Rate allocation in quantization

Steffen Dereich

Institut für Mathematik
TU Berlin
http://www.math.tu-berlin.de/~dereich/

Workshop on Numerics and Stochastics August 25, 2008

Outline of the talk

I Introduction

- Quantization
- Applications
- ► Coarse descriptions of good quantizations: rate allocation problems
- II Hilbert space-valued Gaussian originals
 - Asymptotic formulae
 - Kolmogorov's inverse water filling principle

III Diffusions

- Preliminaries Quantization of the Wiener process
- Asymptotic formulae
- Rate allocation for diffusions
- Constructive quantization

IV Lévy processes

- Asymptotic formulae
- Rate allocation

Quantization

- Let \bullet $(\mathfrak{X}, \|\cdot\|)$ be a separable Banach space (e.g. $\mathfrak{X} = C[0,1]$)
 - X \mathfrak{X} -valued random vector (e.g. X sol. to SDE)
 - μ distribution of X

Quantization error of rate $r \ge 0$ and order s > 0

$$D^{(s)}(r) = \inf \big\{ \mathbb{E}[\|X - \hat{X}\|^s]^{1/s} : \hat{X} \text{ r.v. with } \# \mathrm{range}(\hat{X}) \leq e^r \big\}$$

Quantization

- Let \bullet $(\mathfrak{X}, \|\cdot\|)$ be a separable Banach space (e.g. $\mathfrak{X} = C[0,1]$)
 - X X-valued random vector (e.g. X sol. to SDE)
 - μ distribution of X

Quantization error of rate $r \ge 0$ and order s > 0

$$D^{(s)}(r) = \inf \left\{ \mathbb{E}[\|X - \hat{X}\|^s]^{1/s} : \hat{X} \text{ r.v. with } \# \text{range}(\hat{X}) \le e^r \right\}$$

Coding: minimal coding error when coding with a fixed number of elements (studied since the 1940s)

- **Aim:** find good *codebook* C with $\#C \leq e^r$
 - find fast projection $\pi: \mathfrak{X} \to \mathcal{C}$!

Then: Approximate X by $\hat{X} = \pi(X)$.

Example

Problem: A number of service centers shall be opened in a city!

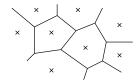
Wants: Potential customers shall be close to service centers.

Aim: Solve

$$\mathbb{E}[\min_{x \in \mathcal{C}} \|X - x\|^s]^{1/s} = \min!$$

where

- ▶ minimum is taken over $\mathcal{C} \subset \mathbb{R}^2$ with $\#\mathcal{C} \leq n$ (possible service center locations)
- X denotes the random location of a typical demand.



Quadrature and quantization

Quadrature formulas

$$D^{(1)}(r) = \inf \left\{ \sup_{f \in \operatorname{Lip}(1)} \left| \int f \, d\mu - \int f \, d\widetilde{\mu} \right| : \#\operatorname{range}(\widetilde{\mu}) \leq e^r \right\}$$

is the worst case error for $\operatorname{Lip}(1)$ -quadrature (Kantorovich, Rubinstein '58)

Aim: Construct $\widetilde{\mu}$ (supporting points and weights)

Quadrature and quantization

Quadrature formulas

$$D^{(1)}(r) = \inf \left\{ \sup_{f \in \operatorname{Lip}(1)} \left| \int f \, d\mu - \int f \, d\widetilde{\mu} \right| : \#\operatorname{range}(\widetilde{\mu}) \leq e^r \right\}$$

is the worst case error for Lip(1)-quadrature (Kantorovich, Rubinstein '58)

Aim: Construct $\widetilde{\mu}$ (supporting points and weights)

- Further applications: Variance reduction (Pagès, ...)
 - Worst case error analysis of stochastic algorithms (CDMR '08)

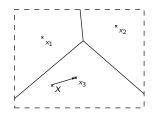
I Variance reduction

Approach: Partition \mathfrak{X} into $\mathfrak{X} = \bigcup_j V_j$, choose $\pi : E \to E$ mapping each cell V_j on a single element, and write

$$\mathbb{E}\big[f(X)\big] = \mathbb{E}\big[f(\pi(X))\big] + \mathbb{E}\big[f(X) - f(\pi(X))\big] = \mathrm{I} + \mathrm{II}$$

