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Quantization

Let o (X,| - ||) be a separable Banach space (e.g. X = C[0,1])
e X X-valued random vector (e.g. X sol. to SDE)
e 4, distribution of X

Quantization error of rate r > 0 and order s > 0

DE)(r) = inf{E[| X — X||*]"/* : X r.v. with #range(X) < e}



Quantization

Let o (X,| - ||) be a separable Banach space (e.g. X = C[0,1])
e X X-valued random vector (e.g. X sol. to SDE)
e 4, distribution of X

Quantization error of rate r > 0 and order s > 0
DE)(r) = inf{E[| X — X||*]"/* : X r.v. with #range(X) < e}

Coding: minimal coding error when coding with a fixed number of
elements (studied since the 1940s)

Aim: e find good codebook C with #C < e”
e find fast projection 7: X — C !

Then: Approximate X by X = 7(X).



Example

Problem: A number of service centers shall be opened in a city !
Wants: Potential customers shall be close to service centers.

Aim: Solve
E[mig |X — x||*]** = min!
x€

where
» minimum is taken over C C R? with #C < n
(possible service center locations)
» X denotes the random location of a typical demand.




Quadrature and quantization

Quadrature formulas

D(l)(r) = inf sup ‘/fdu /fdu’ #range(n) < e }

f€L1p 1)

is the worst case error for Lip(1)-quadrature
(Kantorovich, Rubinstein '58)

Aim: Construct fi (supporting points and weights)



Quadrature and quantization

Quadrature formulas

DM(r) = inf sup ‘/fd“ /fdﬂ #range(n) < e }

f€L1p 1)

is the worst case error for Lip(1)-quadrature
(Kantorovich, Rubinstein '58)

Aim: Construct fi (supporting points and weights)
Further applications: e Variance reduction (Paggs, ...)

o Worst case error analysis of stochastic
algorithms (CDMR '08)



Variance reduction

Approach: Partition X into X = UJ\/j choose 7 : E — E mapping each
cell V; on a single element, and write

E[F(X)] = E[f(x(X))] +E[f(X) — f(r(X))] =I+1I

> =) P(m(X) = x) f(x)
» II is approximated by Monte Carlo; note that

var(f(X)




| Optimal point density for X = R?

In general, it is hard to construct (close to) optimal quantizations, e.g., by
competitive learning vector quantization algorithm (Bouton, Pages '97).

Paradigm: Find an intermediate convex optimization problem that coarsely

describes good quantizations!



| Optimal point density for X = R?

In general, it is hard to construct (close to) optimal quantizations, e.g., by
competitive learning vector quantization algorithm (Bouton, Pages '97).

Paradigm: Find an intermediate convex optimization problem that coarsely
describes good quantizations!

Example: X = (R?, || - ||)
® (i possesses a density h
o E||X||*"* < oo for some € > 0

Then the empirical measures v, = %erqn) dx for optimal codebooks C(n) of
size n converge to a measure v that has density

€= %hd/(a”rs).

It is the solution to
/ £(x) /% h(x) dx = min
Rd
under the constraint [ £(x) dx = 1 (Bucklew '84, Graf, Luschgy '00).



Il Gaussian signals in Hilbert spaces

Let @ X be a Hilbert space
® /1, be a centered Gaussian measure

Use Karhunen-Loéve expansion
X =3 VAXe
J

where o ()\;) R -valued sequence of eigenvalues
o (&j) orthonormal system of eigenvectors
e (X;) i.i.d. standard normals



Il Gaussian signals in Hilbert spaces

Let @ X be a Hilbert space
® /1, be a centered Gaussian measure

Use Karhunen-Loéve expansion
X =3 VAXe
J

where o ()\;) R -valued sequence of eigenvalues
o (&j) orthonormal system of eigenvectors
e (X;) i.i.d. standard normals

Example: (Wienerprocess in L2[0,1])
1

A = i and e(t) = V2 sin((j — 1/2)rt)



[l Shannon's distortion rate function

Quantization error

DE(r) = inf{E[| X — X|I*]"/* : X r.v. with #range(X) < e’}



[l Shannon's distortion rate function

Shannon’s distortion rate function

D(S)

Shannon

(r) = infF{E[IX — X|ITY* : X rv. with 1(X; X) < r},

where
1(X; X) = H(Py 5|IPx @ Pg) (mutual information)



