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1 The rate of convergence for Euler approximations of
solutions of stochastic differential equations driven by

fractional Brownian motion

Recall that B = (B;)>( is called fractional Brownian motion on a complete probability space
(Q, F, P) with Hurst parameter H € (3, 1) if B is a centered Gaussian process with stationary
increments and covariance Ry (t,s) = E(ByBy) = 5 (t*H 4+ s*H — |t — s]*H).

Numerical solution via time discretization of SDEs driven by Brownian motion has long history.
Concerning numerical solution of SDEs driven by fBm, we mention first the paper

[Greksch and Anh (1998)], where equations with modified fBm that represents a special
semimartingale are studied (recall that fBm itself is not a semimartingale). Papers

[Nourdin (2005), Nourdin and Neunkirch (2007)] study Euler approximations for homogeneous
one-dimensional SDEs with bounded coefficients having bounded derivatives up to third order, driven
by fBm, and prove that error of approximation is a.s. equivalent to 52H-1§t, and the process &; is
given explicitly. These papers also discuss Crank—Nicholson and Milstein schemes for SDEs driven
by fBm. To our knowledge, there are no papers concerned with the rate of weak convergence for

Euler approximations of fBm-driven SDEs.



We consider the stochastic differential equation on R4
t .
Xi=Xi+ Z/ ,)dBI + / bi(s,Xs)ds, i=1,...d, t€[0,T] (L1)
0

where the processes B*, i = 1, ..., m are fractional Brownian motions with Hurst parameter H, X
is a d-dimensional random variable, the coefficients 0?7, b* : Q x [0, T] x R* — R are

measurable functions.

The integral in the right-hand side of (1.1) can be understood in the pathwise sense defined in
[Z&hle (1998), Nualart and Rascanu (2000)] or in Wick—Skorohod sense [Alos and Nualart (2002)].
We treat the pathwise case first. We remind that the pathwise integral w.r.t. a one-dimensional fBm
B can be defined as

b b
| faB= [ (02.5)(5) (D} B (5)ds.

where

(D f)(5) = F(ll_a) [(sf—a / fs—u a(+1>d“] Lap)(s)



and

o S By (s) — By_(u
(D;:aBb—>(S) — er(a> (bB_b;gl)a + (1 o Oé)/g b (’El, )_ 8)§ba( )du lI(a,b) (S)

are fractional derivatives of corresponding orders,
Bb_ (8) = (BS - Bb)ﬂ(a,b) (S)

The integral exists for any « € (1 — H, v) if, for example, f € C¥(a,b) withv + H > 1.

Moreover, in this case pathwise integral admits an estimate

/abde §C’0(w)[/a =) d8+// |fs—u |duds (1.2)

where C(w) = C - sup,c s« ‘Dg:o‘Bb_(s)‘ < oo as.

Denote 0 = (0%9) gxm, b = (b*)gx1 and for a matrix A = (a%/)gxm, and a vector y = (4*)gx1
denote [A| = Zz’,j ¥, ly| = D i [y°.



We suppose that the coefficients satisfy the following assumptions

(A) o(t, x) is differentiable in = and there exist such M > 0,1 — H < < 1, % —1<kr<1
and for any /N > 0 there exists such M > 0 that
1) lo(t,z) —o(t,y)| < M|z —y|,z,y € R%,t € [0,T];
2) [0z,0(t, ) = Op,0(t, y)| < M|z —y[", |z], |yl < N, ¢ € [0,T7;
3) lo(t,x) — o(s,x)| + |0p,0(t,x) — Op,0(s,2)| < M|t —s|P,x € R, t,s €[0,T).

(B) 1) forany N > 0 there exists Ly > 0 such that
b(t,z) — b(t,y)| < Lylz —yl, |z], |y < N, ¢ €[0,T];
2) [b(t, )| < L(1+ |z).

As it was stated in [Nualart and Rascanu (2000)], under conditions (A)—(B) the equation (1.1) has the
unique solution { X;, ¢ € [0, 7]}, and for a.a. w € (2 this solution belongs to C' ~°[0, T'] for any
0<p<H.



Now, lett € [0,7T],0 = %, Ty = % =nd,n = 0, ..., N. Consider discrete Euler

approximations of solution of equation (1.1),

Y =V 4 b (r,, Y 5—|—Za T YO)ABY | Y = X,

Tn+1

and corresponding continuous interpolations

Y0 =V 4 0, Y ) (= ma) + ) 0" (m, Y2 )(B] = BL), t€[m, ] 13
71=1

Continuous interpolations satisfy the equation
A ¢ +/ b (tu, Y2) du+Z/ I (t,, Y, )dBI, (1.4)

where t,, = T, , Ny = max{n : 7, < u}.

For simplicity we denote the vector of solutions as X; = (Xf)izl,...,d, vector of continuous
approximations as Y5 (Y(S Z)@_ ..,d- Throughout the talk, C' denotes a generic constant, whose
value is not important and may change from line to line, and we write C(-), if the dependence on

some parameters is crucial.



1.1 Some properties of Euler approximations for solutions o f pathwise

equations

In this section we consider growth and Holder properties of the approximation process

{Y,,t €[0,T]}. We need some additional notations. Denote ¢y, ,, := ‘Y;‘i — YU5| (u—wv)~ o1
for0 <wv<t, <T,0<a<l X{ :=supyce<y | Xsl, YO+ = SUP< <y [Y2|. Further, for
any 0 < p < H there exists such C' = C'(w, p) thatforany 0 < v < u

1B, — B,| £ C(w, p)(u—v)¥~°. (1.5)

We shall use the following statement [Nualart and Rascanu (2000), Lemma 7.6]

Proposition 1.1. Let0 < a < 1,a,b > 0,2 : R, — R be a continuous function such that for

each t

t
ry < a + bt / (t —s) “s “xqds.
0

Then x; < ac, exp {datbl/(l_a)}, where ¢, = 4621%%_;‘), d, = 2(F(1 — a))l/(l_a), INQ)

is Euler's Gamma function.



Lemma 1.2. There exists such C' = C, > Othatforany s € [0,7T],s # tsand § < 1,
a € (0,1) it holds

ts twy
J = / (s — u)o‘1/ (v—1t,) “dvdu < C65 .
0 U

Proof. Evidently,

ts v ts
J = / (v—tv)_o‘/ (s —u) " tdudv < a_1/ (v —1y) % (s —v) “dv.
0 0 0

Lett, = nd forsome 0 < n < N. Then

n—2

Thk+1 (2n—1)4/2 né
D A .
Tk (n—1)6 (2n—1)§/2

k=0

/Ots (0= ty)" (s — v) " “dv =



We estimate the integrals individually:

Th41 Th41
/ < (s— TM)a/ (0 — 1,)~%dv < (1 — )~ (5 — 7ppq) 01—,

k k

(2n—1)8/2 (2n—1)5/2
/ < (5/2)° / (v — )" “dv < O 2,
(n—1)¢ (n—1)0

no no
/ < (5/2)~° / (5 — v)~%dv < 5120,
( (

2n—1)6/2 2n—1)5/2
Therefore
n—2 no
JESCE Y467 (5= Thy1) “6 S CO P45 / (s —v) " “dv
k=0 0

YO RN o Gl e



Theorem 1.3. (i) Let the conditions (A)—(B) hold and
©1n fo(t,z)| <C1+ |z|).

Thenforany e > 0and 0 < p < H there exists 9 > 0 and €2, 5,., C {2 such that
P(Qe.50,p) > 1 —candforany w € Q5,8 < dg one has |Y°| < C(w),
VP = Y2 | S Cw)(ts —t) 7,05 r <s<T.

(ii) If, instead of (A), 2) and (C) we assume that b and o are bounded functions, then ‘Y;‘S‘ < C(w),
Y2 —Y? | SCw)(s—r)T P 0<r<s<T.

In both cases C'(w) does not depend on 9.



Proof. We can assume that 6 < 1. It follows immediately from (A), 1) and 3) and (1.4) that for any
a€(l1—H,BN1/2)

t m t
YOS X[+ [ Y e 30 | [ o, VS B!
0 0

g=1

t m t
§|Xg\+L/O (1+|1Qi\)du+co(w)2/o 077 (£, Y ) |0~ du
j=1

m t T
+ Co(w) Z/ / 079 (£, Y,2) — 0™ (£, Y )| (r — u) =@ dudr
=170 Jo

T

1l -«

t
< 23] + (Colw)—— + LT) + (Co(w) + OT*) / Y} | udu
0
t t,
+MCo(w)// (0 = )+ [V = Y2 |+ [V = Y2 | ) (r = )™ 'duadr.
0 0
(1.6)

(We use here the equality ¢, = ¢,, for ¢, < u < r.) Denote
C1(w) :=m(Co(w) Ty LT) + | Xo|, Cao(w) := m(Co(w) + CT*). Further, note that

11—«




tr —ty S r—u-+ 0. Also, it follows from representations (1.3) that for any pE (O, H)

¥ -V SL(14+ ¥ )(u—t) +C- Clw,p) (14 Y] ) (w = )7
(1.7)
= Cg(w)(l + |Yt‘i\)(u —t,) 7,

where C3(w) = LT H=r 4 C - C(w, p).

