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Starting point. Consider the SPDE
dUt = AUtdt -+ f(Ut)dt + th, UO — U

on H = L?(O) where O is a bounded region in R™ with sufficiently

smooth boundary and
e f: H — H anonlinear operator which is Lipschitz continuous:
[f(u) = f(v)] < Lju — v
e A c L(V,V’) with DBC.

Thereby: V' = H;(Q). This leads to a Gelfand triplet:

VCH=H CV’

Discretization of a stable SPDE in space and time Workshop on Numerics and Stochastics



Random dynamical systems: Let (€2, F, IP) be a probability space,

(X, |||l x) @ normed space and 6§ = (0;):cr a metric dynamical

system.

A measurable mapping
o (RY x QO x X,BRY) @ F @ B(X)) — (X, B(X))

IS called a random dynamical system if it satisfies the cocycle

property, i.e.

90(07 W, IO) — Lo

Sp(t + T, W, ZCO) — Sp(ta 97'("}7 90(7_7 W, ZCO))
forallt, 7 > 0,w € Q2and g € X.
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Random fixed points: A measurable random variable
X* 1 (Q,F) — (X, B(X))

Is called a random fixed point if
p(t,w, X7(w)) = X*(Ow)

holds for all ¢ > 0.
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Finite differences:

Definition: An external approximation of a space (X, ||| ) consists of
(i) anormed space (F|||-|| ) and an isomorphism ) of X into F'.

(i) a family { Xy, pn, 1 }hew, in which for each h € J7
o (Xp, |||l;) is a normed space
® p;, is a linear continous mapping of X}, into F’

e 71, is a mapping of X into .X},.

X F
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For .77 we use

n
% = H}O, hi,O] where 0 < hz S hi,O-
i=1
h; is the mesh in x; direction. For the characterization of an external
approximation we need two more defintions:
Definition: The prolongations operators are said to be stable if their

Norms

Ipnll = sup ||prunll g
||Uh||h:1

can be majorized independently of h.
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Definition: An external approximation is said to be stable if the

following two conditions are fulfilled:

1. compatibility condition:

}llir% |prrrue — Yu||, =0  foral uwe X.

2. synchronization condition:

For each sequence (uy,) C X, with

PrUp I ¢ in

we have

»ePX.
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Now we introduce the approximation of V.
Let F' = L*(O)"*! and

Yv:V — F  uw— (u, Dyu, Dau, ..., D,u).
The approximated space V/, is given by

Vi = {un|un(z) = Z un(P) 1o, Py (2), un(P) € R"}

and the prolongation resp. restriction operators by

PrUp = (uha 61uh7 62’U,h, s 75nuh)
1 .
rou)(P) = w(z)dr VP e O
r(P) = —— (/P) (@ h
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Theorem: The preceding external approximation of V' is stable and
convergent. Moreover, for all i, V}, is finite dimensional, a subspace

of L*(O) and a Hilbert space with the scalar product

n

((wn,vn))n =Y (Giup, 6;0p)

i=0
The next theorem is a discrete analogon of the Poincaré inequality

and enables us to equip 1}, with another scalar product:
Theorem: Let uy, € V3. Then

Therefore ((-,-)), may startati = 1.
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From SPDE to RPDE: It's very convenient for our approach to rewrite
the SPDE as a RPDE. For that we need to introduce the

Ornstein-Uhlenbeck-process:

Definition: The unique stationary solution of the SPDE
dUt — AUtdt —I— th

IS called Ornstein-Uhlenbeck-process. It's given by

t

AN AN

0 (00) = Oy(w) = / Sa(t — 5) AW, (w)

—O0

where Sa(t — s) denotes the strongly continuous semigroup

generated by A.
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The OU-process is tempered, i.e. the mapping
t e [U(6w)

has subexponential growth.

Subtracting the solution of the OU-process from any solution U; of the
SPDE we see that the difference X; = U; — U, is pathwise

differential in time and satisfies pathwise the RPDE

o ~
aXt — AXt —I— f(Xt —|— Ut)

Discretization of a stable SPDE in space and time Workshop on Numerics and Stochastics

11



Spatial approximation: We are now able to approximate the given

RPDE by finite differences. For that we define

Xi(z) = ), XMP)op(r), X(P)eR

pPeO}
n
Ah — 25,&2 — <—Ahuh,uh> > d52|uh\2
1=1

UMP) = (rU)(P) = |U"0w)| < |U(Ow)

o X0 = M X A FXHT)), X =1 @
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Theorem: Let
1

O
Then the solution of (1) generates a RDS ¢y, which has a unique

random fixed point.
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Discretization in time: Implicit Euler scheme:

Xh+1 _Xh {Ah +1‘|‘fh( +1‘|‘(7(hm+1)k)} k, Xh:@f)b
(2)
with

fulun)(z) == ) Loy (p) (2) — / S (up)(

h Uhp)

Then f;, is Lipschitz continuous with constant L.

Theorem: Let .

Then the solution of (2) generates a RDS ¢y, 1, which has a unique

random fixed point.
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Convergence of the spatial discretization:

Theorem: As h — 0 it holds
X, (w) — X*(w) inH.

Therefore we get the following diagram:

o(t,0_1w, o) X*(w)
h—0
Qph(ta e—twv CBS) X;zk(w)
A

onk(nk, 0_prw, 5178) — Xﬁk,k(w)
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