Mat-1.3651 Numerical Linear Algebra, spring 2008
(Numeerinen matriisilaskenta, kevät 2008)
Exercise 2 (31.1.2008)
Please hand in the exercises marked with an asterisk $\left(^{*}\right)$ either to the assistant's folder in front of U313 or latest at the beginning of the exercise.

* 1 . Let W be an invertible matrix. Show that the function $\|\cdot\|_{W}$ defined by

$$
\|x\|_{W}:=\|W x\|
$$

is a vector norm.
2. Let $\|\cdot\|$ denote any norm on \mathbb{C}^{m} and also the induced matrix norm on $\mathbb{C}^{m \times m}$. Show that $\rho(A) \leq\|A\|$, where $\rho(A)=\max |\lambda|$ is the spectral radius of A, i.e. the largest absolute value of an eigenvalue λ of A.
3. Let $\|\cdot\|$ denote any norm on \mathbb{C}^{m}. The corresponding dual norm $\|\cdot\|^{\prime}$ is defined by the formula $\|x\|^{\prime}=\sup _{\|y\|=1}\left|y^{*} x\right|$.
(a) Prove that $\|\cdot\|^{\prime}$ is a norm.
(b) Let $x, y \in \mathbb{C}^{m}$ with $\|x\|=\|y\|=1$ be given. Show that there exists a rank-one matrix $B=y z^{*}$ such that $B x=y$ and $\|B\|=1$, where $\|B\|$ is the matrix norm of B induced by the vector norm $\|\cdot\|$. You may assume the following lemma known: given $x \in \mathbb{C}^{m}$, there exists a nonzero $z \in \mathbb{C}^{m}$ s.t. $\left|z^{*} x\right|=\|z\|^{\prime}\|x\|$.

* 4. Determine SVDs of the following matrices, by hand calculation:

$$
\text { (a) }\left(\begin{array}{cc}
3 & 0 \\
0 & -2
\end{array}\right),(\mathrm{b}) \quad\left(\begin{array}{ll}
0 & 2 \\
0 & 0 \\
0 & 0
\end{array}\right),(\mathrm{c}) \quad\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \text {. }
$$

* 5. In an example on the lecture we claimed that for the matrix

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right)
$$

the 2-norm is $\|A\|_{2} \approx 2.9208$. Using the SVD calculate $\sigma_{\min }(A)$ and $\sigma_{\max }(A)$ and deduce $\|A\|_{2}$.

