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1. Let A ∈ C
m×m be hermitian (A = A∗) and S ∈ C

m×m be skew-hermitian (S∗ = −S).
Prove that

(a) all eigenvalues of A are real.

(b) if x and y are eigenvectors corresponding to different eigenvalues of A, then x ⊥ y.

(c) all eigenvalues of S are pure imaginary.

2. Let A ∈ C
m×m. Show that A is unitarily similar to a diagonal matrix if and only if

m∑

j=1

σ2

j =
m∑

j=1

|λj|
2,

where λj are the eigenvalues and σj the singular values of A.

3. Let A ∈ C
m×n be full rank, m ≥ n and b ∈ C

m. Describe (the main steps, no implemen-
tation details needed) the following three ways to solve the Least Squares problem: find
x ∈ C

n s.t. the residual ‖b − Ax‖2 = minimum.

(a) Solving by normal equations,

(b) Solving by QR,

(c) Solving by SVD.

4. Let A be a square matrix. Denote A = L + D + U and deduce the classical Gauss-Seidel
iteration xk+1 = Gxk + r for Ax = b. Show that if A is Hermitian and positive definite,
then this iteration converges for all initial values x0.

5. Suppose A ∈ C
m×m is tridiagonal and Hermitian. Count the floating point operations of

the QR iteration for A.


