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Abstract

Weak approximations have been developed to calculate the
expectation value of functionals of stochastic differential
equations, and various numerical discretization schemes (Euler,
Milshtein) have been studied by many authors. Nevertheless
high order schemes were not available in general. We present a
decomposition method applicable to jump driven SDE’s.
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Setting & Goals
Setting

Xt(x) = x+

∫ t

0
Ṽ0(Xs−(x))ds+

∫ t

0
V (Xs−(x))dBs+

∫ t

0
h(Xs−(x))dYs .

(1)
with C∞

b coefficients
Ṽ0 : RN → RN , V = (V1, . . . ,Vd), h : RN → RN ⊗ Rd

Bt is a d-dim. BM and Yt is an d-dim. Lévy with triplet (b, 0, ν)
satisfying the condition

∫

Rd
0

(1 ∧ |y |p)ν(dy) < ∞.

for any p ∈ N.
Goal
Our purpose is to find discretization schemes (X

(n)
t (x))t=0,T/n,...,T

for given T > 0 such that

|E [f (XT (x))] − E [f (X
(n)
T (x))]| ≤ C (T , f , x)

nm
.



Remarks

1. Proof through a ”semigroup type approach”
2. Proof for Asmussen-Rosinski type approach
3. Limiting the number of jumps (why?)
4. Ideas come from Kusuoka type approximations



Set-up for the proof of weak approximation

Define:
Pt f (x) = E [f (Xt(x))]

Qt ≡ Qn
t : operator such that the semigroup property is satisfied

in {kT/n; k = 0, ..., n}.
Qt ≈ Pt in the sense that (Pt − Qt)f (x) = O(tm+1). Then the
idea of the proof is

PT f (x)− (QT/n)
nf (x) =

n−1
∑

k=0

(QT/n)
k(PT/n −QT/n)PT− k+1

n
T f (x).

Simulation (stochastic characterization): Let M = Mt(x) s.t.
Qt f (x) = E [f (Mt(x))]. Then

QT f (x) = (QT/n)
nf (x) = E [f (M1

T/n ◦ · · · ◦ Mn
T/n(x))]

Euler-Maruyama scheme:
Mt(x) := x + Ṽ0(x)t + V (x)Bt + h(x)Yt



The algebraic structure

Pt = etL =
m
∑

k=0

tk

k!
Lk + O(tm+1)

Note that L =
∑d+1

i=1 Li .

etLi =
m
∑

k=0

tk

k!
Lk

i + O(tm+1)

Goal: Approximate etL, through a combination of Li ’s s.t.

etL −
k
∑

j=1

ξje
t1,jA1,j · · · etℓj ,jAℓj ,j = O(tm+1)

with some ti ,j > 0, Ai ,j ∈ {L0, L1, . . . , Ld+1} and weights

{ξj} ⊂ [0, 1] with
∑k

j=1 ξj = 1. This will correspond to an m-th
order discretization scheme.



First example: Coordinate processes
Define the coordinate processes Xi ,t(x), i = 0, ..., d + 1, solutions
of

X0,t(x) = x +

∫ t

0
V0(X0,s(x))ds

Xi ,t(x) = x +

∫ t

0
Vi (Xi ,s(x)) ◦ dB i

s 1 ≤ i ≤ d

Xd+1,t(x) = x +

∫ t

0
h(Xd+1,s−(x))dYs .

Define
Qi ,t f (x) := E [f (Xi ,t(x))]

whose generators are

L0f (x) := (V0f )(x), Li f (x) :=
1

2
(V 2

i f )(x), 1 ≤ i ≤ d

Ld+1f (x) := ∇f (x)h(x)b +

∫

(f (x + h(x)y) − f (x) −∇f (x)h(x)τ(y))ν(dy)



How does the algebraic argument work?

For simplicity let d + 1 = 2 then

etL = I + tL +
t2

2
L2 + O(t3)

e
t
2
L1e

t
2
L2 ≈ (I + tL1 +

t2

2
L2

1 + ...)(I + tL2 +
t2

2
L2

2 + ...)

