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.. Divergence form operators in modelling

In many problems, a concentration, pressure, size of a population, ...
is given by a partial differential equation (PDE) that follows from∫

V

(C(t +∆t, x)− C(t, x)) dx = ∆t
∫
∂V

J(t, x) dσ(x)

with
• V volume
• J(t, x) flux
• C(t, x) concentration
Then

∂C(t, x)

∂t
= div(J(t, x))

In general, the flux can be related to the concentration itself by
J(t, x) = a(x)∇C(t, x)

for a matrix a(x) (diffusivity/permeability/...), which leads to
∂C(t, x)

∂t
= div(a(x)∇C(t, x)) or div(a(x)∇C(x)) = f (x) (steady state)
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Under the assumption (uniform ellipticity) that for some constants
λ,Λ > 0,

λ|ξ|2 6 a(x)ξ · ξ 6 Λ|ξ|2, ∀ξ ∈ Rd , ∀x ∈ Rd
and a is measurable (no continuity assumption !) the PDE

∂u(t, x)

∂t
=
1

2
div(a(x)∇u(t, x))

u(0, x) = g(x)

has a unique solution (in the weak sense), that is∫
Rd

ϕ(0, x)g(x) dx +

∫ T

0

∫
Rd

∂ϕ(t, x)

∂t
u(t, x) dt

=
1

2

∫ T

0

∫
Rd

a(x)∇u(t, x)∇ϕ(t, x) dx dt

for all ϕ ∈ C∞,∞([0, T ];Rd), ϕ(T, x) = 0.
This solution is (α/2, α)-Hölder continuous and weakly differentiable,
but one cannot expect better regularity in general.
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However, if a is locally regular, then u is also be locally regular.

Consider the case where S is a surface smooth enough, and a is
smooth on each sides S+ and S− of S.

Then, for x on S,
u(t, x+) = u(t, x−)

and a(x+)n+ · ∇u(t, x+) = a(x−)n− · ∇u(t, x−)︸ ︷︷ ︸
continuity of the flux

Examples of models with discontinuities/interfaces:
• Concentration of a fluid in a porous media (Darcy’s law) with

different type of rocks
• Diffusion of species in several type of habitats
• Composite materials
• ...
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.. Divergence form op. and diffusion processes

There exists a fundamental solution p(t, x, y) for the differential
operator 1

2
div(a∇·) so that the solution to

∂u(t, x)

∂t
=
1

2
div(a(x)∇u(t, x))

u(0, x) = g(x)

may be written

u(t, x) =

∫
Rd

p(t, x, y)g(y) dy .

In addition, 0 6 p(t, x, y),
∫
Rd
p(t, x, y) dy = 1 and

p(t, x, y) 6 C1
td/2
exp

(
−
C2|y − x |2

2t

)
(Nash-Aronson estimate)

=⇒ 1
2
div(a∇·) is the infintesimal generator of a strong Markov,

continuous stochastic process X.
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.. Link with solutions of SDEs

If a is of class C1, then

L =
1

2
div(a∇·) =

1

2

d∑
i ,j=1

ai ,j
∂2

∂xi∂xj
+

d∑
i ,j=1

1

2

∂ai ,j
∂xi

∂

∂xi

and then X is solution to the SDE

Xt = x +

∫ t

0

σ(Xs) dBs +

∫ t

0

1

2
∇a(Xs) ds

with σσT = a and B is a Brownian motion.

In general, X is not a semi-martingale, because ∇a has no meaning.

However, the differential operator acts locally, so that in the region
where a is smooth, X behaves like a “good” diffusion.