- $I = \sum_{x} \mathbb{P}(\pi(X) = x) f(x)$
- ▶ II is approximated by Monte Carlo; note that

$$\operatorname{var}(f(X) - f(\pi(X))) \le \operatorname{Lip}(f)^2 \mathbb{E} ||X - \pi(X)||^2$$



Optimal point density for $\mathfrak{X} = \mathbb{R}^d$

In general, it is hard to construct (close to) optimal quantizations, e.g., by competitive learning vector quantization algorithm (Bouton, Pagès '97).

Paradigm: Find an intermediate convex optimization problem that coarsely describes good quantizations!

Optimal point density for $\mathfrak{X} = \mathbb{R}^d$

In general, it is hard to construct (close to) optimal quantizations, e.g., by competitive learning vector quantization algorithm (Bouton, Pagès '97).

Paradigm: Find an intermediate convex optimization problem that coarsely describes good quantizations!

- Example: $\bullet \ \mathfrak{X} = (\mathbb{R}^d, \| \cdot \|)$
 - μ possesses a density h
 - $\mathbb{E}||X||^{s+\varepsilon} < \infty$ for some $\varepsilon > 0$

Then the empirical measures $\nu_n = \frac{1}{n} \sum_{x \in \mathcal{C}(n)} \delta_x$ for optimal codebooks $\mathcal{C}(n)$ of size n converge to a measure ν that has density

$$\xi = \frac{1}{Z} h^{d/(d+s)}.$$

It is the solution to

$$\int_{\mathbb{R}^d} \xi(x)^{-s/d} h(x) dx = \min$$

under the constraint $\int \xi(x) dx = 1$ (Bucklew '84, Graf, Luschgy '00).

II Gaussian signals in Hilbert spaces

- Let $\bullet \mathfrak{X}$ be a Hilbert space
 - \bullet μ be a centered Gaussian measure

Use Karhunen-Loève expansion

$$X = \sum_{j} \sqrt{\lambda_j} X_j e_j$$

- where \bullet (λ_i) \mathbb{R}_+ -valued sequence of eigenvalues
 - \bullet (e_i) orthonormal system of eigenvectors
 - \bullet (X_i) i.i.d. standard normals

II Gaussian signals in Hilbert spaces

- Let $\bullet \mathfrak{X}$ be a Hilbert space
 - ullet μ be a centered Gaussian measure

Use Karhunen-Loève expansion

$$X = \sum_{j} \sqrt{\lambda_{j}} X_{j} e_{j}$$

- where \bullet (λ_i) \mathbb{R}_+ -valued sequence of eigenvalues
 - \bullet (e_i) orthonormal system of eigenvectors
 - \bullet (X_j) i.i.d. standard normals

Example: (Wienerprocess in $L^2[0,1]$)

$$\lambda_j = rac{1}{(j-1/2)^2 \pi^2}$$
 and $e_j(t) = \sqrt{2} \sin((j-1/2)\pi t)$

Quantization error

$$D^{(s)}(r) = \inf \left\{ \mathbb{E}[\|X - \hat{X}\|^s]^{1/s} : \hat{X} \text{ r.v. with } \# \mathrm{range}(\hat{X}) \leq e^r \right\}$$

Shannon's distortion rate function

$$D_{\mathrm{Shannon}}^{(s)}(r) = \inf \big\{ \mathbb{E}[\|X - \hat{X}\|^s]^{1/s} \, : \, \hat{X} \text{ r.v. with } I(X; \hat{X}) \leq r \big\},$$

where

$$I(X;\hat{X}) = H(\mathbb{P}_{X,\hat{X}} \| \mathbb{P}_X \otimes \mathbb{P}_{\hat{X}})$$
 (mutual information)