= I + tL +
t2

2

(

L2
2 + L2

1 + L1L2

)

+ O(t3)

then

etL − e
t
2
L1e

t
2
L2 = O(t2)

etL − 1

2
e

t
2
L1e

t
2
L2 − 1

2
e

t
2
L2e

t
2
L1 = O(t3)

finally one needs to obtain a stochastic representation for
1
2e

t
2
L1e

t
2
L2 + 1

2e
t
2
L2e

t
2
L1 .



Examples of schemes:
Ninomiya-Victoir (a):

1

2
e

t
2
L0etL1 · · · etLd+1e

t
2
L0 +

1

2
e

t
2
L0etLd+1 · · · etL1e

t
2
L0

Ninomiya-Victoir (b):

1

2
etL0etL1 · · · etLd+1 +

1

2
etLd+1 · · · etL1etL0

Splitting method:

e
t
2
L0 · · · e t

2
Ld etLd+1e

t
2
Ld · · · e t

2
L0

So the idea is

Pt f = etLf ≈
k
∑

j=1

ξje
t1,jA1,j · · · etℓj ,jAℓj ,j f

≈
k
∑

j=1

ξjE [f (M1(t1,j , M2(t2,j , (....,Ml(tl ,j , ·))...))]



General framework
AssumptionsM

◮ If f ∈ Cp with p ≥ 2, then Qt f ∈ Cp and

sup
t∈[0,T ]

‖Qt f ‖Cp
≤ K‖f ‖Cp

for K > 0 independent of n. Futhermore, we assume
0 ≤ Qt f (x) ≤ Qtg(x) whenever 0 ≤ f ≤ g .
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AssumptionsM

◮ If f ∈ Cp with p ≥ 2, then Qt f ∈ Cp and

sup
t∈[0,T ]

‖Qt f ‖Cp
≤ K‖f ‖Cp
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for K = K (T , p), K ′ = K ′(T , p) > 0.



General framework
AssumptionsM

◮ If f ∈ Cp with p ≥ 2, then Qt f ∈ Cp and

sup
t∈[0,T ]

‖Qt f ‖Cp
≤ K‖f ‖Cp

for K > 0 independent of n. Futhermore, we assume
0 ≤ Qt f (x) ≤ Qtg(x) whenever 0 ≤ f ≤ g .

◮ For fp(x) := |x |2p (p ∈ N),

Qt fp(x) ≤ (1 + Kt)fp(x) + K ′t

for K = K (T , p), K ′ = K ′(T , p) > 0.

◮ For m ∈ N, δm : [0, T ] → R+ denotes a decreasing function
s.t.

lim sup
t→0+

δm(t)

tm−1
= 0.

Usually, we have δm(t) = tm.



Main hypothesis R(m, δm)
For p ≥ 2, there exists q = q(m, p) ≥ p and linear operators
ek : C 2k

p → Cp+2k (k = 0, 1, . . . ,m) s.t.

(A): For every f ∈ C
2(m′+1)
p with 1 ≤ m′ ≤ m, the operator Qt

satisfies

Qt f (x) =
m′

∑

k=0

(ek f )(x)tk + (Err
(m′)
t f )(x), t ∈ [0, T ], (2)

where Err
(m′)
t f ∈ Cq, and satisfies the following condition:

(B): If f ∈ Cm′′

p with m′′ ≥ 2k , then ek f ∈ Cm′′−2k
p+2k and there

exists a constant constant K = K (T , m) > 0 such that

‖ek f ‖
Cm′′

−2k
p+2k

≤ K‖f ‖Cm′′

p
k = 0, 1, . . . ,m. (3)

Furthermore if f ∈ Cm′′

p with m′′ ≥ 2m′ + 2,

‖Err
(m′)
t f ‖Cq

≤
{

Ktm′+1‖f ‖Cm′′

p
if m′ < m

Ktδm(t)‖f ‖Cm′′

p
if m′ = m

for all 0 ≤ t ≤ T .



Weak approximation result
(C): For every 0 ≤ k ≤ m and j ≥ 2k + 2, if

f ∈ C 1,j
p ([0, T ] × RN), then ek f ∈ C 1,j−2k

p+2k ([0, T ] × RN).

