta);if(1||2||3||4||5)s = (a+b)/2;mflag = true;else 115

mflag = false;endd = ; = b;% Define a new interval : determine% the enpointsif(f(a)*f(s)<0)b = s;elsea = s;end% put the points in right orderif(abs(f(a))<abs(f(b)))aux = a;a = b;b = aux;endendroot = b;funtion s = inversequadrati(f,a,b,)s = (a*f(b)*f())/((f(a)-f(b))*(f(a)-f()));s = s + (b*f(a)*f())/((f(b)-f(a))*(f(b)-f()));s = s + (*f(a)*f(b))/((f()-f(a))*(f()-f(b)));5.1.7 Roots of polynomialsThe root �nding methods presented thus far have not made little distintionon the funtions whose roots we have wished to �nd: there have been re-quirements to be sure, but �nding the roots has been based on the funtionsderivatives, or Lipshitz-ontinuity or intermediate value theorem. If thestudied funtion is a polynomial, one an take advantage of the properties ofthe funtion itself.The fundamental theorem of algebra states, that nth polynomial p(x) has nroots in the omplex plane, so a root will always be found. Also, polynomialsare di�erentiable and ontinuous on entire real line. Using these propertiesallows us to develop algorithms for �nding the roots of polynomials. Whileone an use any of the previous algorithms to �nd roots of polynomials, aswell as any other funtion, methods rafted for polynomials tend to be more116

aurate and onverge faster than the more general ones. As an example ofan root �nding algorithm for polynomials, we present the Laguerre's method.Laguerre's methodAording to the fundamental theorem of algebra, we an write every poly-nomial p(x) of nth degree in form
p(x) = C(x − x1)(x − x2) . . . (x − xn),where xi, i = 1 . . . n are the roots of p. To get the Laguerre's method, studythe natural logarithm, and logarithmi derivatives of the p.

log |p(x)| = log |C| + log |x − x1| + log |x − x2| + . . . + log |x − xn|,

d log |p(x)|
dx

=
1

x − x1
+

1

x − x2
+ . . . +

1

x − xn
,

d2 log |p(x)|
dx2

= − 1

(x − x1)2
+

1

(x − x2)2
+ . . . +

1

(x − xn)2
.Denote the �rst and seond derivatives of p with

F (x) =
d log |p(x)|

dx
, G(x) =

d2 log |p(x)|
dx2

.Now some assumptions are required: assume, that the root we are urrentlylooking for, x1 is a ertain distane a away from our urrent estimate x, whileall other roots are at same distane b away from our urrent best estimate.Denote : a = x − x1 and b = x − xi, i = 2 . . . n. This allows you to express
F and G in terms of a and b:

F ≡ 1

a
+

n − 1

b
,

G(x) ≡ 1

a2
+

n − 1

b2
.Solving these equations for a gives

a =
n

F ±
√

(n − 1)(nH − G2)where the sign is seleted to give the largest magnitude for the denominator.117

This gives an approah for an algorithm: Selet an initial guess x0, and onevery iteration k, ompute F = p′(xk)
p(xk)

and G = F 2 − p′′(xk)
p(xk)

. Then set a aspreviously:
a =

n

F ±
√

(n − 1)(nH − G2)and hoose the sign appropriately. Finally we set xk+1 = xk − a.One should note that if the set of assumptions made in the derivation of themethod does not hold for some polynomial P , P an be transformed intopolynomial Q for whih the assumptions do hold true. Finding all the rootsan be derived through �nding one root: if a + ib is a root, a − ib is also aroot; if x0 is a root of a polynomial P , P = (x−x0)Q(x) for some polynomial
Q of (n − 1)th degree, and fator (x − x0) an be redued away.Here is an example implementation of Laguerre method to �nd one root ofa polynomial in MATLAB.funtion z = laguerre (p, x0, tol , itmax)% the parameter p should be 1xn or nx1% vetor holding the oeffiients of% polynomial P(x).% x0 should be an initial guess for the% root , and it determines , towards whih% root the method onverges% tol and itmax determine the halting% ondition for the method: it halts% if f(xn)<tol or if number of iterations% exeed the itmax.n = length(p)-1;dp = polyder(p);dp2 = polyder(dp);tr = 0;% Here we use the built -in funtion% polyder that provides a derivative% for polynomial.while(tr <itmax)px = polyval(p, x0);dpx = polyval(dp, x0);dp2x = polyval(dp2 , x0);%is the urrent guess ok?if(abs(px) < tol)z = x0; 118

returnend% Here we ompute the FF = dpx/px;% And here the GG = F*F-dp2x/px;% here 's the square root part of% adis = sqrt((n-1)*(n*G-F*F));% Here we deide if we hoose% positive or negative signif (abs(F-dis) < abs(F+dis))denom = F+dis;elsedenom = F-dis;enddx = n / denom;% update the x0x0 = x0 - dx;% if the hange is very small ,% there is no point in% ontinuing.tr = tr +1if (abs(dx) < tol)z = x0;returnendendz = x0;5.1.8 Root �nding in MATLABMATLAB o�ers tools for �nding roots of �nding single variable funtions.First one is the funtion fzero, whih is a built-in implementation of theBrent's method. It attempts to �nd a root loated near a parameter lo-ation x0. The funtion fzero works on any single variable funtions, butreturns only one root. For polynomials there exist the funtion roots, whihwill ompute all the roots of given polynomial; remember that MATLABhandles polynomials as vetors ontaining the oe�ients a0 . . . an, in or-119