Moreover, for 3 > «

t, ty
P, = // (r —u)"* tdudr < // (r —u)? +6°)(r —u)~* 'dudr

< (B—a)” / F=dr + a~ 156/(T—t7~) “dr,

0 0

and for any k = 0 and any power m > —1

Th+1 Thit1
/ (r —t.)"dr = / (r —73)"dr = C10™ T with O = (7 + 1)1

k k

whence

t T
/ (r—t,) %dr < / (r —t,.) “dr = C{N§'"~* = C16~ . (1.8)
0 0



Therefore
P; é ClTﬁ_a—i_l + 04_10156_a é ClTﬁ_a—i_l + Oé_lCl —: (. (1.9)

Estimate now -
Qt = / / ‘Yj — }/;i| (’r' — u)_o‘_ldu d?“,
0 Jo

using (1.7) and (1.8):
t  pty
Q< (1+ Yt(s’*) / / (u—t,)?P(r —uw) "> dudr
0 Jo

(1.10)
t
< Cs(w)(1+ Yt(s’*)(SH_poz_l / (r—t,)"%dr < Cy(w) (1 + Yté’*)(SH—a—p?
0

with C4(w) = Cs(w)a™t - C1. Note that Y, := SUPg< <y V2| < coforanyt € [0,T] as.
Substituting (1.9) and (1.10) into (1.6), we obtain that

VP = Cs(w) + Ca(w /\Y5|u “du+ Cy(w)(1+ Y, )7

ty
+ Cg(w // ©r ydudr

with C's5(w) = Cs(w) + M Cy(w)Cs, Cs(w) = M Cy(w). To simplify the notations, in what

(1.11)



follows we remove subscripts from C'(w), writing C'(w) for all constants depending on w.

So we can write
t t ty
Vot so@(teviate s [ ucdus [ puduar). a2
0 0 JO

In turn, we can estimate fo @S,udu. At first, similarly to the previous estimates,

t

Y — v < )[/ts (1+|Y5‘)dv—|—/s<1—|—‘3/'t‘i|)(v—u)_adv

u

te  pto
/ / o (ty, Y5 o(t,, Y;‘i)| (v —2)"* tdz dv]

< Ow )[(t — )l / V7| (0 —u)™ O‘dv+55/ts(v—tv)o‘dv

te  pto ts [t
—|—/ / gpv,zdzdv—i—/ / ‘Yf—l@i“v—z)_a_ldzdv];

(1.13)



multiplying by (s — «)~*~! and integrating over [0, t,], we obtain that

te 5
/ Ysudu = C(w) Z Q’i, (1.14)
0 i=1
where
ts ts
QL = / (Lo — 1) = (s — u)=ldu < / (s — u)~2du < C; (1.15)
0 0
ts te
Q? = / (s — u)_o‘_l/ ‘Yt‘i| (v—u) “dv (1.16)
0 U

t

S ‘Yt‘i| (s —v) " **dv,

/ (v —u) s —u)"* tdudv < C’O/
0 0
where Cy = fooo(l + 1)~ Ly~ *dy; according to Lemma 1.2

ts ts
Q3 = 55/ (s —u) > ! / (v —ty) “dv du
0 U
<csPsTe <.

(1.17)



Further, using estimates (1.7), we can conclude that

s ts  pto
Qs ;:/ —u) 1/ / Pv,2dz dv du
ty
/ / / Ou (s —u)" " 1dudzdv<0/ (s—v)o‘/ v Az dv.
0

(1.18)
At last, using estimates (7) and Lemma 1.2, we can conclude that.
ts ts to
Q1= [ emwt [7 [ o w2y v
O u u
ts ts to
<o [(o-wt [ [Tz dvdu 58 (14 yp]) 419
0 u u

< Cw)(

Jar=ee.

Now, denote ¥, := Ysé’* + fgs ©s wdu. Note that the integrals Qg are finite for s = k0, i.e. for
any s € [0,7T], including s = t5. Then it follows from (1.12) and (1.14)—(1.19) that

t
b < Clw) (1461 emr 4 / (= )2 + 0~y do).
0



Let e > 0 be fixed. Note that all constants C'(w) are finite a.s. and independent of §. Thus, we can
choose 6y > 0 and Q. 5, , such that C'(w)dy " < 1/20n Qe 5., and P(Qe 5,.,) > 1 — €.
Then forany w € . s,

'
v S Ow) + +C(w)/ (= v)2 + o),
0
whence .
< 1 2c 20,2« vd :
Yy S (w)( + ¢ /O(t V) “Fu T %Y v)

and it follows immediately from the last equation and Proposition 1.1 that ¢y < C’(w) whence, in
particular, |Y,’| < C(w), t € [0, T, and fots oudu < C(w). Moreover, from (1.13) with v = ¢,

o t _ _ . .
r < s, taking into account that [, * (v — t,,) " “dv < 6~ *(ts — t,-), we obtain the estimate

S

V2 = V2| £ Cw)((ts — )17 + 077 (ks — t) + (8, — 1)

+gH=r /tts (v = 1)~ %dv) £ C(w)(ts — t,)' 7",

™

and the statement (i) is proved. (i) Let |b(t, )| = b, |o(t,x)| < 0. Then itis very easy to see that



the estimate (1.11) will take a form

£t
‘Y;‘S‘ < C(w)(l +/ / ©Or du dr),
0o Jo

(1.13) will perform to

ls

Y —Y?| < C(w) <(t8 — )T (6° + 5H—P)/ (v — ty) " “dv

ts o
+/ / @U,Zdzdv>

and instead of (1.14)—(1.19) we obtain

ts ts tv
[ eeatnz e i+ [ (-0 [T puadzan),
0 0 0

whence the proof easily follows.



1.2 The estimates of rate of convergence for Euler approxima tions of the
solutions of pathwise equations

Now we establish the estimates of the rate of convergence of our approximations (1.4). We establish
even more: an estimate of convergence rate for the norm of the difference X; — Y;‘S in some Besov
space, similarly to the result of Theorem 1. Denote A, 4(X,Y?) := | X, — Y? — X, + V7| and
assume for technical simplicity that Ly = L, Mpx = M in (A) and (B).
Theorem 1.4. Let the conditions (A)—(C) hold and also
D) 1) |b(t,z) —b(s,x)| < Clt—s]",C >0,2H -1 <~v<1;

2) the exponent 3 from (A) 3) satisfies 3 > H.

Then: (i) for any € > 0 and any p > 0 sufficiently small there exists 6y > 0 and Qg,(go,p such that
P(Q:5,p) >1—candforany w € s 5,.,,0 < o

ts

Usi= sup (13, =¥+ [ 800 Y0)| (5= 0) ) £ C(w) - 82171,
0Ss<T 0

where C'(w) does not depend on § and ¢ (but depends on p);

(ii) if, in addition, the coefficients b and o are bounded, then for any p € (O, 2H — 1) there exists
C(w) < oo as. such that Us < C(w)6?H =177 C(w) does not depend on 4.



Proof. (i) Denote Z? := supg<,<; ‘XS — Y85|. Then

Z? = sup |X,—-Y?| < sup / 1b(u, Xo) — b(ty, YY) du

0<s<t 0<s<t
+ sup !/ (0" (u, Xy) — 0 (tu, VY ))d B </ b(u, X,) — b(u, Y.0)|du
0<s<t 0

0<s<t

+ sup Z | / (089 (u, V) — 0 (1, Y2))dBJ|
0§s<t,j:1 0

+ sup / Uty YO) — 0% (t,, Y2 ))dB! | =Y T
0S8<t,21| 0( ( ) ( ))dB,,| ;k

(1.20)



Now we estimate separately all these terms. Evidently,
t
I < L/ 70 du. (1.21)
0
Condition (D) 1) implies that for 6 < 1
t
I, < C’/ lu —t,|" du <08 < 0oL (1.22)
0

As it follow from Theorem 2.2, for any € > 0 and any p € (0, H) there exists dg > 0 and

Qe 5,0 C Qsuchthat P(Q. 5, ,) > 1 — ¢ and C'(w) independent of € and § such that for any
w € Qe 5,,p itholds |V — Y2 | < C(w) |t — s/ 7" In what follows we assume that

d < dg < 1. Therefore

LESL-Cw)d? . t<Cw)d" " weQ s, (1.23)



Now we go on with Iy. It follows from (1.2) thatfor 1 — H < o < 1/2
m t P . .
L0 | [ ot x) - ot ¥
i,j=1 -0

t r . . . . . . .
[l < 0w X o V) o Y G2

o Jo

x (r—u)"* !du dr] =: I7 + Is.

