TKK Institute of Mathematics

Arponen/Pursiainen

Mat-1.3651 Numerical Linear Algebra, spring 2008 (Numeerinen matriisilaskenta, kevät 2008)

Exercise 1 (24.1.2008)

Please hand in the exercises marked with an asterisk (*) either to the assistant's folder in front of U313 or latest at the beginning of the exercise.

* 1. Let
$$A(a) := \begin{pmatrix} a & a \\ a & a \end{pmatrix}$$
 and \mathcal{V} be the set

(a) Show that \mathcal{V} is an algebra, with respect to the usual

 $\mathcal{V} = \{ A(a) \mid a \in \mathbb{R} \} \,.$

- operations (+, *, scalar multiplication) of the matrix algebra. Especially, what is its identity element?
- (b) For which a is A(a) invertible in \mathcal{V} ? When it is invertible, give an expression for $A(a)^{-1}$.
- (c) For which a is A(a) invertible in $\mathbb{R}^{2 \times 2}$?

* 2.

- (a) Let B be a 4×4 matrix to which we apply the following operations:
 - (a) double column 1,
 - (b) halve row 3,
 - (c) add row 3 to row 1,
 - (d) interchange columns 1 and 4,
 - (e) subtract row 2 from each of the other rows,
 - (f) replace column 4 by column 3,
 - (g) delete column 1 (so that the column dimension is reduced by 1).
- (b) Write the result as a product of eight matrices,
- (c) Write it again as a product ABC (same B) of three matrices.

- 3. Show that if a matrix A is both triangular and unitary, then it is diagonal.
- 4. Let $A \in \mathbb{C}^{m \times m}$ be hermitian. An eigenvector of A is a nonzero vector $x \in \mathbb{C}^m$ such that $Ax = \lambda x$ for some $\lambda \in \mathbb{C}$, the corresponding eigenvalue. Prove that
 - (a) all eigenvalues of A are real.
 - (b) if x and y are eigenvectors corresponding to different eigenvalues, then $x \perp y$.
- 5. Let $S \in \mathbb{C}^{m \times m}$ be skew-hermitian, that is, $S^* = -S$.
 - (a) Show that the eigenvalues of S are pure imaginary. (Hint: you can use the previous exercise.)
 - (b) Show that I S is non-singular.
 - (c) Show that the Cayley transform matrix $Q := (I S)^{-1}(I + S)$ is unitary.
- * 6. Suppose $u, v \in \mathbb{C}^m$. The matrix $A := I + uv^*$ is known as a rank-one perturbation of the identity. Show that if A is nonsingular, its inverse has the form $A^{-1} = I + \alpha uv^*$ for some scalar α . What is α in terms of u and v? When is A singular? When it is singular, what is the nullspace N(A)?