der an, an−1, . . . a0. The funtion roots is based on the ompanion matrixmethod.5.2 Minimization algorithmsMinimization algorithms, or more generally, optimization, is a �eld of math-ematis that studies seleting the best possible element from some set ofalternatives. Usually this an be redued to �nding minimums and maxi-mums of a real valued funtion. Finding maximums an in turn be reduedto minimizing problem: �nding maximum of funtion f is same as �ndingminimum of −f .As with �nding roots of non-linear funtions, minimization �nds its basisin great theorems of alulus: the extremal value theorem, proved KarlWeierstrass in 1860, says, that a ontinuous, real valued funtion on a om-pat set attains its maximum and minimum value. These values are lo-al to the ompat set. This allows the braketing idea we already pre-sented with the root-�nding algorithms: if there exist points x, y, z so that
f(y) < min{f(x), f(z)}, then there exists a minimum at some y0, x < y0 < z.Optimization problem is alled onstrained, if the variable have some a priorirestritions. Generally this makes the problem easier, as it makes possible toapply the extremal value theorem. Also, sine problems faed in real worldare also usually onstrained, it is not an unreasonable supposition. As willbe seen, there are minimum searh methods, that require an unonstrainedspae to work.If the studied funtion is di�erentiable, the problem of minimums beomeseasier: alulus teahes us, that funtions extremal values are loated eitherat the funtions ritial points, or at the boundary of the domain. Critialpoints of funtion f : Rn → R are points x0 where partial derivatives ∂f(x0)

∂xi
=

0 for all i = 1 . . . n. However, a ritial points may be minimum, it is notneessarily so: it might be a loal optima, or a saddle point. If the funtion istwie di�erentiable, it is possible to distinguish minima, maxima and saddlepoints using the seond derivatives test (so alled Hessian matrix). Twiedi�erentiability is a restriting ondition, and even if funtion f were twiedi�erentiable, �nding the ritial points an be di�ult. In these ases anumerial study of the problem is alled for.Optimization is a area of mathematis, that, while it has been widely studied,is based on heuristis. Many of the methods are extremely omplex, and the120

proofs of their onvergene, if they even exist, even more so. The methodspresented here are only the proverbial tip of the ieberg, and meant only toserve as an example: there are many more, most of them guaranteed to workbetter in some situation than those presented here.5.2.1 Golden setion searhGolden setion searh is a method for �nding the minima of a unimodalsingle variable funtion f . It is based on the idea of braketing by suessivelynarrowing the interval on whih the extremum is known exist. This is possibledue the unimodality requirement: it means that there exists an a < m < b,and that for all a < x ≤ m f is monotonially dereasing, and that for all
m ≤ x < b f is inreasing. The algorithm gets its name from maintainingtriples of points, whose distanes form a golden ratio.The algorithm works as follows: you have points x1, x2, x3 so that x1 < x2 <
x3 and f(x2) < min{f(x1), f(x3)}. This means, that the minimum mustlie on the interval (x1, x3). Then selet the new interval by onsidering twoases:1. If x2 − x1 > x3 − x2 selet x0 ∈ (x1, x2) ful�lling the golden ratiorequirement.If f(x1) < f(x0), the new interval is de�ned by (x0, x3) with x2 beingthe best estimate for minimum.If f(x0) < f(x2) the new interval is (x1, x2) and x0 is the new bestestimate for the minimum.2. If x2 − x1 < x3 − x2 we selet x0 ∈ (x2, x3) so, that the distanes forma golden ratio.If f(x1) < f(x0), the new interval is de�ned by (x0, x3) with x2 beingthe best estimate for minimum.If f(x0) < f(x2) the new interval is (x1, x2) and x0 is the new bestestimate for the minimum.Keep iterating the steps 1 and 2 until the length of the interval (x1, x3) isvery small.The easiest way to implement the golden setion searh with omputers is touse reursion. As has been stated previously, as a rule reursion should be121

avoided, but sine depth of the reursion is unlikely to be very deep, heneits use in this example:funtion m = golden(f,x1,x2,x3)% The golden setion searh finds% the minimum of unimodal funtion% f,% parameter f should be an inline% funtion or a funtion handle ,% x1 and x3 should define the% interval known to ontain a% minimum and x2 should be the% initial guess for the minimum.tol = 1e-8;phi = 2- ((1+sqrt(5))/2);% 2 - the golden ratiox4 = x2 + phi*(x3-x2);% a value between x2 and x3,% the new guess for the funtion% minimum.% This will end the algorithm , when the interval% is small enough. Please note that there is no% hek on the reursion depth , but MATLAB defaults% to maximum of 500 reursions.if(abs(x3-x1)<tol*(abs(x2)+abs(x4)))m = (x3+x1)/2;returnend% Selet the new interval for the% searh , and all reursively.if(f(x4)<f(x2))m = golden3(f,x2,x4,x3);returnelsem = golden3(f,x4,x2,x1);return 122

end5.2.2 Brent's methodBrent's method presented previously as a root �nding tool an be modi�ed foruse in optimization tasks. The method an be roughly summarized like this:on eah iteration a quadrati polynomial is �tted on three existing points,gained through either previous iterations, or initial guess. The minimum ofthis parabola is then taken as a guess for the funtions minimum. If it liesbetween the interval that we know holds the minimum, then it is aepted asan interpolating point, and used to generate a new, smaller interval that holdsthe minimum. If the point is unaeptable, then a regular golden setion stepis taken.The idea is very muh like in the root �nding version: we attempt to speed thealgorithm by interpolation. In this ase �tting a parabola to three existingpoints, and taking the minimum of the parabola as the best guess for thefuntion minimum. Then a test is made: if the point lies within the boundsof the urrent interval, it is aepted and used to generate a new, shorterinterval. If it is not aepted, a golden setion searh step is taken.funtion [xmin fxmin℄ = brentmin (F,ax,bx,x)itmax = 100;% The 1-1/(golden ratio) for% golden setion searhgolden = (1/ sqrt(5))/2;gold = 1-1/gold;xmin =0;fxmin= 0;zeps = eps*1e-6;iter =0 ;tiny = 1e-8;f = fnhk(F);% Distane moved on the last stepd = 0;% Distane moved on the step before% laste = 0; 123

