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1. Suppose the m × n matrix A has the form

A =

(

A1

A2

)

,

where A1 is a square n × n invertible matrix and A2 is (m − n) × n. Let A+ be its
pseudoinverse. Prove that ‖A+‖2 ≤ ‖A−1

1 ‖2.

2. Let A ∈ C
m×m. Show that A is unitarily similar to a diagonal matrix if and only if

m
∑

j=1

σ2

j =
m

∑

j=1

|λj|
2,

where λj are the eigenvalues and σj the singular values of A.

3. Let A ∈ C
m×m. Show that

(a) there exist (column) vectors uj, vj ∈ C
m, j = 1, . . . ,m such that

I − zA = (I − zumv∗

m) · · · (I − zu2v
∗

1)(I − zu1v
∗

1) ∀z ∈ C.

(b) The inner products u∗

jvj are the eigenvalues of A.

Hint: Schur decomposition.

4. Suppose A ∈ C
m×m is tridiagonal and Hermitian. Count the floating point operations of

the QR iteration for A.


