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Introduction

"The Fast Fourier transform (FFT) is one of the truly great
computational developments of this century. It has changed the
face of science and engineering so that it is not an exaggeration to
say that life as we know it would be very different without FFT.”

[Charles Van Loan]

A

(a) Gauss 1805 (b) Runge 1903  (c) Lanczos 1942  (d) Tukey 1965




Introduction

Fast computation of

N/2—-1
= Y heee =0,
k=—N/2
and
M—-1 )
hie=Y_ fie?™ 5k =-N/2,.
j=0

for x; € [-1/2,1/2).

L NJ2 -1,

In short: f = Af, h = A™f with A € CM*V, q;; = e~ 27k,

Discrete Fourier transform: z; = j/N, j = —-N/2,...,N/2 — 1,

computation by FFT costs O(N log N) flops.



Fourier Analysis - Fourier series

Torus T = [~1/2,1/2), Hilbert space L?(T),

1/2
— 1
(Foiem = [ f@ 3@ de,  flee = (5.0}
~1/2
orthogonality of ey () := e*™** = cos 2k + isin 27kz
1/2 1/2
(ejaek)LQ(’]I‘) — /eZWijx e—27rik:1c dr = /e2fri(j—k)a: dr
—1/2 —-1/2
1 R .
A s

27i(j — k)



Fourier Analysis - Fourier series

f € L*(T) can represented by the complex Fourier series

[e.e]

f@) = > aulf) e2miks

k=—o00
with Fourier coefficients

c(f) = (frer)rzm

1/2

— / f(m)e—Qﬂ'ikx dz

—1/2
Theorem: Let f be a continuous one-periodic function with
Z e (f)] < o0,
k=—0c0

then the Fourier series converges absolutely and uniformly.



Fourier Analysis - Fourier series, Example

(@ N=1 (b) N=2

Fourier series

of the 2w—periodic function

x(m —x) xz € [0,m)

10 ={ & or ) 2 <leom



Fourier Analysis - Fourier series, Example

(a) N=4

Fourier series

al 2 sin(2rkz)

e k
k=1

of the 1-periodic function

flx)=—-2zx+1

10



Fourier Analysis - Fourier series, Properties

Linearity

Q
B
—~
>
=
Il

Symmetry

ck(h) = ck(f),
ck(h) = ck(f),

Shift and modulation

ce(h) = MR gp(f),
ck(h) = ch-ro(f),

Differentiation

ck(h) = (2mik)™ e (f),

ce(f) + cr(g)
Ae(f)
W) = f(~2)
h(z) := f(x)

h(z) == f (x)

11



Fourier Analysis - Fourier series, Parseval

Hilbert space ¢%(Z),

o 1
(a,b)p = Zakbm lalle := (a,b)p.
keZ

For f,g € L*(T) and

c(f) = (ck(rez, ©(9) = (ck(9))rez € *

we have

(c(f);e(@)e = (F:9)r2my, el = 112 -

12



Fourier Analysis - Fourier series, Aliasing

Theorem: Let f be a one-periodic function with absolutely
convergent Fourier series with Fourier coefficients

cr(f) = j f(z) e 2mikedy,

N|=

The discrete Fourier coefficients

N/2-1 j
£ —27ijk /N
o= X 1 (5) e

j=—N/2

fulfil the aliasing relation

13



Fourier Analysis - Fourier series, Aliasing

Proof: Substitute the Fourier series f into the definition of fj.

Nj2-1

%fk _ Z Z alf o2milj/N o —2mijk/N

]_ N/2 IeZ

N/2-1
— Z Z e27r1]l k)/
leZ
leZ

]_—N/Z
The assertion follows from

N-1
1= oo _{1 if Lhez

ZIH

2mij(l—k)/

ZIH

J=0

(§
N Z e27r1j(l k)/N

0 otherwise.
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Fourier Analysis - Fourier series, Aliasing

Lemma: N
—1 e -k
1 Z o2mi(1—k) /N _ L if e
N = 0 otherwise.
In case % € Z, this holds because aII terms in the sum are 1.
In case '5E ¢ 7, we apply 0! ¢F = . This yields
N— 1627”] oy Q2mi(l—k) _ B 0 0
= eQwi(l—k)/N — 1  e2mi(—k)/N _

since 2™ (=F)/N £ 1.

