Mat-1.3651 Numerical Linear Algebra (Numeerinen matriisilaskenta)

Final examination 29.08.2007

Please fill in clearly on every sheet the data on you and the examination. On Examination code mark course code, title and text mid-term or final examination. Study programmes are ARK, AUt, BIO, ESt, ENE, GMA, INF, KEM, KJO, KTA, KON, MAK, MAR, PUU, RAK, TFY, TIK, TLT, TUO, YHD.

Calculators are not allowed nor needed. Time for the exam is 3 hours. You can answer in Finnish if you wish.

1. Suppose the $m \times n$ matrix A has the form

$$
A=\binom{A_{1}}{A_{2}}
$$

where A_{1} is a square $n \times n$ invertible matrix and A_{2} is $(m-n) \times n$. Let A^{+}be its pseudoinverse. Prove that $\left\|A^{+}\right\|_{2} \leq\left\|A_{1}^{-1}\right\|_{2}$.
2. Let $A \in \mathbb{C}^{m \times m}$. Show that A is unitarily similar to a diagonal matrix if and only if

$$
\sum_{j=1}^{m} \sigma_{j}^{2}=\sum_{j=1}^{m}\left|\lambda_{j}\right|^{2}
$$

where λ_{j} are the eigenvalues and σ_{j} the singular values of A.
3. Let $A \in \mathbb{C}^{m \times m}$. Show that
(a) there exist (column) vectors $u_{j}, v_{j} \in \mathbb{C}^{m}, j=1, \ldots, m$ such that

$$
I-z A=\left(I-z u_{m} v_{m}^{*}\right) \cdots\left(I-z u_{2} v_{1}^{*}\right)\left(I-z u_{1} v_{1}^{*}\right) \quad \forall z \in \mathbb{C} .
$$

(b) The inner products $u_{j}^{*} v_{j}$ are the eigenvalues of A.

Hint: Schur decomposition.
4. Suppose $A \in \mathbb{C}^{m \times m}$ is tridiagonal and Hermitian. Count the floating point operations of the $Q R$ iteration for A.

