TKK Matematiikan laitos

Arponen/Pursiainen
Mat-1.3651 Numerical Linear Algebra, spring 2008
(Numeerinen matriisilaskenta, kevät 2008)

Exercise 6 (28.2.2008)

These are held in the computer classroom Y339b (close to Y313). Please hand in the exercises marked with an asterisk $\left(^{*}\right)$ either to the assistant's folder in front of U313 or latest at the beginning of the exercise. In addition to that, hand in the exercises marked with [Comp. hand-in] in the next exercise session (13th March, that is).

* 1. Let $A \in \mathbb{C}^{m \times n}$ with $m \geq n$. Show that there exists a Hermitian positive semidefinite P and a $U \in \mathbb{C}^{m \times n}$ with orthonormal columns, such that $A=P U$. Furthermore: $P^{2}=A A^{*}$. Note: this is called the polar decomposition of A, due to reminiscence with that of a complex number $z=r e^{i \theta}$ where $r \geq 0$ and $\left|e^{\mathrm{i} \theta}\right|=1$.
* 2. Consider

$$
A=\left(\begin{array}{cc}
1 & 1 \\
1 & 1.0001 \\
1 & 1.0001
\end{array}\right), \quad b=\left(\begin{array}{c}
2 \\
0.0001 \\
4.0001
\end{array}\right)
$$

(a) What are the matrices A^{+}(pseudoinverse) and P (orthogonal projection to $\mathcal{R}(A)$)?
(b) Find the exact solutions x and $y=A x$ to the least squares problem $A x \approx b$.
(c) What are $\kappa(A), \theta$, and η from the lectures?
3. Consider the polynomial $p(x)=(x-2)^{9}=x^{9}-18 x^{8}+144 x^{7}-$ $672 x^{6}+2016 x^{5}-4032 x^{4}+5376 x^{3}-4608 x^{2}+2304 x-512$.
(a) Plot $p(x)$ for $x=1.920,1.921,1.922, \ldots, 2.080$ evaluating p via its coefficients. (Input the coefficients either by hand or by using expand.)
(b) Produce the same plot again, this time evaluating p via the expression $(x-2)^{9}$.
4. [Comp. hand-in] Take $m=50, n=12$. Using Matlab's linspace, define t to be the m-vector corresponding to linearly spaced grid points from 0 to 1 . Using Matlab's vander and fliplr, define A to be the $m \times n$ matrix associated with least squares fitting on this grid by a polynomial of degree $n-1$. Take b to be the function $\cos (4 t)$ evaluated on the grid. Now, calculate and print (to sixteen-digit precision) the least squares coefficient vector x by six methods:
(a) Formation and solution of the normal equations, using Matlab's
,
(b) QR factorization computed by mgs (modified Gram-Schmidt, Exercise 4)
(c) QR factorization computed by house (Householder triangularization, Exercise 4)
(d) QR factorization computed by Matlab's qr (also Householder triangularization),
(e) $\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$ in Matlab (based on QR)
(f) SVD, using Matlab's svd.
(g) Compare and comment the results from (a)-(f).
5. [Comp. hand-in] Here we stick to the real matrices. A random square matrix is an $m \times m$ matrix whose entries are random numbers, independently sampled from the normal distribution with zero mean and standard deviation $m^{-1 / 2}$. Explore certain properties of random matrices. In Matlab, use $A=$ randn (m, m)/sqrt (m).
(a) The factor $m^{-1 / 2}$ gives "normalized" results as $m \rightarrow \infty$. Test this by looking at the matrix norms with/without the normalization, for example:

```
for m=1:100,
for j=1:10,
nor(m,j)=norm(randn(m,m));
nor2(m,j)=nor(m,j)/sqrt(m);
end, end
```

What do you observe? (Naturally, you modify the program as you find suitable.)
(b) What do the eigenvalues of a random matrix look like? What happens, if you take e.g. 100 random matrices and plot their eigenvalues in a single picture? Do this for $m=8,16,32, \ldots$ and comment on the pattern. How does the spectral radius (Exercise 2) $\rho(A)$ behave as $m \rightarrow \infty$?
(c) How does the 2-norm of a random matrix behave as $m \rightarrow \infty$? We know that $\rho(A) \leq\|A\|$, does this appear to approach an equality?
(d) How about the smallest singular values $\sigma_{\min }$ (which are quite like the condition numbers)? First, fix m and see what proportions of random matrices seem to have $\sigma_{\min } \leq \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$ Then, how does the situation change as m changes?
(e) How do the answers to (b)-(d) change if we use random triangular matrices instead of the full ones? (Matlab's triu might be useful.)
6. Experiments show that random triangular matrices with entries ± 1 are exponentially ill-conditioned in the following sense: if $A \in \mathbb{C}^{m \times m}$ is such a matrix and κ_{m} denotes its 2 -norm condition number, then $\lim _{m \rightarrow \infty}\left(\kappa_{m}\right)^{1 / m}=C$ for some constant $1<C<1.5$. Perform numerical experiments involving random matrices of various dimensions to estimate C to at least 10% accuracy.