15



Fourier Analysis - Fourier series, Aliasing

Corollary: If f is a one-periodic function of which only the lowest
N Fourier coefficients are non-zero, i.e.,

N/2-1

flry="" a(f) e,

k=—N/2

then the approximation %fk for the Fourier coefficients is exact for
k=-N/2,....N/2 — 1.

16



Fourier Analysis - Fourier series, d-variate

Definitions:

Index-set
I = [-N/2,N/2)*nz¢

o[ 11 ¢
Tl 272

torus

inner product

kx = kyx1 + koxo + ... + kqzyg

17



Fourier Analysis - Fourier series, d-variate

Theorem: Let f € L%(T%) be a one-periodic function with
absolutely convergent Fourier series

Fx) =" en(f) ke
kczd
with Fourier coefficients

)= [ 00 ¢ 2R,
Td

If the cg(f) are approximated by the discrete Fourier coefficients
P ) onijr/N
fuim 307 () e,
Jjelg

then the following aliasing relation holds

w(f) = i = ewlf) + 3 eninalf).

rezd
r#0

18



Fourier Analysis - DFT

The discrete Fourier transform (DFT) of f = (fj)N/2 ', eCNis

N/2
N/2-1
> fje RN (k= -Nj2,... Nj2-1).
j=—N/2
: 5 _ N/2-1
Matrlx—vector form, f := (fj)jv_/2 Njor BN = (e Q“IkJ/N)]Ji_ N/2
is
f = Fnf.

Theorem: The inverse discrete Fourier transform (IDFT) of the
vector f € CV is given by

Nj2-1

Z frp e®™IRIN (G = _N/2,... N/2—1).

k_ N/2

19



Fourier Analysis - DFT

Proof: Substitute one sum into the other, i.e.,

N/2-1 N/2-1 N/2-1
Z fj e—QWijk/N — Z Z fr 2mijr /N —27r1]k/N
j=-N/2 j=— N/2 r=—N/2
N/2-1 N/2-1
Z fr Z eZﬂ'ijr/N e—27rijk/N
r— N/2 j=—N/2
= fi
Again, the identity follows from the orthogonality relation
N/2-1 ,
Z o2mij(r—k)/N _ N ifr=k,
P 0  otherwise.
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Fourier Analysis - DFT

Observation: Fy contains only N different values, since e=2mk/N

is N periodic
(Unshifted) Fourier matrix Fiy = (e—QWijk/N)fk*:lO
Examples:
1 1 1 1
L1 1 - -1 i
¥ _(1 —1>’ Fa=l9 1 1 21 |
1 i -1 —i
1 1 1 .
FS — 1 6 02 , 0 _e—27r1/3.
1 6% 0

21



Fourier Analysis - DFT, FFT

The DFT takes O(N?) floating point operations (flops).

The Fast Fourier Transform (FFT) takes only O(N log N) flops by
using a divide-and-conquer approach. Reduce one problem of size
N to two problems of size N/2 at the cost of O(N), i.e.,

odd — even } |:FN/2 0 ] |:IN/2 Inys ]

Fy = [ permutation 0 Fnp W W

where W = diag(1, e 2mil/N o=2mi2/N ’e—zm(N/z_n/N)_

Software: FFTW package by Frigo & Johnson (www.fftw.org).
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Fourier Analysis - FFT

Compute DFT of size N =27, n € N, wy := e 2™/

N-1
fo=3"fiwld  (k=0,...,N-1).
7=0

Decimation-in-frequency (Sande-Tukey), divide the above sum

N LS|

fk—ij +Zf W (k=0,....N—1).