Define J≤m(Qt) =
∑m

k=0(ek f )(x)tk

Theorem
Assume (M) and R(m, δm) for Pt and Qt with J≤m(Pt −Qt) = 0.

Then for any f ∈ C
2(m+1)
p , there exists a constant

K = K (T , x) > 0 such that

∣

∣

∣
PT f (x) − (QT/n)

nf (x)
∣

∣

∣
≤ Kδm

(T

n

)

‖f ‖
C

2(m+1)
p

. (4)

Theorem
Assume (M) and R(m + 1, δm+1) for Qt with J≤m(Pt − Qt) = 0.

Then for each f ∈ C
2(m+3)
p , we have

PT f (x) − (QT/n)
nf (x) =

K

nm
+ O

((T

n

)m+1
∨ δm+1

(T

n

))

(5)

∫



Properties for algebraic construction

Lemma
Let QY 1

t and QY 2

t associated with independent processes Y 1
t , Y 2

t

and let QY 1

t QY 2

t be the composite operator associated with the
process (Y 2 ◦ Y 1)t(x) = Y 2

t (Y 1
t (x)). Then

(i) If (M) holds for QY 1

t , QY 2

t , then it also holds for QY 1

t QY 2

t .
(ii) If R(m, δm) holds for QY 1

t , QY 2

t , then it also holds for
QY 1

t QY 2

t .



Combination of ”coordinates”

Theorem
Assume (M) and R(2, δ2) are satisfied for QX̄i

t

(i = 0, 1, . . . , d + 1) associated with indep. processes X̄0, . . . , X̄d+1

with J≤2(Qi ,t − QX̄i
t ) = 0. Then all the following operators satisfy

(M) and R(2, δ2):

N-V(a) Q
(a)
t = 1

2QX̄0

t/2

∏d+1
i=1 QX̄i

t QX̄0

t/2 + 1
2QX̄0

t/2

∏d+1
i=1 Q

X̄d+2−i

t QX̄0

t/2

N-V(b) Q
(b)
t = 1

2

∏d+1
i=0 QX̄i

t + 1
2

∏d+1
i=0 Q

X̄d+1−i

t

Splitting Q
(sp)
t = QX̄0

t/2 · · ·Q
X̄d

t/2Q
X̄d+1
t Q

X̄ ′

d

t/2 · · ·Q
X̄ ′

0

t/2

where (X̄ ′
0, . . . , X̄

′
d) is a further indep. copy of (X̄0, . . . , X̄d).

Moreover, we have
J≤2(Q

(a)
t ) = J≤2(Q

(b)
t ) = J≤2(Q

(sp)
t ) =

∑2
k=0

tk

k!L
k . In particular,

the above schemes define a second order approximation scheme.



Theorem
Let m = 1 or 2. Assume (M) and R(2m, t2m) for Q

[i ]
t

(i = 1, . . . , ℓ). Furthermore, we assume

(1) J≤2m

(

Pt −
∑ℓ

i=1 ξiQ
[i ]
t

)

= 0 for some real numbers

{ξi}i=1,...,ℓ with
∑l

i=1 ξi = 1

(2) There exists a constant q = q(m, p) > 0 such that for every

f ∈ Cm′

p with m′ ≥ 2(m + 1), (Pt − Q
[i ]
t )f ∈ C

m′−2(m+1)
q and

sup
t∈[0,T ]

‖(Pt − Q
[i ]
t )f ‖

C
m′

−2(m+1)
p

≤ CT‖f ‖Cm′

q
tm+1.

Then we have for any f ∈ C
4(m+1)
p ,

∣

∣

∣
PT f (x) −

ℓ
∑

i=1

ξi (Q
[i ]
T/n

)nf (x)
∣

∣

∣
≤ C (T , f , x)

n2m
.

Note that
∑ℓ

i=1 ξiQ
[i ]
t does not satisfy the semigroup property or

the monotonic property.



