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Starting point: Consider the SPDE

dUt = ∆Utdt+ f(Ut)dt+ dWt, U0 = u0

on H = L2(O) where O is a bounded region in R
n with sufficiently

smooth boundary and

• f : H → H a nonlinear operator which is Lipschitz continuous:

|f(u) − f(v)| ≤ L|u− v|

• ∆ ∈ L(V, V ′) with DBC.

Thereby: V = H1
0 (O). This leads to a Gelfand triplet:

V ⊆ H ≡ H ′ ⊆ V ′.
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Random dynamical systems: Let (Ω,F ,P) be a probability space,

(X, ‖·‖X) a normed space and θ = (θt)t∈R a metric dynamical

system.

A measurable mapping

ϕ : (R+ × Ω ×X,B(R+) ⊗F ⊗ B(X)) → (X,B(X))

is called a random dynamical system if it satisfies the cocycle

property, i.e.

ϕ(0, ω, x0) = x0

ϕ(t+ τ, ω, x0) = ϕ(t, θτω, ϕ(τ, ω, x0))

for all t, τ ≥ 0, ω ∈ Ω and x0 ∈ X .
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Random fixed points: A measurable random variable

X∗ : (Ω,F) → (X,B(X))

is called a random fixed point if

ϕ(t, ω,X∗(ω)) = X∗(θtω)

holds for all t > 0.
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Finite differences:

Definition: An external approximation of a space (X, ‖·‖X) consists of

(i) a normed space (F, ‖·‖F ) and an isomorphism ψ of X into F .

(ii) a family {Xh, ph, rh}h∈H , in which for each h ∈ H :

• (Xh, ‖·‖h) is a normed space

• ph is a linear continous mapping of Xh into F

• rh is a mapping of X into Xh.
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For H we use

H =
n∏

i=1

]
0, hi,0

]
where 0 < hi ≤ hi,0.

hi is the mesh in xi direction. For the characterization of an external

approximation we need two more defintions:

Definition: The prolongations operators are said to be stable if their

norms

‖ph‖ = sup
‖uh‖h

=1

‖phuh‖F

can be majorized independently of h.
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Definition: An external approximation is said to be stable if the

following two conditions are fulfilled:

1. compatibility condition:

lim
h→0

‖phrhu− ψu‖F = 0 for all u ∈ X.

2. synchronization condition:

For each sequence (uh) ⊆ Xh with

phuh −−⇀
h→0

φ in F

we have

φ ∈ ψX.
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Now we introduce the approximation of V .

Let F = L2(O)n+1 and

ψ : V → F, u 7→ (u,D1u,D2u, . . . , Dnu).

The approximated space Vh is given by

Vh =
{
uh

∣∣uh(x) =
∑

P∈O̊1

h

uh(P )1σh(P )(x), uh(P ) ∈ R
n
}

and the prolongation resp. restriction operators by

phuh = (uh, δ1uh, δ2uh, . . . , δnuh)

(rhu)(P ) =
1

m(σh(P ))

∫

σh(P )

u(x) dx ∀P ∈ O̊1
h.
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Theorem: The preceding external approximation of V is stable and

convergent. Moreover, for all h, Vh is finite dimensional, a subspace

of L2(O) and a Hilbert space with the scalar product

((uh, vh))h =
n∑

i=0

(δiuh, δivh).

The next theorem is a discrete analogon of the Poincaré inequality

and enables us to equip Vh with another scalar product:

Theorem: Let uh ∈ Vh. Then

|uh| ≤ dO|δiuh|.

Therefore ((·, ·))h may start at i = 1.
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From SPDE to RPDE: It’s very convenient for our approach to rewrite

the SPDE as a RPDE. For that we need to introduce the

Ornstein-Uhlenbeck-process:

Definition: The unique stationary solution of the SPDE

dUt = ∆Utdt+ dWt

is called Ornstein-Uhlenbeck-process. It’s given by

Û(θtω) ≡ Ût(ω) =

t∫

−∞

S∆(t− s) dWs(ω)

where S∆(t− s) denotes the strongly continuous semigroup

generated by ∆.
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The OU-process is tempered, i.e. the mapping

t 7→ |Û(θtω)|

has subexponential growth.

Subtracting the solution of the OU-process from any solution Ut of the

SPDE we see that the difference Xt = Ut − Ût is pathwise

differential in time and satisfies pathwise the RPDE

∂

∂t
Xt = ∆Xt + f(Xt + Ût).
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Spatial approximation: We are now able to approximate the given

RPDE by finite differences. For that we define

Xh
t (x) =

∑

P∈O̊1

h

Xh
t (P )1σh(P )(x), Xh

t (P ) ∈ R
n

∆h =
n∑

i=1

δ2
i ⇒ 〈−∆huh, uh〉 ≥ d−2

O |uh|
2

Ûh
t (P ) = (rhÛt)(P ) ⇒ |Ûh(θtω)| ≤ |Û(θtω)|

and get

∂

∂t
Xh
t = ∆hX

h
t + f(Xh

t + Ûh
t ), Xh

0 = xh0 . (1)
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Theorem: Let

C :=
1

d2
O

− L > 0.

Then the solution of (1) generates a RDS ϕh which has a unique

random fixed point.
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Discretization in time: Implicit Euler scheme:

Xh
m+1 = Xh

m+
[
∆hX

h
m+1 + fh(X

h
m+1 + Ûh

(m+1)k)
]
k, Xh

0 = xh0
(2)

with

fh(uh)(x) :=
∑

P∈O̊1

h

1σh(P )(x)
1

m(σh(P ))

∫

σh(P )

f(uh)(y) dy.

Then fh is Lipschitz continuous with constant L.

Theorem: Let

C :=
1

d2
O

− L > 0.

Then the solution of (2) generates a RDS ϕh,k which has a unique

random fixed point.
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Convergence of the spatial discretization:

Theorem: As h→ 0 it holds

X∗
h(ω) → X∗(ω) in H.

Therefore we get the following diagram:

ϕ(t, θ−tω, x0) // X∗(ω)

ϕh(t, θ−tω, x
h
0)

// X∗
h(ω)

h→0

OO

ϕh,k(nk, θ−nkω, x
h
0)

// X∗
h,k(ω)

k→0

OO
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