23



Fourier Analysis - FFT

Case 1: Even k =21

N_q N_q
2 2 N .
; 25l N2 N
f2l:zfjwzvj+2fg+jw§v2 ) (=05 —1)
J=0 J=0
note that
w}(\{%ﬂ)?l = o 2mil=2migl/(N/2) — i
2
hence
foo= S gk e
=0 % j=0 > 7
¥ .
jl
- | w l= 07 s Ty 1
<f] - fN+]> N ( 5 )

24



Fourier Analysis - FFT

Case 2: Odd k=20+1

f_l N
N .
; §(21+1) Z (F+7)@1+1) _ N
Jory1 = E fiw) N f%+ij (1=0,..., 5 1)
Jj=0

note that

N .

(F+5)@+1) CopiN 24l 5 i

2 __—2mi il _ Jod

wpy =e 2N wNw%——waw%

hence (with twiddle factors w),)

81 81
¢ _ gl J Jl, J
Jory1 = § f]wNwN E fﬂ_H'wng,
- 2 X 2 2
7=0 j=0
N g

2
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Fourier Analysis - FFT, Flow graphs

DFT(N) takes N additions, § multiplications, and 2 DFT (%)
in total: O(N log N) flops

26



Fourier Analysis - Fourier transform on R

Banach space LP = LP(R), 1 < p < o0,

o0 1/p
[l = ( |f () d;v)

The Fourier transform f: R — C of f € L'(R) is given by

f)i= [ rwear

27



Fourier Analysis - Fourier transform on R, Example

Characteristic function, L > 0

if |z| <L,
if ==L,

else.

flz) =

O = =

L
~ . 1 .
—2rive —27ive |L
= der = ———
F(v) / ¢ v 27Tive -
—L
= 2Lsinc (2 Lv)

with the Sinc-function

) SMEif g £ ),
sinczx 1=
1 if z=0.

28



Fourier Analysis - Fourier transform on R, Example

Gaussian f(z) = e~ has the Fourier transform

Proof:
00
]E(U) — /e—a:2e—27riwc dz
—00
00
_ e—rr2v2 /e—(z+7riv)2 dr
—00
00
= oV /e_z2 dz
—00

29



Fourier Analysis - Fourier transform on R, Example
o0 2 o0 o0
(/ e dt = /exz d:c/ey2 dy

—00 —00
oo o0
= /e_(I2+y2) dz dy
-0 —O0
2w oo
= //e_r2r dr dy
00
oo 2m
! / g / d
= — e s
9 Y
0 0
- ey

= .

30



Fourier Analysis - Poisson summation formula

Theorem: Let p € L?(R) N L'(R) given, such that the
periodisation

pa) =3 gz +7)

rez

has an uniformly convergent Fourier series

1/2
@(LIT) = ch(sé)e?ﬂ‘ik:x’ Ck(@) = / @(i)e—Zﬂ’ikm dz .
keZ 1

p(x)e 2™ dr =: ¢(k) = ci(d).

B

31



Fourier Analysis - Poisson summation formula

Proof:
1/2
a@ = [ Tt
~1/2 reZ
1/2
= z / cp(x-l—r)e_%ikm dx
"'GZ_l/g
1/24r
— Z SD(y)ef27rilcy e27rikr dy
TEZ—I/Q—H’ =1
= / py)e > dy
R

= Bk,

32



Fourier Analysis - Poisson summation formula

Theorem: Let p € L?(R%) N L' (R%) given, such that

Bx) = 3 plx+1)

reZd

has an uniformly convergent Fourier series

px) = 3 cr(@e R (@) = /¢(X)e—2wikm dx .

kczd Td

/ p(x)e 27 dx = p(k) = cg ().
Rd

33



Fourier Analysis - Poisson summation formula

Proof:
@ = [ 3 plx+r)e 2T ax
Td reZd
= Z @(x + r)e 2k x
’I‘GZde
1/2+T1 1/2+7"d
— Z / o / tp(y)e—%rik(y—'r) dy
TEL 1 fote —1)247y
= / p(y)e ™Y dy
Rd

= o(k).

