TKK Matematiikan laitos
Mat-1.3651 Numerical Linear Algebra, spring 2008
(Numeerinen matriisilaskenta, kevät 2008)
Exercise 8 (27.3.2008)

These are held in the computer classroom Y339b (close to Y313). Please hand in the exercises marked with an asterisk $\left(^{*}\right)$ either to the assistant's folder in front of U313 or latest at the beginning of the exercise. In addition to that, hand in the exercises marked with [Comp. hand-in] in the next exercise session (3rd April, that is).

* 1. Show that if A is "strictly column diagonally dominant", that is,

$$
\left|a_{k k}\right|>\sum_{j \neq k}\left|a_{j k}\right| \quad \forall k,
$$

then Gaussian elimination with partial pivoting does not produce any row interchanges, i.e. all the permutation matrices $P_{i}=I$.
2. Confirm the results of Exercise 7, question 3 on the sparsity patterns of the L, U factors of a banded matrix A. You will need the spy command. (help subplot might be nice as well.) For (a) part, make your A diagonally dominant to make sure the LU without pivoting exists.

* 3. Suppose $A \in \mathbb{R}^{m \times m}$ is a unit lower triangular apart from the last column which is all ones, and below the diagonal each element is -1 , i.e. A has the form

$$
A=\left(\begin{array}{ccccccc}
1 & & & & & 1 \\
-1 & 1 & & & & 1 \\
-1 & -1 & 1 & & & 1 \\
\vdots & & \ddots & \ddots & & 1 \\
-1 & -1 & \ldots & -1 & 1 & 1 \\
-1 & -1 & \ldots & & -1 & 1
\end{array}\right)
$$

- Show that the growth factor $\rho(A)=2^{m-1}$.
- Describe how the Gaussian elimination (with partial pivoting) simplifies for this type of A.

4. [Comp. hand-in] Let $A=B-2 I$ where $B \in \mathbb{R}^{10 \times 10}$ with random entries from the standard normal distribution (help randn). Write a program to plot $\left\|e^{t A}\right\|_{2}$ against t for $0 \leq t \leq 20$ on a log scale, comparing the result to the straight line $e^{t \alpha(A)}$ where $\alpha(A)=\max _{j} \operatorname{Re}\left(\lambda_{j}\right)$ is the spectral abscissa of A and λ_{j} 's are the eigenvalues of A. Run the program for 10 matrices A and comment on the results. What property of a matrix leads to a $\left\|e^{t A}\right\|_{2}$ curve that remains oscillatory as $t \rightarrow \infty$?

* 5. Discretizations of differential equations. We will study the 1-dimensional Poisson equation:

$$
-v^{\prime \prime}(x)=f(x), \quad 0<x<1, \quad v(0)=v(1)=0
$$

where f is a given function and the primes denote derivatives w.r.t. x. We discretize this by replacing $0<x<1$ by finitely many evenly spaced points $x_{j}:=j h$ where $h=\frac{1}{N+1}$ and $0 \leq j \leq N+1$ (i.e. N interior points +2 boundary points). Denote $v_{i}:=v\left(x_{i}\right)$ and $f_{i}:=f\left(x_{i}\right)$. Approximate

$$
\begin{aligned}
v^{\prime}\left(\left(j-\frac{1}{2}\right) h\right) & \approx \frac{v_{i}-v_{i-1}}{h} \\
v^{\prime}\left(\left(j+\frac{1}{2}\right) h\right) & \approx \frac{v_{i+1}-v_{i}}{h} \\
v^{\prime \prime}\left(x_{j}\right) & \approx \frac{v^{\prime}\left(\left(j+\frac{1}{2}\right) h\right)-v^{\prime}\left(\left(j-\frac{1}{2}\right) h\right)}{h}=\ldots
\end{aligned}
$$

(a) Write the discretized version of the Poisson equation as a matrix equation $T_{N} v=b$ where $v:=\left(\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{N}\end{array}\right)^{T}$. Why can we drop v_{0} and v_{N+1} ? What are T_{N} and b ?
(b) Prove: the eigenvalues of T_{N} are $\lambda_{j}=2\left(1-\cos \frac{\pi j}{N+1}\right)$. The eigenvectors are z_{j}, where $\left(z_{j}\right)_{k}=\sin \frac{j k \pi}{N+1}$.
(c) Approximate, for large N, the sizes of the largest and smallest eigenvalues.
(d) Compute an SVD of T_{N}.
6. [Comp. hand-in] (Hand in (a),(c),(d).) We continue from question 5.
(a) Write a code for solving $T_{N} v=b$ for a given N and $f=\left(f_{1} \ldots f_{N}\right)^{T}$.
(b) Take $f(x) \equiv 0.7$, a constant function. Use your code to solve the system for different N, e.g. $N=100,500,1000$ (depends on your system what are suitable values). Plot your solution v. Is the shape what you would expect?
(c) Take

$$
f(x)= \begin{cases}-a, & 0<x \leq c / 10 \\ b, & 1>x>c / 10\end{cases}
$$

where a, b, c are the last three digits of your student ID (choose $c \neq 0$). Solve again for v and plot the result.
(d) Modify your code: use the timing commands tic, toc to measure elapsed time. Then, create a sparse version of T_{N} (help sparse) and solve again. Do you notice any speed-up? How about savings in memory? (whos)