..What happens at the surface of discontinuity?
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.. Divergence and non-divergence form operators

D = 1
2
div(a∇·)

◦ There always exists a process
associated to D, as soon as a
is measurable, uniformly ellip-
tic bounded.
◦ Gaussian estimates are the

keys
◦ Difficult to simulate
◦ Martingale + something
◦ Natural class of functions:

Sobolev spaces

N = 1
2

∑d
i,j=1 ai ,j∂

2
i ,j

◦ Existence and uniqueness is
provided under regularity of a
(Hölder continuity) or on re-
strictive conditions on the dis-
continuities.
◦ Uniqueness may fails with dis-

continuous coefficients
◦ Easy to simulate
◦ Semi-Martingales
◦ Natural class of functions: C2

Note: The special case of N = 1
2
ai ,j∂

2
i ,j with a(x) = ρ(x)Id, ρ : Rd → R

can be understood as a special case of divergence form operator with
invariant measure ρ and then regularity assumptions on ρ may be
dropped. ..7



.. A simple case: d = 1

From now, we work under the simple case of d = 1.

/ It is too restrictive to understand what happens when d > 1, which
is the case for most of real-word problems.

, But it allows one to have a better understanding on what happens.

From now, we consider
L =

ρ

2
∇(a∇·)

where
• ρ, a are measurable
• λ 6 ρ(x) 6 Λ for all x ∈ R
• λ 6 a(x) 6 Λ for all x ∈ R
• a and ρ are piecewise smooth and have a left/right limit at any point

Our choice of L covers both the case of divergence and non-divergence
form operators
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.. Remark 1: the drift is not a problem

If one whishes to consider
L =

ρ

2
∇(a∇·) + b∇

with a measurable, bounded b, one has only to remark that

L =
ρe−Φ

2
∇(aeΦ∇·)

with

Φ(x) = 2

∫ x b(y)

a(y)ρ(y)
dy

and aeΦ and ρe−Φ satisfy locally the previous hypotheses.

Thus, it is not a problem to consider a drift, or to set b = 0.
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.. Remark 2: on the transmission condition

A function f in the domain Dom(L) of L satisfies
f (x−) = f (x+) and a(x−)∇f (x−) = a(x+)∇f (x+)

at any point x where a or ρ is discontinuous.

If a and ρ are continuous on (−∞, β) and on (β,+∞), set

ã(x) :=

{
λa(x) on (−∞, β)
a(x) otherwise

and ρ̃(x) :=

{
ρ(x)/λ on (−∞, β)
ρ(x) otherwise

so that

L̃ =
ρ̃

2
∇(ã∇)

is such that
L̃f (x) = Lf (x) for x ∈ (−∞, β) ∪ (β,+∞)

but for f in Dom(L̃),
f (x−) = f (x+) and λa(x−)∇f (x−) = a(x+)∇f (x+)
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.. On one-dimensional diffusion processes

The operator L is the infinitesimal generator of a strong Markov
process with continuous paths.

This process can be constructed either as the process associated to the
divergence-form operator L, or by its scale function and its speed
measure (or by other means).
Scale function: There exists a continuous, increasing function S
(unique up to additive and multiplicative constants) such that for
x < y < z

Py [ τx < τz ] =
S(z)− S(y)
S(z)− S(x)

Speed measure: There exists a measure µ such that

Ey

[
τ[x,z ]

]
=

∫ z

x

Gx,z(y , u)µ(du)

for the Green function Gx,y(y , u) on [−x, z ] of L (given by a simple
expression).
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.. On one-dimensional diffusion processes

The scale function is related to the probability that the diffusion
reaches a given point x before another given point y , while the speed
measure gives an indication to the average times it takes to exit from
some interval.

If B is a Brownian motion, the processes t 7→ Bt and t 7→ B2t have the
same scale function S(x) = x but different speed measures.

In dimension one, any diffusion process X is fully characterized by its
scale function S and its speed measure µ

There exists a random time change T related to m such that
Xt = S(BT (t)).
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.. Convergence results

If an, bn and ρn are such that
1

an
L2loc(R)−−−⇀
n→∞

1

a
,
1

ρn
L2loc(R)−−−⇀
n→∞

1

ρ
and

bn

anρn
L2loc(R)−−−⇀
n→∞

b

aρ
then the process Xn associated to Ln = ρn

2
∇(an∇·) + bn∇ converges in

distribution to the process X associated to L = ρ
2
∇(a∇·) + b∇ for any

starting point.