% Set up the braket limits orretlyif(ax<x)a = ax;b = x;elsea = x;b = ax;end% Set up the initial guess for the% funtion minimum loation and% valuex = bx;w = bx; v =bx;xm = 0.5*(a+b);% Set up the numerial toleranetol1 = abs(x)*tiny+zeps;% The searh loop heks for maximum iterations% and the lenght of searh intervalwhile(iter <itmax && (abs(x-xm)<= abs(2*tol1 -0.5*(b-a))))xm = 0.5*(a+b);tol1 = abs(x)*tiny+zeps;% Chek if step before last was big enough to try a% paraboli step. Note that this will fail on first% iteration , whih must be a golden setion step.if(abs(e)>tol1)% Construt a trial paraboli fit through x, v and wr = (x-w)*(f(x)-f(v));q = (x-v)*(f(x)-f(w));p = (x-v)*q-(x-w)*r;q = 2*(q-r);if(q<0)p = -p;endq = abs(q);etemp = e;e = d;% Let 's hek if the parabola minimum is indeed124

% on the intervalif(abs(p)>=abs (0.5*q*etemp)||p<=q*(a-x)||p>=q*(b-x))% The parabola minimum is not on our interval% so we take a golden setion step insteadif(x>=xm)e = a-x;elsee = b-x;endd = gold*e;else% The minimum IS on our urrent interval% so we take a paraboli stepd = p/q;u = x+d;if (u-a < 2*tol1 || b-u < 2*tol1)d = sign(xm-x)*tol1;endendelse% The step before was not big enough , so% we take a golden setion stepif(x>=xm)e = a-x;elsee = b-x;end d = gold*e;end% Now we make sure the step is big enough.if (abs(d)>= tol1)u = x+d;elseu = x+sign(d)*tol1;end% At this point u holds our best estimate for% funtion minimum loation . Now we evaluate% funtion at u and judge , if it really is.% Remember , x is the old best estimateif(f(u)<=f(x)) 125

% The urrent estimate was better than old% so we stik with itif(u>=x)a = x;elseb = x;endv = w;w = x;x= u;else% The newer estimate wasn 't better , so% we an limit the searh to the interval% it did not overif(u<x)a = u;elseb = u;endif(f(u)<=f(w)||w==x)v=w;w=u;elseif(f(u)<=f(v)||v==x||v==w)v=u;endendxmin = x;fxmin = f(x);% If one wishes to observe the% onvergene or non -onvergene% unomment%disp([xmin fxmin℄)end5.2.3 Searh methods for multivariable funtionsPowell's methodPowell's method is one method of �nding minimums of multivariable realvalued funtions. It is based on the fat that if the funtion f(x0 . . . xn)has a minimum at (x00
. . . xn0

), then the funtion f reahes its minimum inthe diretion of the vetor ei at f(0, . . . xi0 . . . xn). Simplistially, the idea of126

Powell method is to perform n single dimension minimizations along eah ofthe axes.The algorithm proeeds as follows:
• Set ui = ei, i = 1, . . . , N

• Save the initial point P0.
• While = 1, . . . , N move from Pi−1 to (Pi−1, ui) minimum Pi

• While = 1, . . . , N − 1, set ui := ui−1.
• Set uN = PN − P0.
• Move from PN to (PN , uN) minimum, and denote the point with P0.
• Repeat as long as funtion values get smaller.Powell's method is useful when trying to �nd loal optima of funtions, thatare ontinuous but whose derivatives are either di�ult or impossible toobtain. The e�ieny of the algorithm itself is very muh dependent on themethod used to �nd the minimums along the searh vetors. One an hoosebetween any searh algorithms made for funtions of one variable.Steepest desent methodIf the studied funtion is di�erentiable, but the zeros of derivatives are eitherdi�ult to �nd or there are none, one option is to use geometri intuition: theloal minimum is probably in the diretion of the funtion's deepest desent.The idea deepest desent method is to determine the diretion of deepestdesent at initial point, determine the minimum on this point, move to thatpoint, and iterate, until a loal minimum is found.The onvergene of this method is very muh dependent on the good numer-ial properties of the funtion, as well as the properties of the derivative andthe method of �nding the minimum on the diretion of the deepest desent.There are examples when this algorithm takes extremely long time to �ndthe funtion minimum of a di�erentiable funtion. The Rosenbrok funtionis one suh example.

127

Quasi-Newton methodsQuasi-Newton methods are a set of algorithms, that use the Newton's methodto �nd a stationary point of the funtion where the gradient of the funtionis 0. These algorithms assume, that the funtion an be approximated with aquadrati polynomial in some area around the minimimum. It then uses thegradient and Hessian matrix (�rst and seond derivatives in single dimension)to �nd the stationary point.The idea is built on the seond order expansion of Taylor series of funtion
f at x0 + δ.