Example

Example: The following modified Ninomiya-Victoir scheme

1

2

(

e
T
2n

L0

d+1
∏

i=1

e
T
n
Li e

T
2n

L0

)n

+
1

2

(

e
T
2n

L0

d+1
∏

i=1

e
T
n
Ld+2−i e

T
2n

L0

)n

is also of order 2.

Example

Fujiwara gives a proof of a similar version of the above theorem
and some examples of 4th and 6th order. We introduce the
examples of 4th order:

4

3

(

1

2

(

d+1
∏

i=0

e
t
2
Li

)2
+

1

2

(

d+1
∏

i=0

e
t
2
Ld+1−i

)2
)

−1

3

(

1

2

d+1
∏

i=0

etLi +
1

2

d+1
∏

i=0

etLd+1−i

)



Example (Diffusion coordinate)

Theorem
Let V : RN → RN ∈ C∞

b . The exponential map is defined as
exp(V )x = z1(x) where z satisfies the ode

dzt(x)

dt
= V (zt(x)), z0(x) = x . (6)

Lemma
For i = 0, 1, ..., d, the sde

Xi ,t(x) = x +

∫ t

0
Vi (Xi ,s(x)) ◦ dB i

s (7)

has a unique solution given by

Xi ,t(x) = exp(B i
tVi )x .



Proposition

Let f ∈ Cm+1
p . Then we have for i = 0, 1, . . . , d ,

f (exp(tVi )x) =
m
∑

k=0

tk

k!
V k

i f (x)+

∫ t

0

(t − u)m

m!
V m+1

i f (exp(uVi )x)du

∣

∣

∣

∫ t

0

(t − u)m

m!
V m+1

i f (exp(uVi )x)du
∣

∣

∣
≤ Cm‖f ‖Cm+1

p
eK |t|(1+|x |p+m+1)tm+1.

Based on this result, we define the approximation to the solution of
the coordinate equation as follows

bj
m(t, V )x =

m
∑

k=0

tk

k!
(V kej)(x), j = 1, ...,N.

Define X̄i ,t(x) = b2m+1(B
i
t , Vi )x for i = 0, ..., d . Then we have the

following approximation result.



Proposition

(i) For every p ≥ 1,

‖Xi ,t(x) − X̄i ,t(x)‖Lp ≤ C (p, m, T )(1 + |x |2(m+1))tm+1.

(ii) Let f ∈ C 1
p . Then we have

E [|f (Xi ,t(x))− f (X̄i ,t(x))|] ≤ C (m, T )‖f ‖C1
p
(1+ |x |p+2(m+1))tm+1.

As a result of this proposition we can see that R(m, tm) holds for
the operators associated with bm(t, V0)x and b2m+1(B

i
t , Vi )x ,

1 ≤ i ≤ d . Indeed, we have for m′ ≤ m,

E [f (X̄i ,t(x))] = Qi ,t f (x) + E [f (X̄i ,t(x)) − f (Xi ,t(x))]

=
m′

∑

k=0

tk

k!
Lk

i f (x) + (Em′

t f )(x)

where (Em′

t f )(x)



where

(Em′

t f )(x) := (Err
(m′)
t f )(x) + E [f (X̄i ,t(x)) − f (Xi ,t(x))]

and (Err
(m′)
t f )(x) is defined through a previous proposition using

Li and Qi instead of L and P. Furthermore, using (ii), we have
that the error term Em′

t satisfies (B) in assumption R(m, tm).



where

(Em′

t f )(x) := (Err
(m′)
t f )(x) + E [f (X̄i ,t(x)) − f (Xi ,t(x))]

and (Err
(m′)
t f )(x) is defined through a previous proposition using

Li and Qi instead of L and P. Furthermore, using (ii), we have
that the error term Em′

t satisfies (B) in assumption R(m, tm).
Proposition Assume that (V k

i ej) (2 ≤ k ≤ m, 0 ≤ i ≤ d ,
1 ≤ j ≤ N) satisfies the linear growth condition then (M) holds
for X̄i ,t(x), i = 0, . . . , d .

