TKK Matematiikan laitos
Arponen/Pursiainen
Mat-1.3651 Numerical Linear Algebra, spring 2008
(Numeerinen matriisilaskenta, kevät 2008)
Exercise 4 (14.2.2008)
These are held in the computer classroom Y339b (close to Y313). Please hand in the exercise marked with an asterisk $\left(^{*}\right)$ either to the assistant's folder in front of U313 or latest at the beginning of the exercise. In addition to that, hand in the exercises marked with [Comp. hand-in] in the next exercise session (21st February, that is).

1. [Comp. hand-in] (hand in your answers to (d),(e), and (f).) Here you will study compression of information by the SVD. Load and draw the following picture in Matlab:
```
load clown.mat; % this is one of the demo files
whos; % see what you loaded
image(X); % interprete the matrix X as an image
colormap(map); % fix the colours (try also colormap('grey');)
```

(a) Compute the SVD of X.
(b) Make the best "rank- k " approximations $X_{k}:=\sum_{j=1}^{k} \sigma_{j} u_{j} v_{j}^{*}$ for some k, at least $k \in\{3,7,10,20\}$.
(c) Plot the approximations.
(d) The storage: how much data is needed to construct X_{k}, compared to the amount of data in the original X ?
(e) By looking at all singular values (plot them on a suitable scale), give your opinion on what would be a suitable k ? There is no optimal value, but consider the "visual quality"/storage value by your own eyes.
(f) Assume you have sent over a network the data representing X_{k}. How would you update that approximation to X_{k+10} ?
2. Write a Matlab program which, given a real 2×2 matrix A, plots the right singular vectors v_{1} and v_{2} in the unit circle and also the left singular vectors u_{1} and u_{2} in the appropriate ellipse. Apply your program to the 2×2 matrices of Exercise 2, question 4:

$$
\text { (a) }\left(\begin{array}{cc}
3 & 0 \\
0 & -2
\end{array}\right),(\mathrm{b}) \quad\left(\begin{array}{ll}
0 & 2 \\
0 & 0 \\
0 & 0
\end{array}\right),(\mathrm{c}) \quad\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \text {. }
$$

3. [Comp. hand-in] Write a Matlab function $[\mathrm{Q}, \mathrm{R}]=\mathrm{mgs}(\mathrm{A})$ that computes a reduced $Q R$ factorization $A=\hat{Q} \hat{R}$ of an $m \times n$ matrix A with $m \geq n$ using modified Gram-Schmidt orthogonalization. The output variables are a matrix $Q \in \mathbb{C}^{m \times n}$ with orthonormal columns and a triangular matrix $R \in \mathbb{C}^{n \times n}$.
4. (a) Write a Matlab program that sets up a 15×40 matrix with entries 0 everywhere except for the values 1 in the positions indicated in the picture below. The upper-leftmost 1 is in position (2,2), and the lower-rightmost 1 is in position $(13,39)$. This picture was produced with the command $\operatorname{spy}(\mathrm{A})$.

(b) Call svd to compute the singular values of A. Plot these numbers using both plot and semilogy. What is the exact rank of A ? Can you see this in the computed singular values?
(c) For $i=1$ to $\operatorname{rank}(A)$, construct the rank- i matrix B that is the best approximation to A in the 2-norm. Use the command pcolor(B) with colormap (gray) to create images of these various approximations.
5. (a) Write a Matlab function $[\mathrm{W}, \mathrm{R}]=$ house (A) that computes an implicit representation of a full $Q R$ factorization $A=Q R$ of an $m \times n$ matrix A with $m \geq n$ using Householder reflections. The output variables are a lower-triangular matrix $W \in \mathbb{C}^{m \times n}$ whose columns are the vectors v_{k} defining the successive Householder reflections, and a triangular matrix $R \in \mathbb{C}^{n \times n}$.
(b) Write a Matlab function $\mathrm{Q}=$ form $\mathrm{Q}(\mathrm{W})$ that takes the matrix W produced by house as input and generates a corresponding $m \times m$ orthogonal matrix Q.
6. [Comp. hand-in] Let Z be the matrix

$$
Z=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 7 \\
4 & 2 & 3 \\
4 & 2 & 2
\end{array}\right)
$$

Compute three reduced $Q R$ factorizations of Z in Matlab: by the Gram-Schmidt routine mgs of Exercise 3, by the Householder routines house and formQ of Exercise 5, and by Matlab's built-in command $[Q, R]=q r(Z, 0)$. Compare these three and comment on any differences you see.