f(x0 + δ) ≈ f(x0) + f ′(x)δ +
1

2
f ′′(x)δ2.The funtion f attains its minimum when δ satis�es the equation

f ′(x) + f ′′(x)δ = 0.The left hand side of the seond order Taylor expansion gives
f ′(x − δ) = f ′(x) + δf ′′(x).If the funtion f is twie di�erentiable and well enough behaved, and providedthe initial guess x0 is reasonably lose to the funtion's ritial point, usuallydenoted by x∗, the sequene yielded by previous equations:

xn+1 = xn − f ′(xn)

f ′′(xn)will onverge towards the ritial point of f .One should bear in mind that gradient of 0 at some point x0 does not guar-antee that there exists a loal optimum at x0. For di�erentiable funtions itis a neessary but not su�ient ondition.Like its root �nding relative, quasi-Newton methods an be generalized intohandling funtions of more than one variable. It is ahieved by substitutingthe �rst order derivative with its generalization, the gradient vetor, and theinverse of the seond derivative by the inverse of the Hessian matrix. Withthese substitutions the sequene gets the form
xn+1 = xn − (Hf(xn))−1∇f(xn),where Hf(xn) is the Hessian matrix of the funtion f evaluated at xn. Thequasi-Newton methods avoid omputing the Hessian matrix, and use di�erentapproximations for it instead. 128

Here is a very simple implementation of Newton's minimum searh in MAT-LAB.funtion [fmin ,xmin ℄ = newtmin(f,n,x0)% Minimization using Newtons method.% Funtion will attempt to find the% root of gradient (f).% parameter f should be a funtion handle% of the studied funtion .% f should take only one argument : a vetor% with n omponents , and it should return a% real value.% n is the size of the argument vetor% x0 is the initial guess for the minimum.x = x0;for i = 1:20x = x-inv(Hessian(f,n,x))* numgrad(f,x,n);endfmin = f(x);xmin = x;funtion H =Hessian (f,n,x0)% Funtion Hessian attempts to% ompute the Hessian matrix of% the argument funtion at point% x0.% f should be a funtion handle of a% funtion whih takes vetor arguments ,% n should be the size of the argument% vetor ,% x0 is the point at whih the Hessian% is determined.% Note this funtion uses of the% the Symboli toolkit.% Define a symboli vetor to use as% a parameterfor i = 97:97+n-1A(i-96) = sym(har(i)); 129

endH = sym(zeros(n,n));% First take a Jaobian matrixJ = jaobian (f(A));% Then derivate eah olumn againfor i=1:nH(:,i)= (diff(J,A(i)));end% finally do the substitutionH =subs(H,A,x0);funtion D=numgrad(f,x0,n)D = zeros(n,1);h = 1e-6;e = zeros(n,1);for i = 1:ne(i) = 1;D(i) = (f(x0+e*h)-f(x0-e*h))/2*h;e(i) =0;end5.2.4 Searhing minimum in MATLABMATLAB provides some very sophistiated tools for �nding the funtionsminima: �rst and foremost is the funtion fminsearh, that attempts to �ndthe funtions minimum using the Nelder-Mead algorithm. The number ofvariables is not onstrained, but there must be a learly de�nable minimum.A fairly aurate initial guess is required. The funtion fminbnd attemptsto �nd a funtion minimum on the interval [x0x1]. At the most simple formfminsearh takes as a parameter only the funtion handle and the initialguess. However, as was disussed in linear algebra setion, it is possible touse the fminsearh to �t parameters to a model so that it will �t the givendata.Here is one idea how to implement the parameter �t using the fminsearh.funtion lam = paramfit (fm, xdata , ydata , initguess)% funtion paramfit attempts to find% the parameters that best fit the% model fm to data (x,y). 130

% fm should be a funtion handle , inline% funtion or a string ontaining the% funtion . It must be in form% f(x,parameters), and parameters must% be ontained in one single vetor.% xdata and ydata must hold two vetors% of equal length.% The minimum is searhed around initguess% whih must be of proper length , and lose% enough to% make sure fm is funtionfmodel = fnhk(fm);% set up the objet funtion ...% fobj = S(lambda) = Sum(f(x_i ,lambda)-y_i)^2% We wish to find the lambda that provides the% smallest value of fobj.fobj = inline('norm((fmodel(xdata ,lambda)-ydata))' ,...'lambda','fmodel ','xdata','ydata');lam = fminsearh(fobj ,initguess ,[℄,fmodel ,xdata ,ydata);

131

Chapter 6Di�erential equationsDi�erential equation is an equation for some unknown funtion y, that relatesthe values of the funtion with its derivatives. If funtion y has one variable,the equation will be alled ordinary di�erential equation. If y has morethan one variables, it will be alled partial di�erential equation. Order ofdi�erential equation is deided by the highest order of derivatives that ispresent in the equation.In order to obtain unique solutions for any di�erential equation, one needssome a priori knowledge of the problem. These are usually given in the formof initial values: y(x0) = y0. If di�erential equation has set initial value, itis alled initial value problem.Sometimes solution for a di�erential equation is only wanted on some giveninterval. In these situations initial onditions are usually given at the end-points of the interval. Di�erential equation with these kinds of onstraints isalled boundary value problem.Ordinary di�erential equation of �rst order with initial values an be writtenin as
y′(x) = f(x, y(x)); y(x0) = y0, (6.1)where f : R2 → R is dependent on both x and y(x). The goal is to �nda funtion y(x), that realizes both the di�erential equation and the initialvalue problem. Solutions are sought by integrating both sides of the equationwith respet to x. This gives us

y(x) = y0 +

∫ x

x0

f(s, y(s))ds.132

However, �nding an exat integral for arbitrary is usually impossible. Forthis reason, numerial solutions play a large role in appliations onerningdi�erential equations.Other things to onsider are the existene and uniqueness of the solution.The Piard-Lindelöf theorem states, that a initial value problem has a uniquesolution, if the right-hand side of the 6.1 is Lipshitz-ontinuous ontration.Example 6.2. Solve an initial value problem
y′(x) = x2 − 2 − y(x); y(0) = 2.Integrating both sides diretly will not work, but by multiplying both sideswith an integrating fator ex, one gets

exy′(x) + exy(x) = ex(x2 − 2).Using the produt rule of di�erentiation reversely simpli�es the equation to
d

dx
(y(x)ex) = ex(x2 − 2).Now integrating both sides gives

y(x)ex =

∫

ex(x2 − 2) = ex(x2 − 2x) + C,where C ∈ R is the integration onstant. By multiplying this equation with
e−x one gets

y(x) = x2 − 2x + e−xCWe apply y to initial value ondition y(0) = 2 and get
y(0) = C = 2and �nally one gets

y(x) = x2 − 2x + 2e−x.This y �lls both the di�erential equation and the initial value ondition.As one an see, solving even a fairly simple di�erential equation an be ane�ort onsuming projet.Solutions for di�erential equations in MATLAB an be obtained symboliallyusing the MuPad kernel, or numerially.Symbolially the solution happens like this133