34



Fourier Analysis - The 4 Fourier transforms

freq. \ time continuous discrete

continuous Fourier transform “semidiscrete”
Fourier transform

discrete Fourier series discrete Fourier transform

35



Fourier Analysis - The 4 Fourier transforms

Fourier transform on R

oo

forward: fw)= [ flz)e 2" dz

inverse: flx) = 70 f(v)e?™v dy

periodicity: none

36



Fourier Analysis - The 4 Fourier transforms

“semidiscrete” Fourier transform

forward: f(v) = 3 f(j)e—27rivj
e

inverse: fG) = f f(v)e%ivj dv
—1/2

periodicity:  f(v) = f(v+1)

37



Fourier Analysis - The 4 Fourier transforms

Fourier series

1/2

forward: e(f)= [ flx)e 2mkedy
~1/2

inverse: fx)= > cp(fle*™*@dy
k=—oc0

periodicity:  f(z) = f(x + 1)

38



Fourier Analysis - The 4 Fourier transforms

discrete Fourier transform (DFT)

forward: p = >, fje2mik/N
§=0
N-1 . .
inverse: fi== pe2miak/N
k=0

periodicity: fk = fk+rN i fi = fi+rN

39



Nonequispaced FFT - d =1

Fast computation of

N/2-1
fi= Z fke—27rikmj’ j=0,...,M—1,
k=—N/2
and
M—1
hk:ije+27rlkxj, k:—N/27’N/2_1’
=0

for x; € [-1/2,1/2).

In short: f = Af, h = A™f with A € CM*V, aj = e 2mikz;

40



Nonequispaced FFT - Taylor expansion d = 1

Evaluate at the nodes x;

N/2-1

Z fk e—27rikx

k=—N/2
o compute Fourier coefficients of derivatives, [ =0,...,m — 1,
Q;[f] = (—2rik)' fi
e compute m oversampled (n = o N) fast Fourier transforms
[l] = FFT(g [l])

9 expand f(z;) ~ pli"™(z;) about its nearest grid point

v

] i (7 L9 (%) i
v (xj):g E +g E .’I?j—; +T .’Ej—; +. ..

41



Nonequispaced FFT - Taylor expansion d =1

Bernstein type inequality

N/2—1 N/2—1
> fe(=2mik)e R <aN Y | fil.
k=—N/2 k=—N/2
Error estimate
i’ m | j j//n|m
flag) =P )] < I o
N/2—1 1
< m Al —
< @™ Y R s
k=—N/2
S Ca,m“le-

Takes O((N log N + M)|loge|) floating point operations.

42



Nonequispaced FFT - Taylor expansion d =1

Matrix factorisation P € CM*V,
P = [X°X!. .. X" F,...F,][D’D!... D™
with “diagonal” matrices D € CV*V, di’k = (—2mik)!, and

X € RMn, xé-’j, = (z; — j'/n)}/1.

Error estimate
lajk — ikl < Com.

Normwise error estimate

HA _P||2 < C(r,m\/ MN.

43



Nonequispaced FFT - Ansatz

Evaluate at the nodes x;

N/2-1

f(ﬂ?) — Z fk e—271'ikx‘

k=—N/2
Set n := o N, oversampling factor ¢ > 1, and approximate f by

n/2—1

si@) = Y @(m—%)

I=—n/2

where ¢ = 3", ¢(- —r) is a 1-periodic window function.
Switching to the frequency domain

- 1/2

sl = Y als)e )= [ s i

k==o00 ~1/2

44



Nonequispaced FFT - Ansatz

1/2
ck(s1) = /sl(x)e%ikxdx
~1/2
12 pje1
S et by
_1/2 l=-n/2

nje—1 /2

S
n

l=—n/2 ~1/2 S——

Y
_ Z gle—Zﬂ'lkl/n / @(y)e%rlky dy
I=-n/2 ~1/2—1/n

= Grck(P)