Evidently,
t
I; = C(w) / Zgu_o‘du. (1.25)
0
According to [Nualart and Rascanu (2000), Lemma 7.1], under condition (A)

|0'(t1,£€1) — O'(tg,.CCQ) — 0'(t1,£€3) -+ 0'(t2,334)| é M \xl — X9 — X3 -+ 334‘

3 - - (1.26)
+M‘$1—$3‘<|t2—t1| —|—|$1—$2| —|—|$3—£U4| )



Therefore, Ig < Z,lfzg I, where
t r
Iy = C(w)/ / X, = Y?| (r —uw) " tdudr,
0 Jo

t r
Ip = C(w) / / X, - Y2 |X, — Xu|" (r —uw)~* Ldudr,
0 Jo

t r
I;1 = C(w)/ / X, -Y? |Y7fs — Y,fr" (r —u)~* tdudr,
o Jo

t T
Iy = C(w) / / A (X, Y)(r — 1)~ dudr.
0 0

Taking into account that 3 > H > «, we obtain that

t
Iy £ C(w) / Z0 du. (1.27)
0

As it follows from [Nualart and Rascanu (2000), Theorem 2.1], under assumptions (A) and (B) for any
0 < p < H there exists such constant C'(w) that

sup | X;| £ C(w), sup |Xi— X, SCW)lt—s|"". (1.28)
0St<T 0Ss<t<T

Moreover, we can choose p > 0 and o > 1 — H such that x(H — p) > a and



H —p>2H — 1,because kH > 1 — H. In this case

t T T
Io < Clw) / 7 / (r — w)s =P~y i < C(w) / Zidr.  (1.29)
0 0 0

It follows from Theorem 2.2 that on 987507,) the same estimate holds for /7.

Now estimate I5.

t
I < C(w)/ 0(w, Y2 — o(t, Y2)| u“du
0

t T
+ C(w) / / o (r, Vo) —o(t, Y?2) — o(u,Y0) + o(tu, Yj)| (r —u)~* tdudr
0 Jo

=: 13 + 114.



Obviously,

I3 £ C(w)d” (1.30)

14 £C(w // // )~ 'dudr

sC / / 87 (r a_ldudr—l—/ / ((r—w)? + (r—uw)?=")dudr
0o Jt.
< C(w) (677 + §H—P), (1.31)
Similarly,

/ ‘a (ty,Y?2) — tu,Y‘S)‘u_o‘du

(1.32)

// o(t, Y2) — o (t, Y2) — 0(tu, YY) + o (t, Y,

T—u T 1dUd7°— 115_|'Il6



Here
¢
Ii5 < C’(w)/ sH=Pu=du < C(w)éM ~*; (1.33)
0
t r
Iis < C(w) / / SH=P (1 — 1)~ Ly dr < Cw)sH 2. (1.34)
0 Jo
Substituting (1.21)—(1.34) into (1.20), we obtain that on Qg,(go,p
t ¢
70 < C(w)(/ Z0r=%dr 4 §H P 4 gH =P +/ HTdr), (1.35)
0 0
where 0, fo ru(X,YO) (r —u)~* Ldu. Recall that H — p > 2H — 1, therefore
¢
70 < C(w)(/ (Z2r=* +6,)dr + 52H_1_p).
0

We now estimate 6,.. Evidently, for t > u

t
Bra(XY) S [ Jblo Xo) ~ bt Y0 ds + 3

1,7=1

/ o' (s,Xs) — 0" (ts,Yy))dBL] .

Therefore, using inequality (1.2), we obtain that 0; < 22:1 J}., where



b(s, Xs) — b(s, Y?)

I
= [ [ b v — v v
I

ds(t — u) " tdu,

ds(t — u) " tdu,

blts, Y2) = blts, V2| ds(t — w) =~ du,

o(s, Xs) —o(s, Y| (s —u) " %ds(t —u)~* Ldu,

(s —u)~%ds(t — u) " du,

/
[ oo v = ot 2
/

o(ts, Y2) = o(ts, V)| (s = w) ™ ds(t — )~ du,

o(r,Xr) —o(r, YT‘S) —o(v, Xy) + o(v, YU‘S)

tt/r
u Ju




It is clear that
t s
J1 S C’/ Zg/ (t—w) " lduds, Jo < C87, J3 < Cw)dt7.
0 0

Further,
t s
Jy S C/ Zg/ (s —u)~%(t —u)~* duds.
0 0

As we noted before, the inner integral fos(s —u)"%(t —u)" du < Cy(t — s) 72,
Co = fooo(l + )~ ty~*dy. Therefore J; < C fg(t — 5)72%Z%ds. Similarly to J5,
Js < C(w)d7, and similarly to J3, Jg < C(w) < C(w)dH 7. Further,

t t T
Js < C’(w)(SB/ / / (r—ov) " tdodr(t —u)"* tdu £ C(w)d”;
0 Ju Ju

similarly Jg < C'(w)é . Now we apply to J; the inequality (1.26) and obtain the following

estimate of the integrand:

o(r, X,) — o(r, Y0) — o(v, X,) + (0, V)| £ M [Am(x, y9)
(1.36)
X, = YO (r = 0)® + | X, = V2| X, = X, + | X, — V2| [V —Yj|“].



According to this, we write J; < ,tilo Ji., where, in turn,

t t T
Jio = C(w) / / / Ao (X,Y0)(r — o) 2 rdodr(t —u) " tdu
0 Ju Ju

w) /Ot /0 /Ov(t—u)—a—ldum,v(x,yé)(r—v)—a—ldrdv

< C(w )/ (t— 1), dr:

J=C /// X, = Y2 (r—v)’ " dudr(t —u) " du
/25/ /ur(r—v)ﬁ_a_ldv)dudr

< Cw /(t—r) 7. dr,

||/\

/ | X, Y‘S X — Xol™ (r —v) " dodr(t —uw)~* 'du

cw |
<C / / / Z0(r —v)fH=P) ==Lyt — )" Ydudr £ C(w )/ Z0(t — r)~%dr,

0



and Ji3 = C'(w) fot Z2(t — r)~“dr is obtained the same way. Summing up these estimates, we
obtain that

t
TS C) [ (t=r) (284 0)ar
0
whence

t
0, < C(w) ( / (t—7)72(Z8 + 6,)dr + 677 + m). (1.37)
0

Coupling together (1.35) and (1.37), and taking into accountthat H — p > 2H — 1,v > 2H — 1,

we obtain

t
Z2 4+ 6, < C(w) ((52H_1 + / ((t—=7)2* 47 ) (22 + QT)dr>
o (1.38)
< C’(w) <52H—1 4+ tQa/ (t N T)_2a?“_2a (Z;s + Qr)dff')
0

The proof now follows immediately from (1.38) and Proposition 2.1. The statement (ii) is obvious. [

Remark 1.5. In [Nourdin and Neunkirch (2007)] it is proved that |Xt — Yt‘s‘ 6 2H aimost surely
converges to some stochastic process &;, which means that the estimate of the rate of convergence

in Theorem 1.4 is sharp.



1.3 Approximation of quasilinear Skorohod-type equations

Here we assume that our probability space is the white noise space

(Q,F,P) = (S'(R), B(S'(R)), i), ¢ is the Wick product, By = (w, Iljg +1) is Brownian motion,
WO = BY s the white noise (see [Holden et al. (1996)] for definitions). Next, in order to introduce
an fBm with Hurst parameter H > 1/2 on this space, we define for f : [0, T] — R the fractional

integral operator
=K [ (o))

where K is some special constant, and set My (z) = M1}y 4(x). We also define for
f,g:10,T] — R the scalar product and the norm

(f.g)w = H2H — 1) / / FOg(s) |t — s2P 2 deds, 1% = (f. Fn

The process

Bt - <Mt7w>7 te [OaT]

is the fBm with Hurst parameter H. Letalso W = B be the fractional white noise. Detailed
description of the white noise theory can be found in [Elliott and van der Hoek (2003)],
[Hu and @ksendal (2003)].



Consider quasilinear Skorohod-type equation driven by fractional white noise
t t
X@y:XU+/"M&X@%@mg+/ﬂﬂgxgyww@ds (1.39)
0 0

with non-random initial condition X . Suppose that coefficients b and o satisfy the following:
(E) 1) The linear growth condition and Lipschitz condition on b:

b(t, z,w)| = C(1+[z]),  [b(t,2,w) = bt y,w)| = Clz —yl;
2) “Smoothness” of bw.r.t. w: forany t € [0, T] and for h € L!(R)
|anw+M—b@%wH§Cu+mmAéM@d&
3) Holder continuity of b w.r.t. £ or order H with constant that grows linearly in x:
b(t, z,w) — b(s, z,w)| < C(1+ |2]) [t — 5" ;
4) Holder continuity of o w.r.t. ¢ or order H':

o(t) —a(s)| < Clt—s|".

