Mat-1.3651 Numerical Linear Algebra, spring 2008
(Numeerinen matriisilaskenta, kevät 2008)

Exercise 3 (7.2.2008)

Please hand in the exercises marked with an asterisk $\left(^{*}\right)$ either to the assistant's folder in front of U313 or latest at the beginning of the exercise.

* 1. Using the SVD, prove that any matrix in $\mathbb{C}^{m \times n}$ is the limit of a sequence of matrices of full rank. In other words, prove that the set of full-rank matrices is a dense subset of $\mathbb{C}^{m \times n}$. Use the 2-norm for your proof.
* 2 .
(a) If P is an orthogonal projector, then $I-2 P$ is unitary. Prove this algebraically, and give a geometric interpretation.
(b) Given $A \in \mathbb{C}^{m \times n}$ with $m \geq n$, show that $A^{*} A$ is nonsingular if and only if A has full rank.

3. Let E be the $m \times m$ matrix that extracts the "even part" of an m-vector: $E x=(x+F x) / 2$ where F is the $m \times m$ matrix that flips $\left(x_{1}, \ldots, x_{m}\right)^{*}$ to $\left(x_{m}, \ldots, x_{1}\right)^{*}$. Is E a projector? If yes, is it an orthogonal projector? What are its entries?

* 4. Consider the matrices

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 2 \\
0 & 1 \\
1 & 0
\end{array}\right)
$$

(a) What is the orthogonal projector P onto $\mathcal{R}(A)$ (the range of A), and what is the image under P of the vector $v=(1,2,3)^{*}$?
(b) Same questions for B.
5. Let $P \in \mathbb{C}^{m \times m}$ be a nonzero projector. Show that $\|P\|_{2} \geq 1$, with equality if and only if P is an orthogonal projector.

* 6. Let A be an $m \times n$ matrix $(m \geq n)$ of full rank with the property that columns $1,3,5, \ldots$ are orthogonal to columns $2,4,6, \ldots$ In a reduced QR factorization $A=\hat{Q} \hat{R}$, what special structure does \hat{R} possess?