Theorem
Assume that (V k

i ej) (2 ≤ k ≤ m, 0 ≤ i ≤ d, 1 ≤ j ≤ N) satisfies
the linear growth condition. Let X̄i ,t(x) be defined by

X̄i ,t(x) = b2m+1(B
i
t , Vi )x =

2m+1
∑

k=0

1

k!
(V k

i I )(x)

∫

0<t1<···<tk<t

1◦dB i
t1
· · ·◦dB i

tk
.

Denote by QX̄i
t the semigroup associated with X̄i ,t(x). Then QX̄i

t

satisfies (M) and R(m, tm). Furthermore J≤m(Qi ,t − QX̄i
t ) = 0.



Runge-Kutta methods:
We say here that cm is an s-stage explicit Runge-Kutta method of
order m for the ODE (6) if it can be written in the form

cm(t, V )x = x + t

s
∑

i=1

βiki (t, V )x

where ki (t, V )x defined inductively by

k1(t, V )x = V (x),

ki (t, V )x = V
(

x + t
i−1
∑

j=1

αi ,jkj(t, V )x
)

, 2 ≤ i ≤ s,

and satisfies

| exp(tV )x − cm(t, V )x | ≤ CmeK |t|(1 + |x |m+1)|t|m+1

for some constants ((βi , αi ,j)1≤j<i≤s). Runge-Kutta formulas of
order less than or equal to 7 are well known.



Proposition

(i) For every p ≥ 1,

‖Xi ,t(x)−c2m+1(B
i
t , Vi )x‖Lp ≤ C (p, m, T )(1+|x |2(m+1))tm+1 (8)

(ii) Let f ∈ C 1
p . Then we have

E [|f (Xi ,t(x))−f (c2m+1(B
i
t , Vi )x)|] ≤ C (m, T )‖f ‖C1

p
(1+|x |2(m+1))tm+1

(9)
Next we show that (M) still holds for the Runge-Kutta schemes.
Proposition (M) holds for cm(B i

t , Vi )x , i = 0, . . . , d .
Consequently, as in the Taylor scheme, R(m, tm) and (M) hold
for the operators associated with cm(t, V0)x and c2m+1(B

i
t , Vi )x ,

1 ≤ i ≤ d .



Example: Compound Poisson

Yt =

Nt
∑

i=1

Ji

where (Nt) : Poisson (λ) and (Ji ) are i.i.d. Rd -r.v. indep. of (Nt)
with Ji ∈

⋂

p≥1 Lp.
In this case Yt is a Lévy process with generator of the form

∫

Rd
0

(f (x + y) − f (x))ν(dy)

where τ ≡ 0, b = 0, ν(Rd
0 ) = λ < ∞ and ν(dy) = λP(J1 ∈ dy).

Then in this case

X d+1
t (x) = x +

∫ t

0
h(X d+1

s− (x))dYs , t ∈ [0, T ] (10)

which can be solved explicitly.



Indeed, let (Gi (x)) be defined by recursively

G0 = x

Gi = Gi−1 + h(Gi−1)Ji .

Then the solution can be written as X d+1
t (x) = GNt

(x). Define
for fixed M ∈ N, the approximation process X̄d+1,t = GNt∧M(x).
This approximation requires the simulation of at most M jumps. In
fact, the rate of convergence is fast as the following result shows.
Proposition Let M ∈ N. Then the process GNt∧M(x) satisfies
(M) and R(M, tM−κ) for arbitrary small κ > 0. Furthermore

J≤M(Qd+1,t − Q
X̄d+1
t ) = 0.

————————————–
Remark: Adaptive Weak Approximation of Diffusions with Jumps
E. Mordecki, A. Szepessy, R. Tempone and G. E. Zouraris



Infinite activity approximated by a process with no small
jumps

Define for ε > 0 Lévy proc. (Y ε
t ) with Lévy triplet (b, 0, νε)

νε(E ) := ν(E ∩ {y : |y | > ε}), E ∈ B(Rd
0 ). (11)

Consider the approximate coordinate SDE

X̄d+1,t(x) = x +

∫ t

0
h(X̄d+1,s−(x))dY ε

s ,

L1,ε
d+1f (x) = ∇f (x)h(x)b+

∫

(f (x+h(x)y)−f (x)−∇f (x)h(x)τ(y))νε(dy).