A way to deal with the problem of discontinuous coefficients consists in
using a sequence of mollifiers to regularize the coefficients, but/ From the numerical point of view, it does not work very well/ From the theoretical point of view, there is nothing to understand

Instead, we will assume that a and ρ are piecewise constant, which can
be a good approximation of piecewise smooth function by adding a lot
of small jumps.
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.. Local behavior of the process

If a and ρ are constant on the intervals (xi , xi+1) then for f ∈ Dom(L),
Lf (x) =

1

2
ρ(xi+)a(xi+)f

′′(x) on (xi , xi+1),

f ∈ C2((xi , xi+1)), ∀i
f (xi−) = f (x+),
(1− qi)∇f (xi−) = (1 + qi)∇f (xi+) with qi =

a(xi+)−a(xi−)
a(xi+)+a(xi−) .

With the remark on the transmission condition above (multiply a by λ
on (xi , xi+1) and ρ by 1/λ on (xi , xi+1)), the problem consists in finding
the local behavior of a process X such that
• It is a Brownian motion with a given speed on (xi−1, xi)
• It is a Brownian motion with a given speed on (xi , xi+1)
• The functions in the domain of its infinitesimal generator satisfy
(1− qi)∇f (xi−) = (1 + qi)∇f (xi+) and f (xi−) = f (xi+) at xi
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.. A simple case

Assumption: a and ρ are constant on R∗− and R∗+.

It can be showned (by several means) that

Xt = x +

∫ t

0

√
a(Xs)ρ(Xs) dBs +

a(0+)− a(0−)
a(0+) + a(0−)︸ ︷︷ ︸

∈(−1,1)

L0t (X),

where
• B is a Brownian motion
• L0t (X) is the symmetric local time at 0 of X:

L0t (X) = lim
ϵ→0

1

2ϵ

∫ t

0

1[−ϵ,ϵ](Xs) ds

The local time characterizes the time spend by X at 0.
t 7→ L0t (X) is continuous and non-decreasing. However, it increases
only on { t > 0 Xt = 0 } which has a Lebesgue measure equal to 0!
The local time has an effect only when X reaches 0. Otherwise, X
behaves like a Brownian motion with diffusion coefficient aρ/2.
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.. A simple case: why such an SDE?

Heuristic: consider a function of class C2b(R \ {0}) ∩ C(R) with
a(0+)∇f (0+) = a(0−)∇f (0−)

Itô-Tanaka formula =⇒

f (Xt) = f (x) +

∫ t

0

1

2
(f ′(Xs+) + f

′(Xs−)) dXs︸ ︷︷ ︸
R t
0 f
′(Xs)
√
σ(Xs)a(Xs) dBs+K

+
1

2

∫ t

0

(f ′(Xs+)− f ′(Xs−)) dL0t (Xs)︸ ︷︷ ︸
=−K

+
1

2

∫ t

0

σ(Xs)a(Xs)f
′′(Xs) ds

so that Mt = f (Xt)− f (x)−
∫ t
0
1
2

∫ t
0
σ(Xs)a(Xs)f

′′(Xs) ds is a
martingale with brackets ⟨M⟩t =

∫ t
0
a(Xs)σ(Xs)f

′(Xs)
2 ds

=⇒ characterization of the infinitesimal generator of X.
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.. SDE with local time

Conditions for strong existence and convergence results for SDE of type

Xt = x +

∫ t

0

σ(Xs) dBs +

∫
R

ν(dy)Lyt (X)

have been provided to J.-F. Le Gall in the 80’s.