Shannon's distortion rate function

$$D_{\mathrm{Shannon}}^{(s)}(r) = \inf \big\{ \mathbb{E}[\|X - \hat{X}\|^s]^{1/s} \, : \, \hat{X} \text{ r.v. with } I(X; \hat{X}) \leq r \big\},$$

where

$$I(X; \hat{X}) = H(\mathbb{P}_{X, \hat{X}} || \mathbb{P}_X \otimes \mathbb{P}_{\hat{X}})$$
 (mutual information)

Properties: • $D_{\mathrm{Shannon}}^{(s)}(r) \leq D^{(s)}(r)$

Shannon's distortion rate function

$$D_{\mathrm{Shannon}}^{(s)}(r) = \inf \big\{ \mathbb{E}[\|X - \hat{X}\|^s]^{1/s} \, : \, \hat{X} \text{ r.v. with } I(X; \hat{X}) \leq r \big\},$$

where

$$I(X; \hat{X}) = H(\mathbb{P}_{X,\hat{X}} || \mathbb{P}_X \otimes \mathbb{P}_{\hat{X}})$$
 (mutual information)

Properties: • $D_{\mathrm{Shannon}}^{(s)}(r) \leq D^{(s)}(r)$

• For a r.v. $X = (X_1, \dots, X_n)$ with independent entries

$$\inf\Bigl\{\mathbb{E}\Bigl[\sum_{j=1}^n\rho_j(X_j,\hat{X}_j)\Bigr]\ :\ I(X;\hat{X})\leq r\Bigr\}=\inf\Bigl\{\sum_{j=1}^nD_j(r_j)\ :\ r_1+\cdots+r_n\leq r\Bigr\},$$

where

$$D_j(r_j) := \inf \{ \mathbb{E}[\rho_j(X_j, \hat{X}_j)] : I(X_j; \hat{X}_j) \le r_j \}.$$

Shannon's distortion rate function

$$D_{\mathrm{Shannon}}^{(s)}(r) = \inf \big\{ \mathbb{E}[\|X - \hat{X}\|^s]^{1/s} \, : \, \hat{X} \text{ r.v. with } I(X; \hat{X}) \leq r \big\},$$

where

$$I(X; \hat{X}) = H(\mathbb{P}_{X,\hat{X}} || \mathbb{P}_X \otimes \mathbb{P}_{\hat{X}})$$
 (mutual information)

Properties: • $D_{\text{Shannon}}^{(s)}(r) \leq D^{(s)}(r)$

• For a r.v. $X = (X_1, \dots, X_n)$ with independent entries

$$\inf\Bigl\{\mathbb{E}\Bigl[\sum_{j=1}^n \rho_j(X_j,\hat{X}_j)\Bigr] \,:\, I(X;\hat{X}) \leq r\Bigr\} \stackrel{(\leq)}{=} \inf\Bigl\{\sum_{j=1}^n D_j(r_j) \,:\, r_1 + \dots + r_n \leq r\Bigr\},$$

where

$$D_j(r_j) := \inf \{ \mathbb{E}[\rho_j(X_j, \hat{X}_j)] : I(X_j; \hat{X}_j) \le r_j \}.$$

II Kolmogorov's inverse water filling principle

Thm:

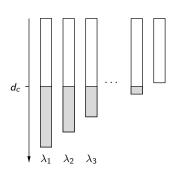
$$\left(D_{\mathrm{Shannon}}^{(2)}(r)\right)^2 = \min \sum_j \lambda_j e^{-2r_j}$$

with constraint $\sum_{i} r_{i} = r$.

Sol. Choose r_i as

$$\lambda_j \wedge d_c = \lambda_j e^{-2r_j}$$

for appropriate $d_c > 0$.



II Asymptotic formulae

Thm (D '03): If $\lim_{n\to\infty} \frac{\log\log(1/\lambda_n)}{n} = 0,$

then for all s > 0,

$$D^{(s)}(r) \sim D^{(2)}_{\mathrm{Shannon}}(r), \qquad r \to \infty.$$

- Asymptotics do not depend on s
- ▶ Approximation error concentrated around $D_{\text{Shannon}}^{(2)}(r)$
- Asymptotic-equipartition-property (Dembo, Kontoyiannis '02)