Now we derive the error estimate for X̄d+1,t .

Theorem
Assume that σ2(ε) :=

∫

|y |≤ε |y |2ν(dy) ≤ tM+1 for ε ≡ ε(t) ∈ (0, 1]

. Then we have that Q
X̄d+1
t satisfies (M) and R(M, tM).

Furthermore J≤M(Qd+1,t − Q
X̄d+1
t ) = 0.



Asmussen-Rosinski type approximation

Consider the new approximate SDE

X̄d+1,t(x) = x +

∫ t

0
h(X̄d+1,s(x))Σ1/2

ε dWs +

∫ t

0
h(X̄d+1,s−(x))dY ε

s

where Wt is a new d-dim.BM indep. of Bt and Y ε
t , and Σε is the

symmetric and semi-positive definite d × d matrix defined as

Σε =

∫

|y |≤ε
yy∗ν(dy). (12)

Since the above SDE is also driven by a jump-diffusion process, we
can also simulate it using the second order discretization schemes.

Theorem
Assume that 0 < ε ≡ ε(t) ≤ 1 is chosen as to satisfy that
∫

|y |≤ε |y |3ν(dy) ≤ tM+1.Then we have that Q
X̄d+1
t satisfies (M)

and R(M, tM). Furthermore J≤M(Qd+1,t − Q
X̄d+1
t ) = 0.



Idea of the proof

Qd+1,t f (x) − Q
X̄d+1
t f (x)

=
M
∑

k=1

tk

k!

(

(Ld+1)
k −

(

L1,ε
d+1

)k
)

f (x)

+

∫ t

0

(t − u)M

M!

(

Qd+1,u (Ld+1)
M+1 − Q

X̄d+1
u

(

L1,ε
d+1

)M+1
)

f (x)du.

It is enough to prove:

|(Ld+1 − L1,ε
d+1)f (x)| ≤ C‖f ‖C2

p
(1 + |x |p+2)tM+1.

Change of triplets

(b, 0, ν), τ ⇒ (bε, 0, ν), τε

(b, 0, νε), τ ⇒ (bε, 0, νε), τε

where τε(y) = y1{|y |≤ε}. Then



|(Ld+1 − L1,ε
d+1)f (x)| (13)

≤
∣

∣

∣

∫

∇f (x)h(x)(y − τε(y))(ν(dy) − νε(dy))
∣

∣

∣

+
∣

∣

∣

∫ ∫ 1

0
(1 − θ)

d2

dθ2
f (x + θh(x)y)dθ(ν(dy) − νε(dy))

∣

∣

∣
.

We first obtain that for ε > 0,
∫

(y − τε(y))(ν(dy) − νε(dy)) = 0

since the support of the measure (ν − νε) is {|y | ≤ ε}. Also

∣

∣

∣

∫ ∫ 1

0

d2

dθ2
f (x+θh(x)y)dθ(ν(dy)−νε(dy))

∣

∣

∣
≤ C‖f ‖C2

p
(1+|x |p+2)σ2(ε)

and hence as σ2(ε) ≤ tM+1, one obtains that

J≤M(Qd+1,t − Q
X̄d+1
t ) = 0 and that Q

X̄d+1
t satisfies (M) and

R(M, tM).



Example: Other decompositions with at most one jump
per interval

τ(y) = y1|y |<1, assume that
∫

|y |<1 |y |ν(dy) < ∞.
Then we decompose the operator

Ld+1 = L1
d+1 + L2

d+1 + L3
d+1

L1
d+1f (x) := ∇f (x)h(x)

(

b −
∫

ε<|y |≤1
τ(y)ν(dy)

)

L2
d+1f (x) :=

∫

|y |≤ε
(f (x + h(x)y) − f (x) −∇f (x)h(x)τ(y))ν(dy)

L3
d+1f (x) :=

∫

ε<|y |
f (x + h(x)y) − f (x)(dy).