In our case, we consider measures of type
ν( dx) = g(x) dx +

∑
i

αiδxi

With the occupation density formula,∫
R

g(x)Lxt (X) dx =

∫ t

0

σ(Xs)
2g(Xs) ds

so that one can consider measures of type ν( dx) =
∑
i αiδxi .

This class of SDE is stable under application of one-to-one mappings Φ
such that Φ ∈ C(R) ∩ C2(R \ {zi}) with
(1 + qi)∇Φ(zi+) = (1− qi)∇Φ(zi−).
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.. The Skew Brownian motion

The Skew Brownian motion is a generalization of the Brownian motion
that depends on a parameter α ∈ [−1, 1].

a =

{
a+ on R+
a− on R−,

, ρ =

{
1/a+ on R+
1/a− on R−

and α =
a+

a+ + a−

The process X is solution to the SDE (Harrison-Shepp)
Xt = x + Bt + βL

0
t (X) with β = 2α− 1.

I A possible construction of the Skew Brownian motion (Itô-McKean)
• Consider the excursions of a reflected Brownian motion
• Change the sign of each excursion with independent Bernouilli

random variables of parameter α
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.. Constructions of the Skew Brownian motion

I Another possible construction of the Skew Brownian motion (N.
Portenko, 78’) it is the process whose infinitesimal generator is
L = 1

2
△+ αδ0∇

I Yet another construction of the Skew Brownian motion
(Harrison-Shepp) consider a simple random walk Sn on Z such that
P [Sn+1 = 1 Sn = 0 ] = α. Then n−1/2Snt

dist.−−−→
n→∞

SBM(α)

I We have also a simple expression for the density of the SBM.

There are indeed many ways to construct a SBM, and some schemes
follows easily from these constructions.

The Skew Brownian motion is the basic element to understand SDE
with local time.
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.. An apparent paradox?

What can be done in the case of L = ρ
2
∇(a∇·)?

Heuristically, the discontinuity may be interpreted as permeable barrier:
the particle goes to one side or the other with a given probability.�

However, the situation is more complex.

Consider

a(x) =

{
a+ if x > 0,
a− if x < 0,

and ρ = 1.

Then for any h > 0,
P0 [ τh < τ−h ] =

a+
a+ + a−

Yet for any t > 0,

P0 [Xt > 0 ] =

√
a+√

a+ +
√
a−
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.. Simulation techniques

In order to get simulation techniques for
L =

ρ

2
∇(a∇·)

a possible approach consists in using well-chosen one-to-one mapping
to change the process.

..Suppression of the local time

Yt = S(Xt) with S′(x) = 1/a(x) is solution to

Yt =

∫ t

0

√
ρ ◦ S−1(Ys)
a ◦ S−1(Ys)

dBs

Simulation: Euler scheme for SDE with discontinuous coefficients
iL. Yan, Ann. Appl. Probab. 2002 for the convergence of the Euler
scheme with discontinuous coeff.
iM. Martinez, Ph.D. thesis, 2004 for application to divergence form
operators and computation of the rate of convergence.
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..Reduction to the SBM

Ψ(x) =

∫ x 1√
ρ(y)a(y)

dy

then Yt = Ψ(Xt) is solution to

Yt = Φ(x) + Bt +

√
a(0+)/ρ(0+)−

√
a(0−)/ρ(0−)√

a(0+)/ρ(0+) +
√
a(0−)/ρ(0−)︸ ︷︷ ︸

2α−1

L
Ψ(0)
t (Y )

(To simplify, we assume only one point of discontinuity at 0)
The process Y is then (locally if there are more than one point of
discontinuity) a skew Brownian motion.
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If at time t the process is at 0 and
τ = inf { s > τ Xs = ±h }

then τ and Yτ are independent, P [ Yτ = h ] = α and τ is distributed as
the first exit time of the Brownian motion from [−h, h]

..
.0

.
.−h

.
.h

.proba. α
time τ

.proba. 1− α
time τ

Simulation: At 0 (or any point of discontinuity), one can re-inject the
particle in −h or h by simulating Yτ and increasing the time by τ .