Remark 1.6. The condition (E) 2) is true if, for example, the coefficient b has stochastic derivative
growing at most linearly in . It is obviously true if b is non-random.



Define for ¢ € [0, 1] 04(s) = o(s)1[p 4)(s) and denote

7.(t) :expO{_/ota(s)st} :exp{—/RMat(s)dBo(s)— % Hatuids}

the fractional Wick exponent. It follows from [Mishura (2003), Theorem 2] that under assumptions (E)

equation (1.39) has the unique solution that belongs to all L? and can be represented in the form
X(t) = J,(t) o Z(¢),

where the process Z (t) solves (ordinary) differential equation

Z(t) = Xo+ /t Jy(8)b(s,J;1(s)Z(s),w + Moy) ds. (1.40)



This gives the following idea of constructing time-discrete approximations of the solution of (1.39).
Take the uniform partitioning {7, = nd, n = 1,..., N} of the segment [0, T'| and define first the

approximations of Z in a recursive way:

~

Z(O) — XO) (1 41)

~ ~ ~ ~ ~

Z(Tns1) = Z(10) + J(1)b(1n, I (1) Z (1), w + M5,,)9,

where

t

- N 1, 2

) = exp{ = [ G618, ~ 5 0.7 |
0

5(3) — O-(ts)a Op = 5]1[0,7'”]-

Note that both |7, ||,, and M o, are easily computable as finite sums of elementary integrals.

Further, we interpolate continuously by

~ ~ ~

. t
Z(t) = Xo + / Ttb(te, T (1) Z (L), w + M, ) ds, (1.42)
0

where ngy = max{n : 7,, < s}, and set

X(t) =T-mzu,,J () Z(2), (1.43)

(0,1]

where for b € S’(IR) T}, is the shift operator, Ty, F'(w) = F(w + h).



Lemma 1.7. Under the assumption (E) 1) the following estimate is true
e*1b(t, e” Mz, w) — eb(t, ez, w)| £ C(1+e™ + e + |]) g — .
Proof. Write

|eo‘1b(t, e Mx,w) —e*?b(t,e” x,w) |

< le*b(t, e” Mz, w) — e b(t, ez, w)| + [e*b(t, e M2z, w) — e*2b(t, e 2w, w)|
and apply (E) 1). O
Lemma 1.8. Let &1 and &> be jointly Gaussian variables. Then for ¢ = 1
Efef — e2|™ < C(L,q) (E(€1 - &)%)",

where L = max {Ef%, Efg}

Proof. By Lagrange theorem, Cauchy—Schwartz inequality and Gaussian property,

e[t — o[ < (Eehs 4 Bl - &) < 000 (E(6 - €)°)".

as required. O



Ouir first result is about convergence of Z to Z.

Theorem 1.9. Under conditions (E) for any p = 1 the following estimate holds:

~ 2p
E ‘Z(t) - Z(t)| < O(p)s?PH. (1.44)
Proof. Firstly, we remind that Z () belongs to all L? and E | Z(¢)|? < C(q). Therefore equation
(1.40) together with the condition (E) 2) gives E | Z(t) — Z(s)|? < C(q) |t — s|?. Equation (1.41)

and the condition (E) 1) allow to write

~

Z(ran)| £ (14 C8) |Z(ra)| + C8T(ma) £ €| Z(m)| + CoT(r).

This gives an estimate

Z(r)

N-1
k=0
Then for any ¢ = 1 by the Jensen inequality,

N—-1

"<y TUm)s,

k=0

()




Taking expectations, we get

~

E|Z(r)| < Cla) Y- ETom)s

Using that each Jis exponent of Gaussian variable and ¢ is bounded on [0, T'], we obtain

N—-1

<o)y 6 =Clg).

E ‘Z’(Tn)

oy
(@)

This through (1.42) and (E) 1) implies E |Z (t)|q < C(q).

Now write
2() - Z(t)| S h+ b+ I+ L+,






We first estimate using Lemma 1.7

Ir = C/Ot (14 Jo(s) + J(ts) + 1 Z(85)]) (

/0 (o(u) — 5(u)) dB,

%D ds

+|Bs — By | + 5H> ds,

1 ~
+ |o(ts) (Bs = B(t)| + 5 |los )3 = 3,

~

gq[a+LwHJ@»Hﬂmw
| ( /0 (o(u) — 5(u)) dB,

~

where the inequality ‘HO’SH?_( — |lon,

31‘ < C6* is due to E 4) and boundedness of o on [0, T].

Applying Cauchy—Schwartz inequality, we arrive to

T 1/2
I, C (/ (14 J2(s) + J2(ts) + ZQ(tS))ds>

. (/OT ((/O (o(u) — 5 (u)) dBu>2 + (By — By )* + 52H>ds> - .



Further, from (E) 3)
I; sc/ $) + | 2(s)]) dss™.
from (E) 2)
ggcf $) + |2(s)]) dsoH.

Condition (E) 1) allows to estimate

t
1<0/

gsc/ﬂz L) ds.

~

Z(ts) — Z(ts)| ds,




Summing up these estimates yields

T 1/2
‘Z(t) — Z(t)| <C (/ (1+ J2(s) + J2(ts) + Z2(ts))ds>

. (52H +/0T(</08 (o(u) —a(u)) dBu)Q (B, - st))ds> 1/2

+CATV()

Then, using (discrete) Gronwall inequality, we get

d&+c/ﬂz t,)| ds.

1/2

~ T ~
‘Z(t) - Z(t)‘ <C (/ (1+ J2(s) + J2(ts) + ZQ(ts))ds>

(52H /T(</OS(a(u)—E(u))dBu)2+(Bt B2))ds>

+C’/ |Z(s) ts)| ds.

Then we raise this to the 2pth power and use Jensen’s inequality. The last term will be bounded by

1/2



C (p)52p, in the first one we apply Cauchy—Schwartz inequality for expectations, Jensen’s inequality

and use uniform boundedness of moments for £, J, and j(for J, and jit follows from the fact that

oy

the both are exponents of some Gaussian variables with bonded variance) to get

2P < 2pH
=C(p)|o o(u)) dB.,
1/2
4p> ) '
Using again that E |-|*” = C(p)(E (+)2)?” for Gaussian variables, we get
2P < 52pH
< C(p) o (u))
2)p)

< C(p) (6" +|jo — F|57) < C(p)s*PH,

~

Ep@—ﬂw

+@wrﬂ%

~

EV@—H&

L)

+¢BFB%

the last is due to (E) 4). This is the desired result. O



Now we are ready to state the main result of this section.
Theorem 1.10. Under conditions (E) approximations X defined by (1.43) converge to the solution

X of (1.39) in the mean-square sense, and moreover

E(X(t)— X(t))? < 8%,

Proof. Estimate first for h € L!(R)

ThZ(t) — Z(t) £ Ay + As + As

t
A, = / T3 To(3)|p(s, (Tu Ty YT Z(3),0 + b+ M)
0

= b(s, (TnJy ) Z(s),w +h + Moy)| ds,
Ay = /Ot ThJJ(s)‘b(s, (ThJ =N Z(s),w + h + May)

= b(t, (Tnd5 () Z(s),w + May)| ds,
s = [ [Tda (6, (1005 (6 2(6). 0+ Mo

— J(8)b(t, J; 1 (8)Z(s),w + Mos)| ds.




The condition (E) 1) gives A1 < C fot 'ThZ(s) — Z(s)| ds, the condition (E) 2) gives

A <C / (1+12(s)]) ds / Ih(s)| ds

and Lemma 1.7 with boundedness of o yields

T
As < 0/0 (14 Jo(5) + TuJ (o) + | Z(s)]) ds

/R Mo (s)h(s)ds| .

gc/o (1+Jg(s)+ThJ(a)+\Z(s))ds/Rh(s)ds.

Applying Gronwall lemma, we get

TLZ(1) — Z(1)] gc/o (1+Jg(s)+ThJ(a)+\Z(s))ds/R\h(s)\ds.

Raising this inequality to the 2pth power, taking expectations and using Jensen inequality and
boundedness of moments of Z, J, and 1},J, (the last follows from the Girsanov theorem,
Cauchy—Schwartz inequality and assumptions on h), we get

2p

5 T
E (T 2(t) — 2(1)™ < C(p) ( | nts) ds>



Further,

E(X(t) — X(1))° < 3(A; + Az + A3),

Ay = E(TOT azn,, (2(t) — Z(1))),

Ay = E((J-o(t) = T(0) T-rszn, , Z(1))°,
Ay = E(Jo (@) (Tonto (1= Toni(a10,y—on)) Z(1))

where

1
J_o(t) = exp {/ Mo (s)dB? — 5 HatHi} ,
R

— - L~
J(t) = €exXp {/RM(UH[O,t]>(5)dBS — 5 HGH[OJ]H?—(} .