The operator L1
d+1 can be exactly generated using

X̄ 1
d+1,t = x +

(

b −
∫

ε<|y |≤1 τ(y)ν(dy)
)

∫ t

0 h
(

X̄ 1
d+1,s

)

ds.

Therefore we only need to approximate L2
d+1 and L3

d+1.



Approximation for L2
d+1. Define the dist. fct.

Fε(dy) = λ−1
ε |y |r 1|y |≤εν(dy) with λε =

∫

|y |≤ε |y |
r ν(dy) < ∞.

Let Yε ∼ Fε. Define X̄ 2,ε
t (x) = x + h(x)Wt

√
λε, where W is a

d-dim. BM with cov. matrix given by Σij = |Y ε|−r Y ε
i Y ε

j which is
indep. of everything else.

Lemma
(*)1.Assume that

∫

|y |≤ε |y |3ν(dy) ≤ Ct and

supε∈(0,1]

∫

|y |≤ε |y |4−rν(dy) < ∞ then

∣

∣

∣
E
[

f (X̄ 2,ε
t )
]

− f (x) − tL2
d+1f (x)

∣

∣

∣
≤ ‖f ‖C2

p
(1 + |x |p+2)t2.

That is, condition R(2, t2) is satisfied.

2. Assume that supε∈(0,1]

∫

|y |≤ε |y |2+
(2−r)(p−2)

2 ν(dy) < ∞, then

assumption (M) is satisfied with

E
[∣

∣

∣
X̄ 2,ε

d+1(x)
∣

∣

∣

p]

≤ (1 + Kt)|x |p + K ′t

for all p ≥ 2.



The approximation for L3
d+1 is defined as follows. Let

Gε(dy) = C−1
ε 1|y |>εν(dy), Cε =

∫

|y |>ε ν(dy) and let Z ε ∼ Gε and
let Sε be a Bernoulli r.v. indep. of Z ε. If Sε = 0 define
X̄ 3,ε

t (x) = x , otherwise X̄ 3,ε
t (x) = x + h(x)Z ε.

Lemma
(**)1. Assume that

∣

∣C−1
ε P [Sε = 1] − t

∣

∣ ≤ Ct2 then

∣

∣

∣
E
[

f (X̄ 3,ε
t )
]

− f (x) − tL3
d+1f (x)

∣

∣

∣
≤ Ct2 ‖f ‖C1

p
(1+|x |p+1)

∫

|y |>ε
|y |ν(dy)

That is, condition R(2, t2) is satisfied.

2. If C−1
ε P [Sε = 1] ≤ Ct then assumption (M) is satisfied with

E
[∣

∣

∣
X̄ 3,ε

d+1(x)
∣

∣

∣

p]

≤ (1 + Kt)|x |p + K ′t

for all p ≥ 2.



Weighted version l (Importance sampling)
Weight l : Rd → R. Let F l

ε(dy) = λεl(y)1|y |≤εν(dy) with
λ−1

ε =
∫

|y |≤ε l(y)ν(dy). Let Yε ∼ Fε . Define

X̄ 2,ε
t (x) = x + h(x)Wt

√
λε, where W is a d-dim. BM with cov.

matrix given by Σij = l(Y ε)−1Y ε
i Y ε

j which is indep. of everything
else.

Lemma
1. Assume that

∫

|y |≤ε |y |3ν(dy) ≤ Ct and

supε∈(0,1]

∫

|y |≤ε |y |4l(y)−1ν(dy) < ∞ then

∣

∣

∣
E
[

f (X̄ 2,ε
t )
]

− f (x) − tL2
d+1f (x)

∣

∣

∣
≤ C ‖f ‖C2

p
(1 + |x |p+2)t2.

That is, condition R(2, t2) is satisfied.