Shannon's distortion rate function

Shannon’s distortion rate function

DS on(r) = inf{E[|X — X|F]** : X rv. with 1(X; X) < r},

where

I(X; X) = H(Py 5 |IPx ® Pg)  (mutual information)

Properties: o D) (r) < DY)(r)

Shannon



Shannon's distortion rate function

Shannon’s distortion rate function

DS on(r) = inf{E[|X — X|F]** : X rv. with 1(X; X) < r},
where
1(X; X) = H(Py 5|IPx @ Pg) (mutual information)

Properties: o DShannon( r) < D®)(r)
e Forarv. X =(Xi,...,X,) with independent entries

inf{E[Zn: pJ(XJ,)AQ)} I(X; X) < r} = mf{ZD r) 4 < r}

where

D;(r;) = infF{Elp;(X;, )] = 1(X:: X)) < 15}



Shannon's distortion rate function

Shannon’s distortion rate function

DS on(r) = inf{E[|X — X|F]** : X rv. with 1(X; X) < r},
where
1(X; X) = H(Py 5|IPx @ Pg) (mutual information)

Properties: o D) (r) < DY)(r)

Shannon

e Forarv. X =(Xi,...,X,) with independent entries

inf{E[i pj()g,)“(j)] CI(X;X) < r} ) inf{z Di(r) : it < r},

where



Il Kolmogorov's inverse water filling principle

Thm: -
(Déi)annon(r))z = min Z )\je_2rf
J

with constraint } . r; = r. dd 4 H H

Sol. Choose r; as

A Ade=)\e -

. A1 A2 A
for appropriate d. > 0. s



Il Asymptotic formulae

Thm (D '03): If
i 108 log(1/An)

n—oo n

pr— 0’
then for all s > 0,

D(s)(r) ~ D? (r), r — oo.

Shannon

» Asymptotics do not depend on s

» Approximation error concentrated around Dgl)annon(r)

» Asymptotic-equipartition-property (Dembo, Kontoyiannis '02)



Applications

Weakly optimal scheme

» choose rj according to RAP

> choose rj-quantizations y; for
N(0, ))) (weakly optimal)

~~ approximation []; 1

Ref. Luschgy, Pages '04, D '03



Applications

Weakly optimal scheme

» choose rj according to RAP

> choose rj-quantizations y; for
N(0, ))) (weakly optimal)

~~ approximation []; 1

Ref. Luschgy, Pages '04, D '03

Strongly optimal scheme

> represent N = Ulk such that
> #l — 0o as k — 00
> maxjecy Aj/ minje;, \j — 1
(subband decomposition)
> choose ., ri-quantizations v

for Hjelk N(O, )\j)
(strongly optimal)

e
(-) T T T T

~+ approximation [], v«



[11 Diffusions

Ass.: X solution to
t t
X = / b(Xu, u) du + / o (Xu, u) dW,,
0 0

where b,o : R x [0,00) — R satisfy for fixed C > 0 and 3 € (0, 1]
b(x,t) < C[|x| + 1] and
lo(x, £) — o (¢, )] < Clx = X? + b = x| + |t — £7].

Moreover, X = LP[0, 1] for p € [1,00) or
X =C[0,1] (~ p=00)



[11 Preliminaries

When X is Brownian motion one has:

Thm (D, Scheutzow '06): 3k, € Ry such that for all s >0

lim r DO)(r) = &,
r—oo
» Asymptotics do not depend on s
» Approximation error concentrated around k,/+\/r

» Similar result for fractional Brownian motion



[1l Quantization of diffusions

Thm (D '08): For p € [1, c0),

o]l 2,
LP+2[0,1]

1 2p %325 1/s
lim /r D¥)(r) = KPE[</ lou| P+ dU> ] = Kp
0

r—oo

Ls(P)



[1l Quantization of diffusions

Thm (D '08): For p € [1, c0),

o]l 2,
LP+2[0,1]

r—oo

1 2p %325 1/s
lim /r D¥)(r) = KPE[</ lou| P+ dU> ] = Kp
0

Ls(P)

and, for p = oo,

lim \ﬁD(S)(f) = Koo HHU‘HB[M]

r—o0o

L=(P)