II Applications

Weakly optimal scheme

- ightharpoonup choose r_j according to RAP
- choose r_j -quantizations μ_j for $\mathcal{N}(0, \lambda_j)$ (weakly optimal)

 \rightsquigarrow approximation $\prod_{j} \mu_{j}$

Ref. Luschgy, Pagès '04, D '03

II Applications

Weakly optimal scheme

- ightharpoonup choose r_j according to RAP
- choose r_j -quantizations μ_j for $\mathcal{N}(0, \lambda_j)$ (weakly optimal)
- \rightsquigarrow approximation $\prod_j \mu_j$

Ref. Luschgy, Pagès '04, D '03

Strongly optimal scheme

- ▶ represent $\mathbb{N} = \bigcup I_k$ such that
 - ▶ $\#I_k \to \infty$ as $k \to \infty$
 - ► $\max_{j \in I_k} \lambda_j / \min_{j \in I_k} \lambda_j \rightarrow 1$ (subband decomposition)
- choose $\sum_{j \in I_k} r_j$ -quantizations ν_k for $\prod_{j \in I_k} \mathcal{N}(0, \lambda_j)$ (strongly optimal)

 \rightsquigarrow approximation $\prod_k \nu_k$

III Diffusions

Ass.: X solution to

$$X_t = \int_0^t b(X_u,u) \, du + \int_0^t \sigma(X_u,u) \, dW_u,$$

where $b,\sigma:\mathbb{R} imes [0,\infty) o\mathbb{R}$ satisfy for fixed $\mathit{C}>0$ and $eta\in(0,1]$

$$b(x,t) \leq C[|x|+1]$$
 and

$$|\sigma(x,t) - \sigma(x',t')| \le C[|x-x'|^{\beta} + |x-x'| + |t-t'|^{\beta}].$$

Moreover,
$$\mathfrak{X} = L^p[0,1]$$
 for $p \in [1,\infty)$ or

$$\mathfrak{X} = C[0,1] \ (\leadsto \ p = \infty)$$

III Preliminaries

When X is Brownian motion one has:

Thm (D, Scheutzow '06): $\exists \kappa_p \in \mathbb{R}_+$ such that for all s > 0

$$\lim_{r\to\infty}\sqrt{r}\,D^{(s)}(r)=\kappa_p$$

- Asymptotics do not depend on s
- Approximation error concentrated around κ_p/\sqrt{r}
- Similar result for fractional Brownian motion

Thm (D '08): For $p \in [1, \infty)$,

$$\lim_{r \to \infty} \sqrt{r} \, D^{(s)}(r) = \kappa_{\rho} \, \mathbb{E} \Big[\Big(\int_{0}^{1} |\sigma_{u}|^{\frac{2\rho}{p+2}} \, du \Big)^{\frac{\rho+2}{2\rho} \, s} \Big]^{1/s} = \kappa_{\rho} \, \Big\| \|\sigma_{\cdot}\|_{L^{\frac{2\rho}{p+2}}[0,1]} \Big\|_{L^{s}(\mathbb{P})}$$

Thm (D '08): For $p \in [1, \infty)$,

$$\lim_{r \to \infty} \sqrt{r} \, D^{(s)}(r) = \kappa_{p} \, \mathbb{E}\Big[\Big(\int_{0}^{1} |\sigma_{u}|^{\frac{2p}{p+2}} \, du\Big)^{\frac{p+2}{2p}s}\Big]^{1/s} = \kappa_{p} \, \Big\| \|\sigma_{\cdot}\|_{L^{\frac{2p}{p+2}}[0,1]} \Big\|_{L^{s}(\mathbb{P})}$$

and, for $p = \infty$,

$$\lim_{r\to\infty} \sqrt{r} \, D^{(s)}(r) = \kappa_{\infty} \, \left\| \left\| \sigma_{\cdot} \right\|_{L^{2}[0,1]} \right\|_{L^{s}(\mathbb{P})}$$

