TKK Institute of Mathematics

Arponen/Pursiainen
Mat-1.3651 Numerical Linear Algebra, spring 2008
(Numeerinen matriisilaskenta, kevät 2008)

Exercise 1 (24.1.2008)

Please hand in the exercises marked with an asterisk $\left(^{*}\right)$ either to the assistant's folder in front of U313 or latest at the beginning of the exercise.

* 1. Let $A(a):=\left(\begin{array}{ll}a & a \\ a & a\end{array}\right)$ and \mathcal{V} be the set

$$
\mathcal{V}=\{A(a) \mid a \in \mathbb{R}\}
$$

(a) Show that \mathcal{V} is an algebra, with respect to the usual operations $(+, *$, scalar multiplication) of the matrix algebra. Especially, what is its identity element?
(b) For which a is $A(a)$ invertible in \mathcal{V} ? When it is invertible, give an expression for $A(a)^{-1}$.
(c) For which a is $A(a)$ invertible in $\mathbb{R}^{2 \times 2}$?

* 2.

(a) Let B be a 4×4 matrix to which we apply the following operations:
(a) double column 1 ,
(b) halve row 3 ,
(c) add row 3 to row 1 ,
(d) interchange columns 1 and 4,
(e) subtract row 2 from each of the other rows,
(f) replace column 4 by column 3,
(g) delete column 1 (so that the column dimension is reduced by 1).
(b) Write the result as a product of eight matrices,
(c) Write it again as a product $A B C$ (same B) of three matrices.
3. Show that if a matrix A is both triangular and unitary, then it is diagonal.
4. Let $A \in \mathbb{C}^{m \times m}$ be hermitian. An eigenvector of A is a nonzero vector $x \in \mathbb{C}^{m}$ such that $A x=\lambda x$ for some $\lambda \in \mathbb{C}$, the corresponding eigenvalue. Prove that
(a) all eigenvalues of A are real.
(b) if x and y are eigenvectors corresponding to different eigenvalues, then $x \perp y$.
5. Let $S \in \mathbb{C}^{m \times m}$ be skew-hermitian, that is, $S^{*}=-S$.
(a) Show that the eigenvalues of S are pure imaginary. (Hint: you can use the previous exercise.)
(b) Show that $I-S$ is non-singular.
(c) Show that the Cayley transform matrix $Q:=(I-S)^{-1}(I+S)$ is unitary.

* 6. Suppose $u, v \in \mathbb{C}^{m}$. The matrix $A:=I+u v^{*}$ is known as a rank-one perturbation of the identity. Show that if A is nonsingular, its inverse has the form $A^{-1}=I+\alpha u v^{*}$ for some scalar α. What is α in terms of u and v ? When is A singular? When it is singular, what is the nullspace $N(A)$?

