TKK Matematiikan laitos
Mat-1.3651 Numerical Linear Algebra, spring 2008
(Numeerinen matriisilaskenta, kevät 2008)
Exercise 7 (13.3.2008)
Please hand in the exercises marked with an asterisk $\left(^{*}\right)$ either to the assistant's folder in front of U313 or latest at the beginning of the exercise.

* 1. Given $A \in \mathbb{C}^{m \times n}$ of full rank, $m \geq n$, and $b \in \mathbb{C}^{m}$, consider the block 2×2 system of equations

$$
\left(\begin{array}{cc}
I & A \\
A^{*} & 0
\end{array}\right)\binom{r}{x}=\binom{b}{0},
$$

where I is the $m \times m$ identity. Show that this system has a unique solution $\binom{r}{x}$, and that the vectors r and x are the residual and the solution of the least squares problem " $\|b-A x\|=$ min".
2. Let $A \in \mathbb{C}^{m \times m}$ be nonsingular. Denote by $A_{1: k, 1: k}$ the upper-left $k \times k$ block of A. Show that A has an LU factorization (without pivoting, that is) if and only if $A_{1: k, 1: k}$ is nonsingular for $1 \leq k \leq m$.

* 3. Suppose $A \in \mathbb{C}^{m \times m}$ is banded with band half-width p, i.e. $a_{i j}=0$ whenever $|i-j|>p$.
(a) If A fulfils the condition of the question 2 , what can you say about the sparsity patterns of L and U ?
(b) If a factorization $P A=L U$ (partially pivoted) is computed, what can you say about the sparsity patterns of L and U ?

4. Show that for Gaussian elimination with partial pivoting applied to any matrix $A \in \mathbb{C}^{m \times m}$, the growth factor

$$
\rho(A)=\frac{\max _{i, j}\left|u_{i j}\right|}{\max _{i, j}\left|a_{i j}\right|},
$$

where $u_{i j}$ are the elements of U in $P A=L U$, satisfies $\rho \leq 2^{m-1}$. (Note: here ρ is not the same as the spectral radius.)

* 5. Let $A \in \mathbb{C}^{m \times m}$. Prove that A is unitarily diagonalizable (i.e. $A=Q \Lambda Q^{*}$, $Q=$ unitary, $\Lambda=$ diagonal) if and only if A is normal (i.e. $A A^{*}=A^{*} A$).

6. Let $A \in \mathbb{R}^{m \times m}$ be tridiagonal and symmetric.
(a) In the QR factorization $A=Q R$, which entries of R are nonzero?
(b) Show that the tridiagonal structure is recovered when the product $R Q$ is formed.