Now estimate using Cauchy—Schwartz inequality, Girsanov theorem (which can be applied as o and



o are bounded on [0, T']) and Theorem 1.9
—4 =04\ /2
Ay £ (ET (DET izny, (2(0) — Z)") 7,
- ~ on\1/2
< C(EJ(1)(2() - Z(1)")
< c( EJ2(t)E (Z(t) — Z(t))S)
Similar reasoning and Lemma 1.8 imply
N 1 ~ 2 ?
42 = CE( [ M@0 - 0(s) 4B+ 5 (ol = [Fal7,) )
Using condition (E) 4), we obtain A5 < C'§2H . And for A3, using the above estimate, we get

t
Az < / |M (51 4 — o) (s)| ds < C&*H.
0

This concludes the proof. O

Remark 1.11. Itis natural to assume that the coefficient b is expressed in the terms of fBm B rather
then in the terms of underlying Brownian motion BO (or underlying “Brownian” white noise w.) This

justifies the fact that it is & not M o what is discretized in (1.41).



Remark 1.12. Similarly to the proof of Theorem 1.10 one can prove that for any s = 1
~ S
E(X(t)—X(t)| <68,
The case s = 2 is considered in the paper to keep classical “scent” of results.
Remark 1.13. Results of this section can be generalized for random initial condition X in the
following form: under conditions (E) and LP-integrability of the initial condition one has convergence
in any L® for s < p with
~ S
EIX() —X(t)| <6,

Proofs need some simple changes: Holder inequality for appropriate powers instead of

Cauchy-Schwartz one.



2 Approximation schemes for stochastic differential equat lons

In Hilbert space

Numerical solution of stochastic differential equations (SDE) has numerous applications. A classical
example of application is based on Feynmann—Kac formula, which provides a connection between
solution of a parabolic partial differential equation and solution of an SDE. Many equations, which
arise in modeling of physical, chemical, biological phenomena, stock prices, involve randomness.
This randomness, however, is not always well modeled by the classical white noise — Wiener
process. Nevertheless, often, with proper choice of scale or by considering asymptotic behavior of a

system, it becomes Gaussian.

The idea to solve an SDE numerically with a method similar to the Euler’s method for non-random
differential equations originates from [Maruyama (1955)]. Further development of the theory is
connected with [Milstein (1974)], where a higher order accuracy scheme was constructed, and
[Wagner and Platen (1978)], who proposed a method to construct schemes of arbitrary order via
stochastic Taylor expansions. The monographs [Milstein (1988)], [Kloeden and Platen (1992)]
contain virtually complete theory of approximation of numerical solution of finite systems of SDE with
regular coefficients. It is worth to mention also the paper [Schurz (1999)], which contains close to

exhaustive (for the publication date) bibliography on numerical solution of SDE, and a



monograph [Kuznetsov (1998)], which, in addition to extensive theory of numerical solution of SDE,
sets a new (other than those in [Milstein (1988)], [Kloeden and Platen (1992)]) method of generating
of multiple Wiener integrals. We mention also the paper [Kolodii (1997)], where the theorem on
convergence of approximations of Ito—Volterra equations is proved (without giving the rate of
convergence). Closely related papers are those concerned with numerical treatment of stochastic
partial differential equations (SPDE). These are, in particular, papers [Gyongy and Krylov (2003a)],
[GyOngy and Krylov (2003b)], where the rate of convergence of SPDE by “splitting-up” methods is
estimated, [Millet and Sanz-Solé (2000)], who considered approximations of stochastic wave
propagation equation, [Gydngy and Millet (2005)], who considered approximate solution of SPDE
with monotone operators, [Du and Zhang (2002)], who made an estimate for the rate of convergence
of approximations of linear elliptic and parabolic equations, [Shardlow (2003)],

[Pettersson and Signahl (2005)], who considered approximations for stochastic heat equation, and
PhD theses [Roman (2000)], which treated Runge—Kutta type schemes for parabolic SPDE.



2.1 Approximation of solutions via Milstein scheme

Let X be separable Hilbert space, (€2, F, P) be a probability space, (F3, t € [0,T]) be a flow of
o-algebras, W(t) be JF;-adapted cylindrical Wiener process in X.

Consider a stochastic evolution equation
t t
X(t) = Xo + / (AX(s) + a(s, X (s5))) ds + / b(s, X (5))dW (s). (2.45)
0 0

Here a and b are measurable from [0, 7] x X to X and L5 (X, X), the space of Hilbert-Schmidt
operators, respectively, A : D(A) — X is alinear operator, X is Fy-measurable.

In what follows we omit subscript of the norm ||-|| -, and write simply L5 for L2(X, X') and also £
for L(X, X)), where L(X,Y') is the space of linear continuous operators from X to Y.

The general approach for Milstein scheme is following. Assume that A generates a strongly
continuous semigroup {U (t), 0 < ¢ < T'}. The strong solution of (2.45) is also a “mild”solution,

X(t)=U(t) Xo +/0 U(t — S)a(s,X(s))ds+/0 U(t—s)b(s,X(s))dW(s). (2.46)

The last equation is a particular case of Itd—Volterra type equation, and being able to solve the last



one, we will be ready to apply the obtained results to stochastic evolution equations.

2.1.1 Approximate solution of It 6—\Volterra type equations via Milstein scheme

An abstract I1to—Volterra equation is of the form
t t
X(t) = m(t) + / alt, s, X(s)) ds + / b(t,s, X (s)dW(s), te[0,T], (247)
0 0

wherea: S x X — X, b: S x X — Lo are measurable functions
(S ={(t,s) € [0,T]?: s <t}), m(t) is some JF;-adapted continuous square integrable

process. As in the case of ordinary SDE, Lipschitz continuity and linear growth conditions
||a(t7 S, 33') T a(ta S, y)H + Hb(ta S, 33') o b<t7 S, y)HﬁQ é C ||£C - y” ) (2.4a)
la(t, s, 2)[[ + [|b(t, s, 2)[l ¢, = C(1+ [|lz]) (2.4b)

guarantee that continuous pathwise unique solution of equation (2.47) exists in LQ(Q), moreover
sup E || X (¢) H2 < o0 (see, e.g., [Daletskii and Fomin (1983)]). If the coefficients a, b are
differentiable in first variable, the derivatives a;, by are of linear growth w.r.t. the last variable, and
m(t) has stochastic differential, then, using the stochastic Fubini theorem, we get that the process



X () has stochastic differential
¢
dX(t) = dm(t)+ (a(t, t, X(t)) + / a,(t,s,X(s))ds
0

1 /t bi(t, s, X (s)) dW(s)) dt + b(t,t, X (t)) dW (1).

Assume that the Fréchet derivative -2-b = b/, exists in £(X, £2) and is bounded measurable
function of its arguments. Now we construct approximations of equation (2.47) via Milstein
scheme [Milstein (1988)]. For agiven N € N putd = T/N andlet7, =nd,n =0,1,..., N,

be uniform partitioning of [0, T]. Assuming that some approximation m° (t) of the process m(t) is
given, we construct approximations successively:

Y2, = m’(Tuy1) + Z ( a(Tpi1, i, Y2) 6 + b(Tpy1, 7, YO (W (1ig1) — W ()

7

Ti+1
+/ b;(TnH,n,Yf)b(n,n,ﬁ)(W(s)—W(n))dW(s)). (2.5)



Remark 2.1. Note that formula (2.5) involves multiple Wiener integrals, which have the distribution
hard to simulate. The natural question arises, whether it is possible to get the same rate of
convergence for a scheme which involves only increments of Wiener process? The answer is given
by the well-known “Clark—Cameron paradox” (see, e.g., [Clark and Cameron (1980)]): for dimension
greater than 1 any approximation scheme based on increments of Wiener process on the intervals of
partition has in general the same rate of convergence as Euler's scheme.

Remark 2.2. Integrals in (2.5) are well defined if

Tn+1
[o®

n

2
V. (ot 70y Y2) b, 75, YE) (W (5) — W(Tn))H ds < 0.

Lo

From linear growth condition for b and boundedness of b; we get that integrand does not exceed
C (1 + E||Y||?). Thus the boundedness of E||Y,°||? can be proved by induction in 7 (the rest of

summands in (2.5) are estimated in obvious way with the use of linear growth of a and b).

Note that in this case approximations are not step-by-step, i.e., in order to get the value of the
approximation erﬂ at the node 7,41, we must know not only previous value Yg but also all
preceding values. This phenomenon results not from the choice of the scheme, but rather from the
fact that a solution of (2.47) in general has not the Markov property. Therefore, one cannot formulate
for Ito—Volterra equations the statement analogous to Milstein’s theorem concerning the relation

between global and local rates of convergence, see [Milstein (1988)].



Putting Y°(7,,) = Y,°, we make continuous interpolation

Y5(t) = m5(t) + /Ot a(t, TnS,Y5(7-nS)) ds + /Ot b(t, T, Y‘S(Tns)) dW (s)

+ /0 V(b Tr o YO (10 )BT Ty VO (7)) (W () — W (s, )) AV (5),

where ngy = max{n: 7, < s}. We list assumptions on the coefficients a, b and the

process m(t) which will be used in the following to prove the convergence of approximations.