>> dsolve('Dy = x^2-2-y','y(0)=2','x')ans =-2*x+x^2+2*exp(-x)It is also useful to study systems of di�erential equations, where both y and fare vetors: y = (y1 . . . yn), f = (f1 . . . fn). Systems of di�erential equationsare important when one onsiders di�erential equations of higher order: onean redue solving the di�erential equation
y(n) + g1(x)y(n−1) + . . . gn−1y

′ = gn(x)into solving a system of equations
y(n) = f(x, y, y′, . . . y(n−1)).Before moving on to numerial solution to di�erential equations, onsiderthe problem for a moment; to be well posed the problem must have solution,and the solution must be unique. There are di�erential equations, that donot have solutions at all; if a solution exists, there is little guarantee, thatit is unique. For the purposes of this ourse the existene and uniquenesstheorem of Piard and Lindelöf is su�ient.Theorem 6.3. Let funtion f be ontinuous in strip S = {(x, y) : a ≤ t ≤

b, y ∈ R} with a, b ∈ R. Let there exist a onstant L so that
|f(x, y1) − f(x, y2)| < L|y1 − y2|,when x ∈ [a, b] and y1, y2 ∈ R. If these onditions hold, and the initial values

(x0, y0) ∈ S (with y0 = y(x0)), the initial value problem
y′(x) = f(x, y(x)); y(x0) = y0,has a solution, and it is unique.6.1 Numerial solutions to ODE'sThe methods available for solving ordinary di�erential equations are numer-ous, but most are based on disretization the initial value problem 6.1, andreating an estimate for the values of y at x1 < x2 < . . . < xn, where

xn+1 = xn + hn. The seletion of disretization largely ditates the auray134

of solution: later on methods will be introdued that have built-in disretiza-tion.Generally the estimate values yk ≈ y(xk) depend on the values yk−1 . . . yk−j.If j = 1, the method in question is single step method, and if not, it ismultistep method.Single step methods an always be written either in form
yn+1 = yn + φ(xn, yn, hn),when the method is expliit, or in form

yn+1 = yn + φ(xn, yn, yn+1, hn),when the method is impliit.6.1.1 Euler's methodProbably the most famous expliit single step method for obtaining numer-ial solutions for initial value problems is the Euler's method, named afterLeonhard Euler. The goal of the method is to estimate values of the funtionat disrete points x1 . . . xn, xi−1 < xi, xi = xi−1 + h. The inrement h isalled step size.To derive the Euler's method, onsider initial value problem
y′(x) = f(x, y(x)), y(x0) = y0.Taylor series of funtion gives estimates for funtion's values in the viinityof its origin based on its derivative. Computing the �rst two terms of theTaylor expansion of funtion y(x) at x0 yields

T (y, x0) = y(x0) + y′(x0)(x − x0).Using the ODE gives form to the derivative:
T (y, x0) = y0 + f(x, y(x))(x − x0).Euler's method makes the assumption that this is a good estimate for thebehavior of the y, and uses this to ompute the estimate for the y(x1) =

y(x0 + h):
y1 = y0 + f(x, y(x0))(x1 − x0) = y0 + hf(x0, y(x0)).135

This gives is the general iteration step for the Euler's method:
yn+1 = yn + h(f(xn), yn).Here is an example of Euler's method in MATLAB.% An example using Euler 's method to% solve a differential equation% numerially% The example equation :% dy/dx = y, y(0) = 1% h is seleted to be 0.3,% and the solution interval% is [0, 4℄h = 0.3;X = 0:h:4;Y = zeros(size(X));Y(1) = 1; % the initial valuefor i = 2: length(X)Y(i) = Y(i-1) + h*Y(i-1);end% Then ompare it to the real solutionYR = exp(X);plot(X,Y,'b',X,YR,'r')

136

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

30

35

40

45

50

Euler method
True solution

Critiism of the methodAs the previous example shows, Euler's method is suseptible to error, whenthe study interval is big: this is due to the fat, that seond degree Taylorpolynomial is not very aurate method of estimating values of the funtion,and whatever error it produes, is aumulated into the next iteration. Hene,the estimates produed by the Euler's estimate invariably deteriorate as onemoves further away from the initial value point. To ombat the deterioration,the step size must be usually set quite small, thus requiring many iterationsIt is mostly beause of this phenomena that Euler's method serves mostlyas a historial uriosity, rather than a viable method for atually solving adi�erential equation numerially.Bakward Euler methodInstead of �nite di�erene approximation, bakward Euler estimates thederivative with
y′(t) ≈ y(t) − y(t − h)

h
.137

This leads to following iteration step:
yn+1 = yn + hf(xn+1yn+1).Bakward Euler method is an example of impliit method: in order to om-plete the iteration step n, one needs to solve the given equation for yn. Thereare several ways to do this numerially: you may �nd suitable methods inprevious hapter. While omputational requirements are onsiderably morethan that of regular Euler's method, the numerial stability is notably better.Exponential Euler methodAnother example of expliit single step methods is the exponential Eulermethod. If it so happens, that the ODE of the initial value problem takesthe form

y′(x) = K − Ly(x),then a approximate numerial solution an be obtained through iteration
yn+1 = yne

