Mat-1.3651 Numerical Linear Algebra, spring 2008

(Numeerinen matriisilaskenta, kevät 2008)

Exercise 8 (27.3.2008)

These are held in the computer classroom Y339b (close to Y313). Please hand in the exercises marked with an asterisk (*) either to the assistant's folder in front of U313 or latest at the beginning of the exercise. In addition to that, hand in the exercises marked with [Comp. hand-in] in the *next* exercise session (3rd April, that is).

* 1. Show that if A is "strictly column diagonally dominant", that is,

$$|a_{kk}| > \sum_{j \neq k} |a_{jk}| \quad \forall k,$$

then Gaussian elimination with partial pivoting does not produce any row interchanges, i.e. all the permutation matrices $P_i = I$.

- 2. Confirm the results of Exercise 7, question 3 on the sparsity patterns of the L, U factors of a banded matrix A. You will need the spy command. (help subplot might be nice as well.) For (a) part, make your A diagonally dominant to make sure the LU without pivoting exists.
- * 3. Suppose $A \in \mathbb{R}^{m \times m}$ is a unit lower triangular apart from the last column which is all ones, and below the diagonal each element is -1, i.e. A has the form

- Show that the growth factor $\rho(A) = 2^{m-1}$.
- Describe how the Gaussian elimination (with partial pivoting) simplifies for this type of A.
- 4. [Comp. hand-in] Let A=B-2I where $B\in\mathbb{R}^{10\times 10}$ with random entries from the standard normal distribution (help randn). Write a program to plot $\|e^{tA}\|_2$ against t for $0 \le t \le 20$ on a log scale, comparing the result to the straight line $e^{t\alpha(A)}$ where $\alpha(A)=\max_j \operatorname{Re}\ (\lambda_j)$ is the spectral abscissa of A and λ_j 's are the eigenvalues of A. Run the program for 10 matrices A and comment on the results. What property of a matrix leads to a $\|e^{tA}\|_2$ curve that remains oscillatory as $t\to\infty$?

* 5. Discretizations of differential equations. We will study the 1-dimensional Poisson equation:

$$-v''(x) = f(x), \quad 0 < x < 1, \quad v(0) = v(1) = 0$$

where f is a given function and the primes denote derivatives w.r.t. x. We discretize this by replacing 0 < x < 1 by finitely many evenly spaced points $x_j := jh$ where $h = \frac{1}{N+1}$ and $0 \le j \le N+1$ (i.e. N interior points +2 boundary points). Denote $v_i := v(x_i)$ and $f_i := f(x_i)$. Approximate

$$v'((j - \frac{1}{2})h) \approx \frac{v_i - v_{i-1}}{h}$$

$$v'((j + \frac{1}{2})h) \approx \frac{v_{i+1} - v_i}{h}$$

$$v''(x_j) \approx \frac{v'((j + \frac{1}{2})h) - v'((j - \frac{1}{2})h)}{h} = \dots$$

- (a) Write the discretized version of the Poisson equation as a matrix equation $T_N v = b$ where $v := \begin{pmatrix} v_1 & v_2 & \dots & v_N \end{pmatrix}^T$. Why can we drop v_0 and v_{N+1} ? What are T_N and b?
- (b) Prove: the eigenvalues of T_N are $\lambda_j = 2(1 \cos \frac{\pi j}{N+1})$. The eigenvectors are z_j , where $(z_j)_k = \sin \frac{jk\pi}{N+1}$.
- (c) Approximate, for large N, the sizes of the largest and smallest eigenvalues.
- (d) Compute an SVD of T_N .
- 6. [Comp. hand-in] (Hand in (a),(c),(d).) We continue from question 5.
 - (a) Write a code for solving $T_N v = b$ for a given N and $f = (f_1 \dots f_N)^T$.
 - (b) Take $f(x) \equiv 0.7$, a constant function. Use your code to solve the system for different N, e.g. N = 100, 500, 1000 (depends on your system what are suitable values). Plot your solution v. Is the shape what you would expect?
 - (c) Take

$$f(x) = \begin{cases} -a, & 0 < x \le c/10 \\ b, & 1 > x > c/10 \end{cases}$$

where a, b, c are the last three digits of your student ID (choose $c \neq 0$). Solve again for v and plot the result.

(d) Modify your code: use the timing commands tic, toc to measure elapsed time. Then, create a sparse version of T_N (help sparse) and solve again. Do you notice any speed-up? How about savings in memory? (whos)