TKK Matematiikan laitos

Mat-1.3651 Numerical Linear Algebra, spring 2008 (Numeerinen matriisilaskenta, kevät 2008)

Exercise 2 (31.1.2008)

Please hand in the exercises marked with an asterisk (*) either to the assistant's folder in front of U313 or latest at the beginning of the exercise.

* 1. Let W be an invertible matrix. Show that the function $\|\cdot\|_W$ defined by

$$||x||_W := ||Wx||$$

is a vector norm.

- 2. Let $\|\cdot\|$ denote any norm on \mathbb{C}^m and also the induced matrix norm on $\mathbb{C}^{m \times m}$. Show that $\rho(A) \leq \|A\|$, where $\rho(A) = \max |\lambda|$ is the spectral radius of A, i.e. the largest absolute value of an eigenvalue λ of A.
- 3. Let $\|\cdot\|$ denote any norm on \mathbb{C}^m . The corresponding dual norm $\|\cdot\|'$ is defined by the formula $\|x\|' = \sup_{\|y\|=1} |y^*x|$.
 - (a) Prove that $\|\cdot\|'$ is a norm.
 - (b) Let $x, y \in \mathbb{C}^m$ with ||x|| = ||y|| = 1 be given. Show that there exists a rank-one matrix $B = yz^*$ such that Bx = y and ||B|| = 1, where ||B|| is the matrix norm of B induced by the vector norm $|| \cdot ||$. You may assume the following lemma known: given $x \in \mathbb{C}^m$, there exists a nonzero $z \in \mathbb{C}^m$ s.t. $|z^*x| = ||z||' ||x||$.
- * 4. Determine SVDs of the following matrices, by hand calculation:

(a)
$$\begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$$
, (b) $\begin{pmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$, (c) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

* 5. In an example on the lecture we claimed that for the matrix

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$$

the 2-norm is $||A||_2 \approx 2.9208$. Using the SVD calculate $\sigma_{\min}(A)$ and $\sigma_{\max}(A)$ and deduce $||A||_2$.