−Lh +
K

L
(1 − e−Lh).In some spei� situations this method an be very aurate, but generallythe error term is omparable to that of the Euler's method.6.1.2 Runge-Kutta methodsRunge-Kutta method is not so muh a one single method, rather than a ol-letion of both expliit and impliit multistep methods. They were developedat the end of 19th entury by German mathematiians C. Runge and M.W.Kutta.The idea behind the Runge-Kutta methods is to inrease the number ofevaluation points in the interval [xn, xn+1]. This is ahieved by using a teststep at the middle of the interval to anel out error terms of lower order.The method introdued here is the �lassial Runge-Kutta method�, or thefourth order method, usually known simply as RK4.Given an initial value problem

y′(x) = f(x, y(x)), y(x0) = y0138

de�ne terms
k1 = f(xn, yn),
k2 = f(xn + h

2
, yn + 1

2
hk1),

k3 = f(xn + h
2
, yn + 1

2
hk2),

k4 = f(xn + h, yn + hk3).Terms ki de�ne the slope of the estimated solution during the interval: k1estimates the slope at the beginning of the interval [xn, xn + h]. The term
k2 estimates the slope at midpoint of the interval [xn, xn + h] using k1 todetermine a value for the y at xn + h

2
using the Euler's method; k3 does thesame, but using k2 as the slope. Term k4 is the estimate for the slope at theend of the interval.The �nal estimate for the slope on the interval [xn, xn + h] is obtained as aweighted sum of the estimates for the slope: slope k will be:

k =
1

6
(k1 + 2k2 + k3 + k4).The iteration step will be same as in Euler's method, only instead of usingjust f to estimate the funtion progression, use the k.

yn+1 = yn + hk = yn +
h

6
(k1 + 2k2 + k3 + k4).RK4 is a fourth order method, meaning that the value yn is dependent onfour previous values of y. It also means, that the error term of this methodwill be of order O(h4) .Note the similarity between the numerial methods: if f is independent inrespet to y(x), then the RK4 is the Simpson's numerial integration method.Here is an example implementation of Runge-Kutta method for a samplefuntion. In atuality, though, there is little reason to implement Runge-Kutta methods yourself. There are many funtions to ahieve this in MAT-LAB funtion library.% Example of using Runge -Kutta method% of the fourth order to solve a% differential equation% dy/dx = -2y+x, y0 = 2.h = 0.5;X = 0:h:8; 139

Y = zeros(size(X));% for simpliity 's sake , define% f as inline funtionf = inline(' -2*y+x','y','x');Y(1) = 2;for i = 2: length(X)k1 = f(Y(i-1),X(i-1));k2 = f(Y(i-1)+0.5* h*k1,X(i-1)+0.5* h);k3 = f(Y(i-1)+0.5* h*k2,X(i-1)+0.5* h);k4 = f(Y(i-1)+h*k3,X(i-1)+h);Y(i) = Y(i-1)+h/6*(k1+2*k2+2*k3+k4);end% Chek the solution versus symboli% result.syms x y;y = dsolve('Dy = -2*y+x, y(0)=2','x');x = 0:0.02:8;y = subs(y,x);plot(X,Y,'r.',x,y,'b');

140

0 1 2 3 4 5 6 7 8
0.5

1

1.5

2

2.5

3

3.5

4

RK4 at evaluation points
Actual solution

As one an see, the numerial estimates fall niely alongside the atual solu-tion. This partiular funtion, however, is of well behaved variety; omput-ing the solution with Euler method will yield nearly idential solution. Thismeans, that the sample equation, y′ = −2y + x is not sti�. A sti� ODEis an equation, that will work partiularly poorly under numerial solutionmethods.6.2 Solving ODE's in MATLABMATLAB has a range of funtions dediated to solving di�erential equationsnumerially. There are methods of high and low orders, impliit and expliitand for sti� and non-sti� equations. The fourth order Runge-Kutta methodthat was introdued earlier, an be found in the funtion ode45. All of theode methods are invoked similarly: for example ode45(f,[0,8℄,5.5). Firstargument is the right-hand side of the ODE, seond argument de�nes thebeginning and endpoints of the interval where the solutions are sought, and141

the �nal obligatory argument is the initial value at the beginning of theinterval.Example 6.4. Solve a seond order initial value problem y′′ +3.5y′+4y = 0with initial values y(0) = 2, y′(0) = 0 and give a numeri approximationfor solution in at x = 2. Manual solutions would lead to omputing theharateristi equations for the y, but for MATLAB solution, the ODE iswritten in form y′′ = −3.5y′ − 4y. By denoting y1 = y, y2 = y′ solving theseond order di�erential equation is equivalent to solving the system
{

y′
1 = y2

y′
2 = −3.5y2 − 4y1

.To get MATLAB solution, �rst one needs to reate the di�erential equation,or rather, the right hand side of one:% First set up the right hand side of the differential% equation>> dy = inline('[y(2); -3.5*y(2)-4*y(1)℄','x','y')dy = Inline funtion :dy(x,y) = [y(2);-3.5*y(2)-4*y(1)℄% Note the inlusion of x in the equation , even though% it is not used in it: this is the requirement of the% ode funtionsAfter that, solve it and plot the solution. In this ase, use ode23 funtion.[t y℄ = ode23(�deqex , [0 2℄, [2 0℄)% In this example , t is the variable% Remember the initial values:% y'(0) = 0, y(0)=2.% After this there is a n-vetor t, and% nx2 vetor y. y(:,2) holds the solution% for the y', the y(:,1) for the y.plot(t,y(: ,1)); grid% Numeri estimate for the y(2) is the% last element of the y(:,1) = 0.0801.Plotted solution on the interval [0, 2] looks like this. Note that solving thisequation symbolially is not possible in MATLAB.142