1) Process my(t) admits stochastic differential
dm(t) = a(t) dt + B(t) dW (1),

coefficients «(t), 3(t) are F;-adapted continuous square integrable processes in X and Lo

respectively, and

T
| B8, dt < o

0

2) Assumptions (2.4a) are fulfilled.



3) The functions a, b are Lipschitz continuous in s:
HCL(t, S, CC) o a’(t7 u, CE)H + Hb(t7 S, ZB) o b(ta u, 513) HEQ

= O+ lzll) [s = ul.

4) The derivatives a;, b} satisfy the linear growth condition:
lat(, s, 2) || + 11b: (L, 5, 2) [l o, = C(L+ [l]]).
5) The derivatives b/,, a’, are bounded, and b/, is Lipschitz continuous in s:
lag (2, s, 2) | o + 1105t 5, %)l £ (x,20) = C
105 (2, 5, ) = VL (t, s )| £ x ) S C'ls — ul.-

1

" ., bl and the function b are bounded:

5) Second derivatives a

%, (2, S7x)||£(X@X,X) + |05 (¢, 3@)“5()(@)(,52) + [|b(t, 3755)“52 = C.

(2.7a)

(2.7b)

(2.7¢)

(2.7d)



Theorem 2.1. If the coefficients of equation (2.47) satisfy the above conditions, and also
2
E Hm‘s(t) — m(t)” < (0¥,
then the approximations (??) converge to the solution of (2.47), moreover

E|X(t) - Y1) < K62 2.8)

Proof. Put Z(t) = E|| X () — Y°(t)||2. We have Z(t) < 3(||m?(t) — m(t)||? + A+ B), where
2

A = E /Ot(a(t,s,X(s))—a(t,Tns,Yé(Tns)))ds

Y

2

B = E /0 <b(t,3,X(s))—b(t,TnS,Y5(TnS)))dW(S)

The plan to estimate both of these integrals is the same: we split integrals into several summands so

that integrand of each summand is increment of a function with respect to a single variable; the



summands are estimated individually. In that way,

A = C(A+ Ay + Az),

A = H/ at, 7., X Tn))—a(t,Tns,Y‘s(Tns))>ds

2

t
< c/ EHa(t,Tns, X(.)) — a(t, 7. Y‘S(Tns))Hst < c/ Z(1a.) ds,
0 0

2

A, = EH/; (a(t,s,X(Tns))—a(t,TnS,X(TnS)))dS

VAN

t 2
C’/O EHCL(t,S,X(TnS)>—a(t,TnS,X(TnS)>H ds

VAN

t
C/ B(1+ X)) 6%ds < 052
0

2

Ay = EH/Ot (at.5, X(r,,) — alt, . X())) ds

To estimate A3, we use the Itd formula (see [Greksch and Tudor (1995)]). Indeed, the process X(t)

Is a sum of continuous process with bounded variation and of a square integrable martingale,



therefore

a(t,s, X(s)) —a(t, s, X (1,,))
_ / d!(t, 5, X (u)) (a(u) + a(u, u, X (u)) + /Ou dl(u, v, X (v)) do
+ /Ou b (1, v, X (1) dW(v)) du
+ /Tn al(t, s, X (u)) (ﬁ(u) + b(u,u,X(u))) dW (u)
T / al, (15, X () ((B(w) + b, X (w))) (B(w) + b(u, u, X () ") du

Here fora € L(X @& X, X), b € L5 we simplified the abbreviation ({e, k = 1} is an
orthonormal base in X):

a(bb’) : Za (bey, bey,).
k=1



The last means not scalar product, but bilinear form arguments. We estimate the last expression as

2
Ha(bbT)H = Z |a(beg, be)|| = HaHE(X@X,X) Z [bex]|” = Hch(X@X,X) HbHc2-
k=1 k=1

Now split A3 into summands, which correspond to the summands in 1td formula, and estimate them
individually:

2

Az =

// (t, 5, X( ))(a(u)+a(u,u,X(u))>dudS
CE/O@—% [l s )]

ns

A

X <Hoz(u H + ||a(u, u, X (u )H) duds

VAN

05// (14 ||1X (u)|?) duds < C&2,



VAN

2

E // tsX
T, 0
E // a, t,s,Xu
0 Ju
t T 0 5
05// B[, (t, s, X (u)|>
0 Ju

(HB Mz, + 16w, X ()], ) ds du < 62,

| [ [ e

X ((6(u) + b(u,u, X (u))) (B(u) + b(u,u,X(u)))T) duds

) + b(u, u, X (u)) dW(u)) ds

2

B(u) + b(u, u, X(u))) ds dW (u)

c / laall i 0B (||, w, X ()2, + 18)IIE, ) du < Co?,

2



2

Az = H// (t, s, X (u )/uat(st( )) dv du ds

05// / B ) (.5, X (s))II% [la}(5. v, X (0)]* dv duds

05// /E L4 X)) dvduds < 05,

Ay = H// (t, 5, X (u )/ubg(s,v,xw))dW(v)dms

0

1A

IIA

2

174N

03 / [ ] Bl X 0. XODIE, doduds
0 Jrp, JO

t s U
< 05/ / / E(l—l—HX(v)||2)dvduds§0(52.
0 Jrp, 4O

Quite analogously, except the fact that we do not use the inequality

t 2 t
EH/---ds _t/EH---H2ds,
0 0




but rather we use the isometric identity

/Ot---dW(s)

B = (C(B1+ By + B3+ By),

/Ot (b0t 7s X (7)) = bt 7, Y (70,)) ) dis

2 t
2
B ~ [ B2, as

we estimate the term B:

2
Ble‘

t t
= C/ E”b(t?TnsaX(Tns)) - b(taTnsay(s(Tns))H2d8 = C/ Z(Tn,) ds,
0 0

2

By, — E‘ /Ot (b(t. 5. X (7)) = b(t. 70, X (7)) ) ds

A

C/tEHb(t,s,X(Tns)) —b(t,TnS,X(TnS))HQdS
0

1A

t
c/ B(1+ (7)) 8 ds < C5°,
0



By = E| /Ot (b(t,s,X(s))—b(t,s,X(Tns))>dW(s)
- /Ot /T b (t, 5, X (u)) b, u, X (w)) dW () dW (s) 2,
By = E| /Ot/ (8, 1. . () b, 0, X ()

2

(T, YO (7,)) b(Tss T, YO (Tns))> AW (u) AW (s)

The term B3 is estimated analogously to A3 (note that the summand involving double Wiener
integral, is canceled in this case; it is the summand having worse rate of vanishing). Note that the
function b’ (¢, s, x) b(s, s, ) is Lipschitz continuous and of linear growth under the assumptions

made, thus the term B, is estimated the same way as A, B. Thus, we arrive at the estimate

Z(t) < 0(52 + /0 t Z(7n.) ds),

which through Gronwall’s lemma leads to Z (t) < C'62 with constant independent of §. Theorem 2.1

IS proved.



2.1.2 Approximations of semilinear evolution equations vi a Milstein scheme

Now turn back to equation (2.45). As it was already mentioned, its strong solution is also mild one,
l.e., it solves the equation

t t
X(t)=U(t) Xo +/ Ut —s)a(s, X(s))ds +/ Ut —s)b(s, X (s))dW(s). (2.9)
0 0
We impose the following assumptions, which guarantee existence, uniqueness and continuity of the
solution of (2.45), (2.9) (the proof can be found in [Greksch and Tudor (1995)]).

(A) Conditions of Lipschitz continuity and linear growth are fulfilled:

la(t, )|l x +[[o(t, 2)[, = C(L 4+ |lzf ),
(2.10a)

la(t, z) = at, y)ll x + 0@, ) =0t y)l,, = Cllz —yllx

(B) The operator A generates a strongly continuous operator semigroup {U(¢),0 <t =< T} on X.

(C) “Smoothness” conditions hold for the coefficients a, b:

[Aa(t, x)|| + [[Ab(E, z)]| ., < C(Q+ 2])- (2.10b)



Under assumption that the derivative b’x is bounded, the Milstein approximations for equation (2.9)

can be constructed using Milstein approximations for It6—\Volterra equations:

qu+1 — U(Tn+1) YE)é
£ 3 Ulrsr — ) (( V)6 4+ b(r, YO (W (riar) — W(m))
1=0

+ /ml b (13, YD) b(7:, Y2 (W (s) — W (7)) dW(s)). (2.11)

7

Using the semigroup property, we can rewrite the last as
Yr?+1 = U(6) (Yﬁ + a(7n, Y.0) 6 + b7, Yf)(W(Tn+1) — W(Tn))

Tn+1
n / . (T, Y2) b, V)

n

< (W(s) — W(r,)) dW(s)), n 0. (2.12)

Remark that approximations are step-by step in this case, thanks to the Markov property of the
solutions of (2.45).