Thm (D '08): For $p \in [1, \infty)$,

$$\lim_{r \to \infty} \sqrt{r} \, D^{(s)}(r) = \kappa_p \, \mathbb{E} \Big[\Big(\int_0^1 |\sigma_u|^{\frac{2p}{p+2}} \, du \Big)^{\frac{p+2}{2p}s} \Big]^{1/s} = \kappa_p \, \Big\| \, \Big\| \sigma_\cdot \Big\|_{L^{\frac{2p}{p+2}}[0,1]} \Big\|_{L^s(\mathbb{P})}$$

and, for $p = \infty$,

$$\lim_{r\to\infty} \sqrt{r} \, D^{(s)}(r) = \kappa_{\infty} \, \left\| \left\| \sigma_{\cdot} \right\|_{L^{2}[0,1]} \right\|_{L^{s}(\mathbb{P})}$$

Heuristics: Suppose that $(\sigma_t)_{t\in[0,1]}$ is deterministic and piecewise constant on each interval $I_j=[j/n,(j+1)/n)$. Then for a good approximation \hat{X} , typically,

$$\int_0^1 |X_t - \hat{X}_t|^p dt \approx \kappa_p^p \frac{1}{n} \sum_{i=0}^{n-1} \frac{|\sigma_{i/n}|^p}{(nr_i)^{p/2}}$$

where r_i is the rate assigned for the approximation of the piece l_i .

$$\sum_{i} r_{i} = r$$
 (rate constraint)

$$\int_{I_i} |X_t - \hat{X}_t|^p dt \approx \kappa_p^p \frac{|\sigma_{j/n}|^p}{(nr_t)^{p/2}}$$

Thm (D '08): For $p \in [1, \infty)$,

$$\lim_{r \to \infty} \sqrt{r} \, D^{(s)}(r) = \kappa_p \, \mathbb{E} \Big[\Big(\int_0^1 |\sigma_u|^{\frac{2p}{p+2}} \, du \Big)^{\frac{p+2}{2p}s} \Big]^{1/s} = \kappa_p \, \Big\| \, \Big\| \sigma_\cdot \Big\|_{L^{\frac{2p}{p+2}}[0,1]} \Big\|_{L^s(\mathbb{P})}$$

and, for $p = \infty$,

$$\lim_{r\to\infty} \sqrt{r} \, D^{(s)}(r) = \kappa_{\infty} \left\| \left\| \sigma_{\cdot} \right\|_{L^{2}[0,1]} \right\|_{L^{s}(\mathbb{P})}$$

Heuristics: Suppose that $(\sigma_t)_{t\in[0,1]}$ is deterministic and piecewise constant on each interval $I_j=[j/n,(j+1)/n)$. Then for a good approximation \hat{X} , typically,

$$\int_0^1 |X_t - \hat{X}_t|^p \, dt \approx \kappa_p^p \, \frac{1}{n} \sum_{i=0}^{n-1} \frac{|\sigma_{j/n}|^p}{(nr_j)^{p/2}} = \kappa_p^p \int_0^1 \frac{|\sigma_t|^p}{(\overline{r}_t)^{p/2}} \, dt$$

where r_i is the rate assigned for the approximation of the piece l_i .

$$\sum_{j} r_{j} = r$$
 (rate constraint)

$$\int_{I_j} |X_t - \hat{X}_t|^p dt \approx \kappa_p^p \frac{|\sigma_{j/n}|^p}{(nr_i)^{p/2}}$$

III Rate allocation problem

Minimize

$$\int_0^1 \frac{|\sigma_t|^p}{(\overline{r}_t)^{p/2}} dt$$

over all non-negative (\overline{r}_t) with $\int_0^1 \overline{r}_t \ dt = r$.

III Rate allocation problem

Minimize

$$\int_0^1 \frac{|\sigma_t|^p}{(\overline{r}_t)^{p/2}} dt$$

over all non-negative (\bar{r}_t) with $\int_0^1 \bar{r}_t dt = r$.

Solution:

$$\bar{r}_t = \frac{1}{Z} |\sigma_t|^{\frac{2p}{p+2}} r,$$

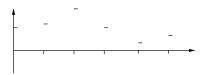
where $Z = \int_0^1 |\sigma_u|^{\frac{2p}{p+2}} du$.