2.Assume that supε∈(0,1]

∫

|y |≤ε |y |p l(y)−
p−2

2 ν(dy) < ∞, then

assumption (M) is satisfied with

E
[∣

∣

∣
X̄ 2,ε

d+1(x)
∣

∣

∣

p]

≤ (1 + Kt)|x |p + K ′t



One can also use localization functions for |y | > ε as follows. Let
Gε,l(dy) = C−1

ε,l l(y)1|y |>εν(dy), Cε,l =
∫

|y |>ε l(y)ν(dy) and let

Z ε,l ∼ Gε,l and let Sε be a Bernoulli r.v. indep. of Z ε,l .Then
consider the following two subcases. If Sε,l = 0 define
X̄ 3,ε

t (x) = x , otherwise X̄ 3,ε,l
t (x) = x + h(x)l(Z ε,l)−1Z ε,l .

Lemma
1.Assume that
∫

|y |>ε |y |2(l(y)−1 − 1) + |y |p+3|l(y)−1 − 1|p+2ν(dy) ≤ Ct and
∣

∣

∣
C−1

ε,l P
[

Sε,l = 1
]

− t
∣

∣

∣
≤ Ct2 then

∣

∣

∣
E
[

f (X̄ 3,ε,l
t )

]

− f (x) − tL3
d+1f (x)

∣

∣

∣
≤ Ct2 ‖f ‖C2

p
(1 + |x |p+2).

That is, condition R(2, t2) is satisfied.
2. Assume that
supε∈(0,1] maxj=1,...,p

∫

|y |>ε l(y)1−j |y |j ν(dy) < ∞.then assumption

(M) is satisfied with

E
[
∣

∣

∣
X̄ 3,ε

d+1(x)
∣

∣

∣

p]

≤ (1 + Kt)|x |p + K ′t



Example: Tempered stable
Let a Lévy measure ν defined on R0 be given by

ν(dy) =
1

|y |1+α

(

c+e−λ+|y |1y>0 + c−e−λ−|y |1y<0

)

dy

◮ Gamma: λ+, c+ > 0, c− = 0, α = 0.
◮ Variance gamma: λ+, λ−, c+, c− > 0, α = 0.
◮ Tempered stable: λ+, λ−, c+, c− > 0, 0 < α < 2.

Then, we have that for α ∈ [0, 1)
∫

|y |≤ε
|y |kν(dy) ∼ εk−α, k ≥ 1.

Therefore supε∈(0,1]

∫

|y |≤ε |y |ν(dy) < ∞, then the conditions of

the approximation Lemma (*) are satisfied if r ≥ α, r + α ≤ 4 and

ε = t
1

3−α . approximation Lemma (**) is satisfied for example in
the following case. Let P [Sε = 1] = e−Cεa(ε,t) where

a(ε, t) = −εα log
((

t2 + t
)

ε−α
)

as ε = t
1

3−α then we have that

a(ε(t), t) = −t
α

3−α log
(

(t + 1)t
3−2α
3−α

)

.
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Other topics:

◮ Design other approximation schemes

◮ At most kn in n intervals

◮ Irregular coefficients. A CIR type example
Consider the operators

Lf (x) = k(a − x)f ′(x) + σxf ′′(x)

Lεf (x) = k(a − x)f ′(x) + σφε(x)f ′′(x)

where φε(x) = x for x > ε, |φε(x)| ≤ ε for x ∈ (0, ε) and
φε ∈ C∞

b (R+) and 2ka ≥ σ2. Then we have that

|Lf (x) − Lεf (x)| ≤ 2σε
∣

∣f ′′(x)
∣

∣ .

Take ε = T/n.



Other topics:

◮ Design other approximation schemes

◮ At most kn in n intervals

◮ Irregular coefficients. A CIR type example
Consider the operators

Lf (x) = k(a − x)f ′(x) + σxf ′′(x)

Lεf (x) = k(a − x)f ′(x) + σφε(x)f ′′(x)

where φε(x) = x for x > ε, |φε(x)| ≤ ε for x ∈ (0, ε) and
φε ∈ C∞

b (R+) and 2ka ≥ σ2. Then we have that

|Lf (x) − Lεf (x)| ≤ 2σε
∣

∣f ′′(x)
∣

∣ .

Take ε = T/n.

◮ Irregular functions f : Consider the right stochastic
representation and concatenate.But there is a technical
problem with jump type processes !
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