Quantization of diffusions

Thm (D '08): For p € [1,00),

Ls(P)

1 2p %pzs 1/s
lim ﬁD“)(r)ﬂpE[(/ a7 du) ] =
J0

r—oo

2[0 1]
and, for p = 00

lim /7 D®)(r) =

r—o0o

L=(P)

Heuristics: Suppose that (0+):c[o,y] is deterministic and piecewise constant on
each interval [; = [j/n,(j + 1)/n). Then for a good approximation X, typically,

-1
1 Z |7j/n|”
P J
/ |Xt Xt‘ dtw:‘ip jzo (nrj)p/2

where r; is the rate assigned for the approximation of the piece ;.

- Yin=r (rate constraint)

— e | ‘P

_X.|P ~ P 1%0/n
f,j [Xe — X¢|P dt = Kp ()P /2

ro r r rp—1 1



Quantization of diffusions

Thm (D '08): For p € [1,00),

Ls(P)

1 2p %pzs 1/s
lim ﬁD“)(r)ﬂpE[(/ a7 du) ] =
J0

r—oo

2[0 1]
and, for p = 00

lim /7 D®)(r) =

r—o0o

L=(P)

Heuristics: Suppose that (0+):c[o,y] is deterministic and piecewise constant on
each interval [; = [j/n,(j + 1)/n). Then for a good approximation X, typically,

1
|Xt X|P dt ~ K}, 12 93/ol" _ o [* 10 4
’ = (nry)er2 PJo (R)P12

where r; is the rate assigned for the approximation of the piece ;.

- Yin=r (rate constraint)

— e | ‘P

_X.|P ~ P 1%0/n
f,j [Xe — X¢|P dt = Kp ()P /2

ro r r rp—1 1



IIl Rate allocation problem

Minimize

over all non-negative (7;) with fol Fedt =r.



Rate allocation problem

Minimize

over all non-negative (7;) with fol Fedt =r.

Solution:
- 1 2

rt = 7 |0‘t‘l7+2 r7

where Z = fol ‘Uu|$ du.

» Similar results obtained for strong approximation by piecewise linear
functions (Miiller-Gronbach '96)



Il Constructive quantization

Approach:
> 1st step: quantize Brownian motion on a coarse time grid and
compute an approximation via Milstein scheme
~ each path leads to an approximation (&)

Ref: Miiller-Gronbach, Ritter (work in progress)
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» 2nd step: each coarse approximation is refined by inserting bridges
according to the rates induced by (6;)
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IV Lévy processes
Now:
> X isa (1,02, b)-Lévy process, i.e. a Lévy process with

i0Xy o’ 2 .
Ee = exp —70 + ib6 +

(ei”X -1- ]l{|x|§1}iux) l/(dX)}
R

> X = LP[0,1] with p € [1, c0)



IV Lévy processes

Now:
> X isa (1,02, b)-Lévy process, i.e. a Lévy process with

i0Xy o’ 2 .
Ee = exp —76 + ib6 +

(ei”X -1- ]l{|x|§1}iux) l/(dX)}
R

> X = LP[0,1] with p € [1,0)

Thm (Aurzada, D '08): Under additional assumptions 3 constants ¢ = ¢(p, )
and ¢, such that for sufficiently small ¢ > 0 and s > 0,

?12 e < DW(c F(e)) and D(S)(C—l1 F(e)) < ek,

2

F(E):(j—er/R[(z—2/\1)+Iog+ M] v(dx). e

£




[V Rate allocation

Approximate evolutions induced by large and small jumps (together with
Brownian component) separately.

» Small jumps. Approximate exit times of the compensated process
out of e-intervals.

~ allocated rate g—j + ‘/'[75 q § v(dx)
» Large jumps. Approximate individual jumps.
~ allocated rate [ _ (1 + log Iy 3 (dx)

T

1+ log(e/e)




V Final remarks

» Quantization useful in the analysis of quadrature problems

» Variance reduction
» Lower bounds for stochastic algorithms

» Coarse descriptions of good quantizations available for a number of
random objects

Finite dimensional X under Orlicz norm dist. (D, Vormoor (Prep.))
Gaussian X in Hilbert space

Diffusions

Lévy processes

vVYyVvVYyYy

» Asymptotically optimal constructive quantization partially understood