Interpolate the approximations (2.12) continuously:
t
Vi) = U@W)YS+ / Ut = 70,) (a(7. Y2 (7)) ds £ b7, Y (7,)) WV (s)
0

0 (T, YO (7)) b(ns YO (7)) (W (5) — W (7)) dW(s)). (2.13)

Now suppose that the coefficients of equation (2.45) satisfy the assumptions (A)—(C) and the

following conditions which supply the convergence of Milstein scheme for ordinary SDE.

1) The functions a, b are Lipschitz continuous in ¢:

la(t, ) — a(s, )| + [[o(t, ) = b(s, @)z, = Cft = s[ (1 + [[]]). (2.143)

2) The derivatives b/,, a., are bounded, and b/, is Lischitz continuous in ¢:
laz (¢, o)1l - + Hb;(tvxw,c(x,@) = C, (2.14Db)
J6,1,2) — B35, ).y S Cle— 51 2140

1

" ., bl and the function b are bounded:

3) The second derivatives a

||agx(t7x)H£(X@X,X) + ||b/x/x(t7x)HL(X@X,£2) + ||b(t,37)||£2 é C. (2.14d)



Assume also that E || A X0 |* < oc.

Theorem 2.2. The approximations (2.13) converge to the solution of equation (2.45), and moreover
2
E||X(t)-Y°(t)| < K&

Proof. It is proved in [Greksch and Tudor (1995)] that under the conditions (A)—(C) equation (2.45)
has strong pathwise unique solution X (¢), which belongs to D(A) a.s. for a.a. t; also this solution
X () has stochastic differential

dX(t) = Ixyepa) AX(t) dt + a(t, X(t)) dt + b(t, X (1)) dW (¢),
which is used further in 1td formula, and under assumption E || AX( | < oo it holds

sup E||AX(t)]]® < oo.
t€[0,T]

We have
E|[x@) - Y0 <2(BIX@) - X0 + B[X:(0) - Y @) ).

where

X1(t) =U(t) Xo + /0 Ut —7n,) (a(s, X(s))ds+b(s, X(s)) dW(s)).



The difference E|| X (t) — Y°(t)||? is estimated the same way as in Theorem 2.1, except the fact

that I1t6 formula yields another summands, which we estimate:

2
g

[0t [ s Xt A

t S
< Cs / / 10— 7 )2 E (s, X ()2 | AX ()2 duds < C62,
0 Tng

E| /Ot U(t—TnS)/T: b (s, X (w)) AX (u) du dW (s) 2

S

t S
< 5/ / Ut~ 7,)
0 Tng

2
“E [V (5, X ()l x5y IAX ()] duds < C8.



Further,
E||X(t) — X1(¢)]
_E /0 (Ut~ )~ Ut~ 7)) (a(s. X(5)) ds + b(s. X () WV (s))

_E /Ot(/ Ut — 'U)Ade) (a(s,X(s)) ds + b(s, X (s)) dW(s))

gc(a// Ut — )|

(E |Aa(s, X (s))II* + E || Ab(s, X (s))][2, ) dv ds)

2

2

<05// E(1+ | X (s)|) dvds < C8°.

Theorem 2.2 is proved.



Remark 2.3. Itis not hard to see that the proposed method of approximate solution of
equation (2.45) is the well-known (at least for non-random equations) “splitting-up”method. At first we

split equation (2.45) into the following ones:
dX'(t) = a(t, X () dt + b(t, X (t))dW (t), dX*(t) = AX?(t)dLt.
Then consecutively on each intervals of partition we solve approximately the first equation:

eril—ll = Yr? + a(Tnv Yr?) 0+ b(Tnv YT?)(W(TTH-l) - W(Tn>)

b [ B Y YOV )~ Wir)) W (),

n

then the result is plugged as initial condition into the second one:
52 5,1
Yn+1 - U((S) Yn—i—l’

which gives approximate solution of (2.45) (the formula for qufl coincides with (2.12)).
Remark 2.4. Another important observation is that there is no need to solve the equation for X2
from previous remark explicitly, it is enough to solve it numerically. More precisely, in formula (2.12)

one can change the operator U (8) for such U that

U) - T, < co?



with constant independent of . Indeed, the last estimate implies
|u™(6) - up|, < co.
Denote the modified approximations EN/?f and write
ﬁﬂ::w%H§)W+(wm%&wm%wwmm—Wm»
i=0

b [ YD e YOV () - W) W ().

7

Comparing this with (2.11), we obtain

n
) v |2 2 5 _ va|?
EHYn+1 - Yn+1H = C<5 T 5ZEH}Q - Y H )7
i=1
and, using the discrete version of Gronwall's lemma, we arrive at

E|Y? - YV?I|" < cs?.



2.2 Approximation by finite-dimensional processes
As in the previous sections, we start by considering It6—\Volterra equation

X(t)=m(t) + /Ot a(t,s, X(s))ds+ /Ot b(t,s, X(s))dW (s). (2.1)

Assume that its coefficients satisfy the linear growth and Lipschitz conditions:

lat, s, )| + [|b(L, s, 2)[ 2, = C(1+ ||lz]]),

(2.2a)
||a’(t7 S,CC) o a(ta Say)H + ||b<t7 S,CC) o b(t7 Say)HLQ é C ||33 - y“ )
and that there exists an increasing function h(t), ¢ > 0, such that h(t) — O ast — 0 and
la(t,u, x) — a(s,u, x)|| + ||b(t,u,x) — b(s,u, x)|| < h(t —s)(1+ [|z|). (2.2b)

Let {e,,, n = 1} be an orthonormal base in X, denote F/,, = span{e;, i < n}, P, the
projection operator to I,,. We construct the finite-dimensional approximation for equation (2.1) in the
following way:

Xn(t) = Pom(t) + /t Pha(t, s, Xn(s))ds + /t P,b(t, s, Xn(s))P,dW(s). (2.3)



We prove first the convergence E || X, (t) — X (¢)]|> — 0, n — oo, in a more general case.

Let X,, be solution of the equation

t t
Xn(t) = my(t) +/ an(t, s, Xn(s))ds —|—/ bn(t, s, Xn(s)) dW (s),
0 0
where m,, is mean-square continuous adapted process and the coefficients a,,, b,, satisfy

lan(t, s, 2) || + [|bn(t; s, 2)[ o, = C(1+ [|l]]),

(2.4a)
lan(t, s,2) = an(t, 8, y)l| + [0n(t, 8, 2) = 0n(t, 5,9)l ., < Cllz =y
also let there exist such an increasing function h(t), t > 0, that h(t) — 0 ast — 0 and
lan(t,u, ©) = an(s, u, )| + [0 (t, u, ) = bnls, u, 2)|| < h(t = s)(1 + |z]),
(2.4b)

E [[m (t) = ma(s)||” £ B2(t - s).
Further, assume thatfor all £, s € [0,T] and x € X asn — o0

la(t,s,2) — an(t,s,x)|| + [|b(t, s,2) — bu(t,s,7)|,, +E||m(t) — mn(t)||” — 0. (2.5)



Theorem 2.3.  Under assumptions (2.2), (2.4), (2.5) the following uniform on [0, T'] convergence
holds

E|X(t) - X,(0)]|° —0, n— .

Proof. As before, it can be easily shown that E|| X (¢)||?, E|| X, (t)||* are bounded in n and .
Without loss of generality we will assume that

E|m(t) —m(s)[|* = *(t - ).
This immediately implies
E[X,(t) = Xu(s)|” £ Cho(t —s), E|X(t)— X(s)|* < Cho(t—s),  (26)

with 7o (t) = max { h*(t),t}. For positive integer N put § = T'/NN, take uniform partition
T = ko of the segment [0, T'] and consider the processes

0 = m ta s, X°(7, S t s, X°(7, s),
Xo(t) = <t>+/0 (15, X (r,)) d +/Ob<t, XO(r,.)) dVV(s)

Xo@) = mn(t)—|—/Otan(t,s,Xg(Tns))ds—|—/0tbn(t,s,Xg(Tns))dW(s),



where, as before, ng = max{n: 7, < s}. We have

Z3(t) = B||X2(t) — X, (1)||” £ C(A; + Ay),

vl

an(t,s,)(n(Ths))“'an(t’s’)(”(8>)H2

+

bo(t, 8, X () — bu(t, s, Xn(s))‘

2
) ds
Lo

Ay = E/Ot( an (t, 8, Xn(Tn,)) —an@"s’XfL(Tns))”z

t
< c/ E|| X, (10,) — Xn(s)||* ds £ Cho(6),
0

_|_

b (15, X)) = bu(t5, X3(72))|

2
) ds
Lo
t

t
c/ E | X, (7.) — X2 (ra)||” ds:C/ 28 (1) ds.
0 0

VAN

Consequently,

20 = 0(halo) + [ Z3(ra.)ds)



whence with the use of Gronwall’'s lemma we obtain Z° (t) < C'hg(4). Note that the constant here

depends only on constants from (2.4a), thus it is independent of 1, 0. Analogously we get
E|| X (t) — X3(t)||> £ Cho(d). Further,