45



Nonequispaced FFT - Ansatz

Hence -
si(@) = Y gpor(@)e ke

k=—00

with discrete Fourier coefficients of g;

n/2—1

= > gemikl/n
l=—n/2

and Fourier coefficients of ¢

1/2

ex(3) = / B@)e e = (k).
—1/2

46



Nonequispaced FFT - First approximation

Compare f(z) = iv_/2 ]\}/2 fr e 2mkz gnd

w .
— Z gk Ck(@) e—27r1kx

k=—o0
o0 n/2 1

Z Z gk-l-nr Chtnr SZ)) e_27"i(k+nr)x

r=—00 k:——n/2

n/2_1 [e's) n/2 1
Z i Ck( —2rikx + Z Z 0k Ck+nr —27r1(k:+nr)z
k=—n/2 '“:;go k=—n/2
Set

o fr/ew(@) k=-N/2,... N/2—1,
I=N 0 k=-n/2,....,—N/2—1;N/2,...,n/2 — 1.
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Nonequispaced FFT - Second approximation

Suppose @ is small outside [—m/n, m/n] with m < n,

n/2—1 I
s1(z) = Z g1 o(x — ﬁ)

l=—n/2

Approximate ¢ by compactly supported function

vy i= { 1 BE S ) = S ptan).

else,
reZ
Forj=—-M/2,...,M/2 —1 compute
[zjn]+m 3 !
fe) = ae) o) = > b (- 1)

48



Nonequispaced FFT - Algorithm

0 For k=—-N/2,...,N/2 — 1 compute

Gk = fu/cr(®).
e Forl=—-n/2,...,n/2 — 1 compute by FFT of size n

N/2—1

1 ~ _omikl/n
g= Z 9k © :
k=—N/2

9 For j =0,...,M — 1 compute

[z;n]+m B I
s(z) = Y. ad (l’j - ;) :

I=lz;n]—m
Floating point operations
O(N +nlogn+ (2m+ 1)M) = O(nlogn + mM)

49



Nonequispaced FFT - Interpretation

Convolution based algorithm
o deconvolve f with the window function
g—1r/¢
e compute one oversampled fast Fourier transform
g <— FFT(g9)
9 convolve with the window function and evaluate
f(aj) — (g% ¢)(xj)
Joint approximation

[zn]+m

Z v (w o l/n) e—27rikl/n

I=|zn|—m

e—27r1kx ~

ng (k)

50



Nonequispaced FFT- Matrix-vector form

A is factorised approximately as A ~ BFD
o D € RV*N is a diagonal matrix:

N/2-1
ncg(P) k=—N/2
9 F € C™ ¥ js a truncated Fourier matrix:
Fo— (e—27rikl/n>n/2_1 N/2=1
I=—n/2, k=—N/2

9 B € RM*" is a sparse matrix with 2m + 1 non-zeros per row:

M—-1n/2—-1
B:= (bjl)j:() l:/_n/2

where

b — @Z(xj—%) ifl e {lzjn] —m,..., Jz;n] +m}
j7l - H
0 otherwise.
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Nonequispaced FFT- Matrix-vector form

Spy of the matrix B € R%4*128, | egendre nodes z;, cut-off m = 5.

The factorisation that was derived for A allows us to derive

AT~D'F'BT.
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Nonequispaced FFT- Multivariate version

Of course, a d-variate FFT is available.

Use the window function ¢ : R — R,

o(x) == Hgo(mt), x = (x1,29,...,24)"
=1

and note

53



Nonequispaced FFT - Error estimates

The two approximations yield
E(zj) == |f(z;) — s(x))| < Ealz;) + Ei(z;)
with aliasing and truncation error

Ea(z;) == |f(xj) — s1(z5)],  Ei(zy) = [s1(xj) — s(zy)]

Theorem: Let ||f]|; := 52/2__]\}/2 | /x|, then
Ea(x;) < |||}y max —CHW@)‘
kerl, | cr(®)
r#0
and
I£11 1 r
Fi(z;) < max —~ ‘ (58'-1——)‘
t( J) n kGI}V |Ck QO)| Z ¥ J n