It is also possible to simulate exactly (τ ∧ T, Yτ∧T ).

This method becomes costly unless the coefficients are piecewise
constant with not too many points of discontinuities.

iA.L. & M. Martinez, Ann. Appl. Probab., 2005.
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..A numerical example: doubly SBM

Xt = 1 + Bt +
2

3
L
−1/2
t (X)−

2

3
L
1/2
t (X)
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..Approximation by a random walk I

If a and ρ are piecewise constant, up to a small perturbation of the
positions of the points of discontinuities, it is possible to assume that
there are contained {xi}i∈Z with Ψ(xi) = ih for a given step h, where

Ψ(x) =

∫ x

0

1√
ρ(y)a(y)

dy .

Y := Ψ(X) is solution to
Yt = Ψ(x) + Bt +

∑
i∈Z

βiL
ih
t (Y ).

where

βi =

√
a(xi+)/ρ(xi+)−

√
a(xi−)/ρ(xi−)√

a(xi+)/ρ(xi+) +
√
a(xi−)/ρ(xi−)
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Simulation: walk on the grid {ih}i∈Z
• Perform a random walk (ξk) with

P [ ξk+1 = (i + 1)h ξk = ih ] =
1 + βi
2

• At each step, increase the time by
h2 = E [ τi ξk = ih, ξk+1 = (i + 1)h ] = E [ τi ξk = ih, ξk+1 = (i − 1)h ]
with τi = inf { t > 0 |Yt − ξi | = h }

+ The position Ψ−1(ξk) represents an approximation of the position of
Xt at time t = kh2.

Xt ξk

Rate of convergence as in Donsker’s theorem
i P. Étoré, Electron. J. Probab., 2006

..26



..Approximation by a random walk II

The difficulty with the previous method is that the grid depends on the
coefficients.

Consider a process X with infinitesimal generator L = ρ
2
∇(a∇·) whose

coefficients are uniformly elliptic and bounded (this method does not
use SDE with local times)

Consider a grid G = {xi}i with xi−1 < xi for all i .
Set

δi = inf { t > 0 Xt ∈ G \ {Xτi} } , τi+1 = τi + δi
The τi ’s represent the time at which X reaches successive levels.

τk

Xτk

θk

ξk
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Simulation: random walk on the grid G
• Perform a random walk with

P [ ξk+1 = xi+1 ξk = xi ] = Pxi [Xτk = xi+1 ] = u(xi)

with {
Lu = 0 on (xi−1, xi+1),

u(xi+1) = 1, u(xi−1) = 0.

• At each step, increment the time by
tk := E [ τk ξk = xi , ξk+1 ] = v(xi)/w(xi) with{

Lv = −w on (xi−1, xi+1)

v(xi−1) = v(xi+1) = 0

with

w =

{
u if ξi = xk , ξi+1 = xk+1,

1− u if ξi = xk , ξi+1 = xk−1.

+ At time θi =
∑
j<i tj , (θi , ξi) is an approximation of (τi , Xτi ).

iP. Étoré & A.L., ESAIM Probab. Stat., 2007.
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.. Other approaches and related works

⋆ J. M. Ramirez, E.A. Thomann & E.C. Waymire (Oregon State
University) used the multi-skew Brownian motion in a geophysical
context.

⋆ M. Decamps, A. De Scheeper, M. Goovaerts & W. Schoutens
(Catholic University of Leuven) have proposed some “self-exciting
threshold interest rates models” in finance that relies on the SBM and
numerical methods using perturbation formulas of the density of the
SBM.

⋆ N. Limić (University of Zagreb) have proposed a scheme for d > 1
where the infinitesimal generator of a continuous time Markov process
is constructed from a finite-volume scheme.
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