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

y

6.3 Boundary value problemsInitial value problems are not the only type of problems that fae di�eren-tial equations: in real life appliations a more ommon situation is, when asolution is sought on some �nite interval, and initial values are given at theendpoints of the interval. Di�erential equations with these kinds of restraintsare alled boundary value problems, and the restraining onditions boundaryonditions.Solving boundary value problems is signi�antly more di�ult than initialvalue problems, even in numerial sense.Numerial solutions for boundary value problems are obtained through �nitedi�erene methods. Let's observe a boundary value problem of form
y′′(x) = p(x)y′(x) + q(x)y(x) + r(x) a < x < b; y(a) = α, y(b) = β.Denote h = (b−a)/N with some N ∈ N and xj = a+ jh with j = 0, 1, . . .N .Approximate the derivatives using Taylor polynomials:

{

y(x + h) = y(x) + hy′(x) + h2

2
y′′(x) + O(h3)

y(x − h) = y(x) − hy′(x) + h2

2
y′′(x) + O(h3)

.143

Summing up y(x − h) and y(x + h) yields
y(x− h) + y(x + h) = 2y(x) + h2y′′(x) + O(h3),from whih you an solve y′′:
y′′(x) =

y(x + h) + y(x − h) − 2y(x)

h2
+ O(h).Likewise, one an solve y′(x), and get the usual �nite di�erene:

y′(x) =
y(x + h) − y(x − h)

2h
+ O(h2).Using these approximations one an write:

y′(x) =
y(xj+1)−y(xj−1)

2h
+ O(h2)

y′′(x) =
y(xj+1)−2y(xj)+y(xj−1)

h2 + O(h).Having done denote yj = y(xj), and substitute into the problem:
yj+1 + 2yj + yj+1 = p(xj)

h

2
(yj+1 − yj−1)h

2(q(xj)yj + r(xj)). (6.5)Solving this equation for j = 1, . . . N −1, and using the boundary onditions
y0 = α, yn = β, leads to tridiagonal system of linear equations.

a1 c1 0
b2 a2 c2.

bn−2 an−2 cn−2

bn−1 an−1

y1

y2...
yn−2

yn−1

=

w1

w2...
wn−2

wn−1

.The oe�ients aj , bj, cj , as well as the right hand side are obtained from theequation 6.5.6.4 Partial di�erential equationsIf a di�erential equation onerns a funtion of more than one variable, and itspartial derivatives, it is alled partial di�erential equation. Partial di�erential144

equations are often used to formulate problems onerning many variables,suh as propagation of heat or sound.Solutions to partial di�erential equations in lassial sense are di�ult toobtain, and thus the numerial methods play a huge role in seeking solutionsto these kinds of problems. The di�ulty arises from the fat, that unlikein the ase of one variable problems, there is no universal theorem to statewhen there exists a solution, and whether it is unique.Partial di�erential equations are usually lassi�ed into prototypes. Some ofthe most important prototypes are the wave equation
utt = c2uxx,the heat equation
ut = αuxx,and the Laplae equation, and it's inhomogeneous variant, the Poisson equa-tion

∂2u

∂x2
+

∂2u

∂y2
= 0

∂2u

∂x2
+

∂2u

∂y2
= f(x, y); u|∂D = g(x, y).Classi study of partial di�erential equations has onentrated on study ofharateristis of these prototypes, lassi�ation of equations aording tothese prototypes. In this ourse the theory behind these equations is notdisussed, just the numerial solutions.6.4.1 Wave equationWave equations are the arhetype of a hyperboli partial di�erential equa-tions. It onerns a funtion u(x, t), where variable t parametrizes the time,and the vetor x the loation on the plane. Funtion u is a solution for awave equation, if it satis�es an equation

∂2u

∂t2
= c2∂2u

∂x2
,and whatever boundary onditions have been spei�ed. Usual boundaryonditions inlude at least

{

u(x, 0) = f(x),

ut(x, 0) = g(x)
.145

These onditions mean, that state of the studied system is known at moment
t = 0 with respet to x, and the speed of hange in system is known at themoment t = 0.Wave equations, as the name suggests, desripts the behavior of wave-likemotion, be it light, sound (three-dimensional equations), some liquid (two-dimensional) or a vibrating string (one-dimensional). The onstant oe�-ient c in the equation is the speed of the wave, and solution u will be themagnitude of the wave in loation spei�ed by x at the time t.Simpliity of solutions depend largely on the dimension of x, and on whether
x is onstrained or not. If the equation is posed in single dimension withunrestrited x, then the solution is yielded by the D'Alembert's formula:

u(x, t) =
1

2
(f(x − ct) + f(x + ct)) +

1

2c

∫ x+ct

x−ct

g(s)ds.There are similar formulas available in higher dimensions. If the solutionis limited to some �nite area, no formula exists: rather, the solutions areobtained through separation of variables whih will lead to Fourier series. Ifrestrited to some �nite interval of real line, and for some �nite duration, thewave equation will take form