 Similar results obtained for strong approximation by piecewise linear functions (Müller-Gronbach '96)

III Constructive quantization

Approach:

Ist step: quantize Brownian motion on a coarse time grid and compute an approximation via Milstein scheme → each path leads to an approximation (ô_t)

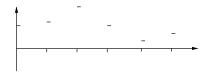


Ref: Müller-Gronbach, Ritter (work in progress)

III Constructive quantization

Approach:

- Ist step: quantize Brownian motion on a coarse time grid and compute an approximation via Milstein scheme → each path leads to an approximation (ô_t)
- ▶ 2nd step: each coarse approximation is refined by inserting bridges according to the rates induced by $(\hat{\sigma}_t)$

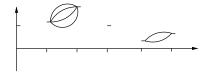


Ref: Müller-Gronbach, Ritter (work in progress)

III Constructive quantization

Approach:

- Ist step: quantize Brownian motion on a coarse time grid and compute an approximation via Milstein scheme → each path leads to an approximation (ô_t)
- ▶ 2nd step: each coarse approximation is refined by inserting bridges according to the rates induced by $(\hat{\sigma}_t)$



Ref: Müller-Gronbach, Ritter (work in progress)

IV Lévy processes

Now:

X is a (ν, σ^2, b) -Lévy process, i.e. a Lévy process with

$$\mathbb{E}e^{i\theta X_1} = \exp\left\{-\frac{\sigma^2}{2}\theta^2 + ib\theta + \int_{\mathbb{R}} \left(e^{iux} - 1 - \mathbf{1}_{\{|x| \le 1\}}iux\right)\nu(dx)\right\}$$

 $\mathfrak{X} = L^p[0,1] \text{ with } p \in [1,\infty)$

IV Lévy processes

Now:

X is a (ν, σ^2, b) -Lévy process, i.e. a Lévy process with

$$\mathbb{E}e^{i\theta X_1} = \exp\left\{-\frac{\sigma^2}{2}\theta^2 + ib\theta + \int_{\mathbb{R}} \left(e^{iux} - 1 - \mathbf{1}_{\{|x| \le 1\}}iux\right)\nu(dx)\right\}$$

 $\mathfrak{X} = L^p[0,1] \text{ with } p \in [1,\infty)$

Thm (Aurzada, D '08): Under additional assumptions \exists constants $c_1 = c(p, \nu)$ and c_2 , such that for sufficiently small $\varepsilon > 0$ and s > 0,

$$\tfrac{1}{c_2}\,\varepsilon \leq D^{(1)}(c_1\, F(\varepsilon)) \quad \text{and} \quad D^{(s)}(\tfrac{1}{c_1}\, F(\varepsilon)) \leq c_2\, \varepsilon,$$

where

$$F(\varepsilon) = \frac{\sigma^2}{\varepsilon^2} + \int_{\mathbb{R}} \left[\left(\frac{x^2}{\varepsilon^2} \wedge 1 \right) + \log_+ \frac{|x|}{\varepsilon} \right] \nu(dx).$$

IV Rate allocation

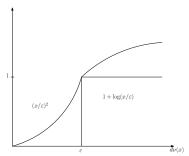
Approximate evolutions induced by *large* and *small* jumps (together with Brownian component) separately.

Small jumps. Approximate exit times of the compensated process out of ε-intervals.

$$\leadsto$$
 allocated rate $\frac{\sigma^2}{\varepsilon^2} + \int_{[-\varepsilon,\varepsilon]} \frac{x^2}{\varepsilon^2} \, \nu(dx)$

► Large jumps. Approximate individual jumps.

$$ightsquigar$$
 allocated rate $\int_{[-arepsilon,arepsilon]^c} \! \left(1 + \log rac{|x|}{arepsilon}
ight)
u(dx)$



V Final remarks

- Quantization useful in the analysis of quadrature problems
 - Variance reduction
 - Lower bounds for stochastic algorithms
- Coarse descriptions of good quantizations available for a number of random objects
 - ► Finite dimensional X under Orlicz norm dist. (D, Vormoor (Prep.))
 - ► Gaussian X in Hilbert space
 - Diffusions
 - Lévy processes
- Asymptotically optimal constructive quantization partially understood