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Exercise 8 (27.3.2008)

These are held in the computer classroom Y339b (close to Y313). Please hand in
the exercises marked with an asterisk (*) either to the assistant’s folder in front
of U313 or latest at the beginning of the exercise. In addition to that, hand in the
exercises marked with [Comp. hand-in] in the next exercise session (3rd April, that
is).

1.* Show that if A is “strictly column diagonally dominant”, that is,

|akk| >
∑

j 6=k

|ajk| ∀k,

then Gaussian elimination with partial pivoting does not produce any row
interchanges, i.e. all the permutation matrices Pi = I.

2. Confirm the results of Exercise 7, question 3 on the sparsity patterns of the
L,U factors of a banded matrix A. You will need the spy command. (help
subplot might be nice as well.) For (a) part, make your A diagonally
dominant to make sure the LU without pivoting exists.

3.* Suppose A ∈ R
m×m is a unit lower triangular apart from the last column

which is all ones, and below the diagonal each element is −1, i.e. A has the
form
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• Show that the growth factor ρ(A) = 2m−1.

• Describe how the Gaussian elimination (with partial pivoting)
simplifies for this type of A.

4. [Comp. hand-in] Let A = B − 2I where B ∈ R
10×10 with random entries

from the standard normal distribution (help randn). Write a program to
plot ‖etA‖2 against t for 0 ≤ t ≤ 20 on a log scale, comparing the result to
the straight line etα(A) where α(A) = maxj Re (λj) is the spectral abscissa

of A and λj’s are the eigenvalues of A. Run the program for 10 matrices A
and comment on the results. What property of a matrix leads to a ‖etA‖2

curve that remains oscillatory as t → ∞ ?



5.* Discretizations of differential equations. We will study the 1-dimensional
Poisson equation:

−v′′(x) = f(x), 0 < x < 1, v(0) = v(1) = 0

where f is a given function and the primes denote derivatives w.r.t. x. We
discretize this by replacing 0 < x < 1 by finitely many evenly spaced points
xj := jh where h = 1

N+1
and 0 ≤ j ≤ N + 1 (i.e. N interior points +2

boundary points). Denote vi := v(xi) and fi := f(xi). Approximate

v′((j −
1

2
)h) ≈

vi − vi−1

h

v′((j +
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2
)h) ≈

vi+1 − vi

h

v′′(xj) ≈
v′((j + 1

2
)h) − v′((j − 1

2
)h)

h
= . . .

(a) Write the discretized version of the Poisson equation as a matrix

equation TN v = b where v :=
(

v1 v2 . . . vN

)T
. Why can we drop

v0 and vN+1? What are TN and b?

(b) Prove: the eigenvalues of TN are λj = 2(1 − cos πj

N+1
). The eigenvectors

are zj, where (zj)k = sin jkπ

N+1
.

(c) Approximate, for large N , the sizes of the largest and smallest
eigenvalues.

(d) Compute an SVD of TN .

6. [Comp. hand-in] (Hand in (a),(c),(d).) We continue from question 5.

(a) Write a code for solving TN v = b for a given N and f = (f1 . . . fN)T .

(b) Take f(x) ≡ 0.7, a constant function. Use your code to solve the
system for different N , e.g. N = 100, 500, 1000 (depends on your
system what are suitable values). Plot your solution v. Is the shape
what you would expect?

(c) Take

f(x) =

{

−a, 0 < x ≤ c/10

b, 1 > x > c/10

where a, b, c are the last three digits of your student ID (choose c 6= 0).
Solve again for v and plot the result.

(d) Modify your code: use the timing commands tic, toc to measure
elapsed time. Then, create a sparse version of TN (help sparse) and
solve again. Do you notice any speed-up? How about savings in
memory? (whos)