∂2u
∂t2

= c2 ∂2u
∂x2 , 0 < x < L, 0 < t < T

u(x, 0) = f(x),

ut(x, 0) = g(x),

u(L, t) = u(0, t) = 0

.To numerially solve the equation, denote by R = {(x, t) : 0 < x < L, 0 <
t < T}. R is a retangle on plane. The idea is now to subjet R to samekind of �nite di�erene study that was introdued with ordinary di�erentialequations. This is ahieved by dividing the R into (n− 1)(m− 1) retanglesof equal size. Denote the division interval of x-axis with ∆x = h and of t-axiswith ∆t = k. Also, denote with xi = ih and tj = jt; the real funtion valueat (xi, tj) = u(xi, tj) and the numerial estimate uij.To move forward use the familiar formula to approximate the seond partialderivatives:

uxx(x, t) ≈ u(x + h, t) − 2u(x, t) + u(x − h, t)

h2
,

utt(x, t) ≈ u(x, t + k) − 2u(x, t) + u(x, t − k)

k2
.146

Then replae the exat funtion values with estimates uij, and the originalequation gives:
ui,j+1 − 2uij + ui,j−1

k2
= c2ui+1,j − 2uij + ui−1,j

h2
.Then denote r = ck/h, and substitute:

ui,j+1 − 2uij + ui,j−1 = r2(ui+1,j − 2uij + ui−1,j).This equation gives an expliit formula for ui,j+1:
ui,j+1 = (2 − r2)uij + r2(ui+1,j + ui−1,j) − ui,j−1.To ompute values on row j = 2, one needs both the rows j = 1 and j = 0.These are obtained from the boundary onditions:

u(xi, k) ≈ u(xi, 0) + ut(xi, 0)k = f(xi) + kg(xi) = ui,1and with these one an ompute the ui,2. Numerial solution is now obtainedby iteratively omputing the rows of the lattie.Example 6.6. As an example, solve a wave equation onerning a vibratingstring

utt = 4uxx; 0 < x < 3; 0 < t < 2,

u(0, t) = u(3, t) = 0; 0 < t < 2,

u(x, 0) = f(x) = sin(πx) + sin(2πx); 0 ≤ x ≤ 3,

ut(x, 0) = g(x) = 0.Selet h = 0.1, k = 0.05. The onstant r, required for the formula, is r =
ck/h = 2 · 0.05/0.1 = 1. Thus the linear equation for uij beomes ui,j+1 =
ui+1,j + ui−1,j − ui,j−1.% attempt to numerially estimate solutions to% wave equation u_(tt) = 4u_(xx), 0<x<3, 0<t<2% with boundary onditions% u(x,0) = sin(x*pi)+sin(2*x*pi)% u(0,t) = u(3,t) = 0;lear; l;lose all; 147

% funtion defining boundary valuesf = inline('sin(x*pi)+sin(2*pi*x)','x');h = 0.1;k=0.05;t1 = 2;x1 = 3;M = zeros(t1/k+1,x1/h+1);x = 0:h:x1;[m n ℄ = size(M);% these ome from initial onditionsM(1,:) = f(x);M(2,2:n-1) = 0.5*(f(x(1:n-2))+f(x(3:n)));% fill the mesh , retain boundary values.for l = 3:mM(l,2:n-1) = M(l-1,3:n)+M(l-1,1:n-2)-M(l-2,2:n-1);end% drawmesh(fliplr(M));6.4.2 Heat equationHeat equation is the primary prototype for the paraboli di�erential equation.It desribes the heat distribution or temperature variation in a determinedobjet over time. One dimensional heat equation has the form
ut − c2uxx.Heat equation an be generalized into more dimensions by replaing theseond x-derivatives by spatial Laplaian operator:
ut = c2∆xu.To obtain any but the most general solutions, one needs to set some boundaryonditions: initial values at boundaries must be known, as must be the initialheat distribution in the objet. Thus we gain the equation:

ut − c2uxx; 0 < x < L, 0 < t < T

u(0, t) = u(L, t) = 0;

u(x, 0) = f(x)

.Note that this equation assumes, that the temperature at the boundariesof the studied objet is onstant at all times. For more realisti model one148

should replae the onstant expression with time dependent funtions g(t)and h(t). This does, however, make the symboli solution muh more om-pliated, and is therefore disregarded in this presentation. Solutions for thisequations are usually sought through separation of variables, giving aessto solutions with the form u(x, t) = X(x)T (t). This will lead to solution:
u(x, t) =

∞
∑

n=1

cn sin

(

nπx

L

)

e−c2(nπ/L)2t,where
cn =

2

L

∫ L

0

sin

(

nπx

L

)

f(x)dx,that is, cn's are oe�ients of the Fourier sine series.To numerially solve a heat equation, use the familiar �nite di�erene method:de�ne a retangle R in whih you wish to obtain the solution, then reatethe disretization by dividing R into (m − 1)(n − 1) retangles of equal size
hk. Let h be ∆x, that is, the height of one retangle on x-axis, and k thelength of the retangle on t-axis. Denote points xi = ih and tj = jk, and
ui,j the numerial approximation for u(xi, tj). Then one an approximate thederivatives.

ut(x, ti) ≈
u(ti+1, x) − u(ti, x)

k
.Time derivative is the forward looking version instead of the usual three pointrule.

uxx(xi, t) ≈
u(xi+1, t) − 2u(xi, t) + u(xi−1, t)

h2
.By substituting these into the heat equation, and replaing the true funtionvalues with estimates, you get

ui,j+1 − ui,j

k
= c2ui+1,j − 2ui,j + ui−1,j

h2
.By solving this equation in respet to ui,j+1 you get

ui,j+1 = ui,j + c2k
ui+1,j − 2ui,j + ui−1,j

h2By denoting r = c2k/h2 you get an equation
ui,j+1 = rui+1,j + (1 − 2r)ui,j + rui−1,j.149

This equation is alled the forward time, entered spae approximation to theheat equation, beause of the forward looking approximation to derivative.It also means, that this approximation only yields good solutions, if solvedforward in time.

150