I

E || X} (T41) = X2 (me)||” £ CE(Im(t) — ma(§)|” + B1 + Ba),

T 1 2
B, = E/k+ <Ha(t,s,X5(7'ns))—an(t,s,Xa(Tns))H
0

2
) ds,
Lo

2
an (t, S, X6(7n3>) — an (tv S, X;SL(TTLS» H
2
)ds
Lo

+ H(t, 5, X (70.)) — bu (¢, s,X(TnS))|

Th+1
By = E/ <‘
0

oty 5, X0(1,.)) — Do, S,Xg(Tns))‘

< CZEHXfS ) — X2

The term Bj vanishes as n — oo by the dominated convergence theorem (integrable dominant is



C(1+ || X (7n,)

we obtain

|2)). Convergence By — (0 as n — 00 can be proved by induction in k. Hence,

limsup B | X (%) — X (1) |* £ Chol(9).

n—00
Mean-square continuity of X (¢) and X,, () (the estimates (2.6)) imply
limsup, .. E||X(t) — X, (t)||" < Cho(8). Here left-hand side does not depend on 8, while
the constant in the right-hand side does not depend on ¢, thus, passing to limit as 0 — 0, we get the
desirable result. Theorem 2.1 is proved.
Remark 2.5. Note that in this case standard for this paper argument with the use of the Gronwall
lemma does not work. The point is that by use of the Gronwall lemma we aim at getting an estimate
like E|| X, (t) — X (¢)||? £ 0y, where o, is certain vanishing sequence, which depends on initial
condition and coefficients (“convergence rate”). But, unfortunately, this dependence is very unclear
even if the coefficients depend linearly on x.
Corollary 1. Assume that the conditions (2.2) hold. Then the finite-dimensional approximations
X, (t)given by (2.3) converge to the solution X () of equation (2.1) in mean-square sense, i.e.,
uniformly in ¢ € [0, 7]

E||X(t) - X,(8)]|*—0, n— .



Proof. Trivial estimates || Ppal| < ||a|| and || Pob Pyl 2, < 1|0 2, imply that the assumptions (2.4)
on the coefficients of equation (2.3) are fulfilled. Conditions (2.5) hold evidently. Therefore, we can

apply Theorem 2.3. Corollary 2.1 is proved.

Consider particular case, when he coefficients a, b are independent of ¢.

Corollary 2. If the coefficients of the equations

X(t) = Xo—i—/o a(s,X(s))ds—l—/O b(s, X(s))dW (s),

X, (1) = Xg+/0 an(s,Xn(s))ds+/0 b (5, X () AV ()

satisfy Lipschitz and linear growth conditions (2.10a) with common constant and if for s € [O, T],

reX
lan(s, @) = a(s, 2)]| + [|ba(s,2) = b(s, 2)| o, + E|IXg — Xo|* —0, n — oo,
then the (uniform in t € [0, T']) convergence takes place

E|X,(t) - X#)|*—0, n— .



In particular, finite-dimensional approximations
t t
Y, (t) = P, Xo + / Poa(s, Y, (s)) ds + / Pob(s, Y, (s)) P, dWW(s)
0 0

converge in mean-square sense to X (7).

Now consider equation (2.45) and assume that conditions (A)—(C) of subsection 1.2 hold. Assume
also that F/,, C D(A). (This holds, e.g., if A is a differential operator and F,, is set of polynomials.)
Then the operator A,, = P,, AP,, (being bounded) also generates strongly continuous semigroup.

We define the finite-dimensional approximations of equation (2.45) as solutions of the equations

Xn(t) = P, Xo + /Ot (PoAX(s) + Poa(s, X (s))) ds + /Ot P,b(s, X(s)) P,dW (s),

X (t) = Up(t) Xo+ /0 t Un(t—s) <Pna(s,Xn(s)) ds+ P,b(s, X (5)) Py dW(s)), 2.7)

where U, (t) = e»!. Itis clear that due to boundedness of A,, the conditions (A)—(C), which
guarantee existence and uniqueness of solution, also hold for this equation. The verification of

conditions (2.2) and (2.4a) is of no difficulty. First of the conditions of (2.4b) can be rewritten in the



following way:

t
H/ W) AnFualu, 7) dv / Un (v —u) ApPob(u, z) Py, dv

This is true, for instance, in the case when integrands are of linear growth, that is, when

Lo

= h(t—s)(1+ lz).

1Un(v =) Ap Poalu, )| + |Un(v = w) An Pob(u, ) Pol| 2, = Cn(1 + [lz]]).

It AP, = P, A (e.qg., if {en} are eigenvectors of the operator A), then there are no problems, as

the left-hand side expression is equal to
| PU (v —u) Aa(u, z)|| + || PoU (v — u) Ab(u, x) PnH‘,:2
and can be estimated from above by C(|| Aa(u, x)|| + || Ab(u, z)|| ~_ ).

Another way to construct finite-dimensional approximations of (2.45) is as follows. If the operator A is
continuous, then by Corollary 2 of Theorem 2.3 no further assumptions are needed for convergence.
Thus, if we can construct approximations of the solution of equation (2.45) with unbounded operator

by solutions of equations with bounded operators in their right-hand side, then we can construct

finite-dimensional approximations for (2.45). The next section is devoted to this problem.



2.3 Approximation by solutions of SDE with bounded coefficie nts

We will consider approximations of solutions of equation (2.45) by solutions of equations with
bounded coefficients. Assume that the coefficients of equation (2.45) satisfy conditions (A)—(C). For
h > 0put Ay, = h=Y(U(h) — I) € L and consider the equation

XM () = Xo + / t (AhX(h)(s)+a(s,X(h)(8)>)ds+ / tb(s,X(h)(s))dW(s). (2.8)

Due to the Lipschitz continuity and linear growth of a, b and boundedness of A, there exists unique

solution to this equation, which is also a mild solution, i.e., a solution to the equation
t
XM (1) = UM (1) X, + / UM (¢ — s) <a(3, XM (s))ds + b(s, XM (s)) dW(s)),
0

where UM (t) = eArt. Assume further that E|| AX(||? < co. As it was already mentioned, this
implies sup; ¢ 77 [|AX (t)||* < oc. The following theorem is true.



Theorem 2.4. If the coefficients of equation (2.45) satisfy conditions (A)—(C), then the
approximations X () converge to the solution X(t) of this equation, moreover

E HX(t) _ X(h)(t)H2 < Ch2/3.
Proof. It is known (see [Butzer and Berens (1967)]) that
U )z — UM (1) || £ wr(R'/?, z) + ChY? ||z (2.9)
with constant independent of /. Here wy is the modulus of continuity of the semigroup U(t):
wr(e, ) zsup{ WU@)x—U(s)z||,0=s<t=T, |[t—s| < 5} < Ce||Ax]|.

The inequality (2.9) implies in particular that the norms ||U (%) (¢)|| are bounded uniformly in A and
t € [0, T)]. Now estimate Z ") (¢):

20(1) = B[ X (1) = XM (0" < C(Dy + D + Bi + Ba),



where

E||(U(t) — UM (1) Xo| £ CE(W2(h3, Xo) + h*/3 || Xo|?)

Al

Ch**(E | AXo|” + E || Xo|*) < OR?/?,

/0 UM (¢ — s) <(a(s, X(s)) — a(s, XM (s))) ds

S
||

E

2

+ (b(s, X (s)) — b(s, XM (s))) dW(s))

VAN

(s X()) — a(s, X ()|

CE/O(
C/OtE

/0 (Ut —s5)—UM(t—s))als, X(s))ds

+ Hb s, X(s X(h) H )

IIA

X(s) = x0(s)||

ds = C/ ZM (s) ds,
0

2
B, = E

1A

E [ 0210 Jla(s, X)I + [ Aas, X(s)I ) ds

0

VAN

t
Ch2/3/ E(1+ | X(s)||?) ds < Ch2/®,
0



2

By, = EH/Ot(U(t—s)—U(h)(t—s))b(s,X(s))dW(s)

/ !
0

— E/OtiH(U(t—s)—U(h)(t—s))b(s,X(s))en i

2

ds
Lo

(Ut~ 5) = UMt = ) b(s, X(s))

ds

VAN

B bt X6 el + b, X ) )

_ onE / (116G, X2, + 1 4b(s, X (s))II2, ) ds

1A

t
Ch2/3/ E(1 + | X(s)|?) ds < Ch¥/3,
0

Thus, we got the estimate

t
ZM (1) < C(h2/3+ / ZM (s) ds),
0

whence with the use of Gronwall’'s lemma the statement of the theorem follows.
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