1T m
’:C]+TL|Z n
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Nonequispaced FFT - Error estimates

Proof:

Ea(z;) = [f(z) — s1(x)]
o n/2-1

— Z Z i Ck—i-nr 27r1(k+m“)1:

r=—00 k=—n/2

r#0

o N/2—1 F
- ST e

’":;‘X’ k=— N/2

E S k(@)
< X |A] ¥ [l

k=—N/2 Tj;go Ck(go)
< |fh  max i Chinr(P) |
- k=—N/2,..N/2-1 “~ | ck(p)

r#0
55



Nonequispaced FFT - Error estimates

Duetog =1 >° %e_%ikl/”, we have
1

N
n/2—1

(o2 -7(-1))

Ei(z;) =

e R
n lellkell n n
1 s O N DR R e
< S AT ()92
||f‘||1 ~ i 7 o i —2mikl/n
= e nle) Z“”(J‘n ‘¢(‘""J n)w
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Nonequispaced FFT - Error estimates

We proceed by

R0

lel}

- (e pe)
ler}

reZ

—p <l‘j -—+ 7") X[-m,m] <1Bj - % + 7“) )e—%i’“l/n
= (90 (a”j + %) - (xj + %) X[—m, m] (mj + %)) e 2mikr/n

= Z % (33 + 2) e—27rikr/n‘

57



Nonequispaced FFT - Error estimates

Finally
[E{[R 1 T —2rik
E ) < _ ( ) _) wikr/n
t('r]) — n ]Icléé}l}\r( |§0(k)‘ Z ® x] + n €
|zj+5 2%
1]} 1 ‘ r
< max — (:B + —)’ .
o B 2 lPlmty

4 m
|$3+n|2n

Corollary: For non-negative, even, and monotone decreasing ¢:

Et(xj)g”ﬂmax 2 gp(%)—i—]o(p (%) dz | .
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Nonequispaced FFT - Error estimates, B-splines

E; = 0 [c. Beylkin, G. Steidl]

Centered cardinal B-spline of order m € N

M) = {(1] ieflse, r€[-1/2,1/2),

1/2

Mpyi(z) = / My (x —t)dt
~1/2

have suppM,, = [-m/2,m/2] and

1/2
M (v) = / e 2™ dg = sinc(mv).

—-1/2
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Nonequispaced FFT - Error estimates, B-splines

Lemma: M,, (k) = (sinc(wk))™ for m € N.
Proof: By induction

~

Mpii(k) = /R M1 (z)e 2™k dg
1/2
= / / My, (2 — t)e 2™k 4t dg:
R v
~1/2 y
1/2
— / /Mm(y)e—27riykdye—27ritkdt
R

~1/2 —-
Ny (k)

= (sinc(mk))" sinc(mk)
= (sinc(mk))™ !,
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Nonequispaced FFT - Error estimates, B-splines

Lemma: For 0 < u < 1 and m € N it holds that

2m 2m
Z U < 4dm u
u-+r 2m—1\u—1 '

reZ\{0}

Proof: For r > 0 holds < U >2m < <L>2m and

u 2m
S(5) = 12
u-+nr

rez

IN
—
+
[\
7~ N 7 N 7 N 7 N
S
(RS
—_
N—— — 7 N~
N
3
[\
—
8[\3
7N
IS
(S
8
N——
[\
3
o
8
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Nonequispaced FFT - Error estimates, B-splines

Theorem: Let f(x;), 7 =0,...,M — 1 be computed by the NFFT
with ¢(z) := My, (nz) and n:= 0N (o > 1). Then the
approximation error can be estimated

E By < =7 ()™
= Imax X;
0T e 3, = 1% 1

iy m—1\20 —

where f := (fk)kel}\,-

Proof: E; = 0 since

m m

supp ¢ C [—ma W]'
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Nonequispaced FFT- Error estimates, B-splines

Moreover
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Nonequispaced FFT- Error estimates, B-splines

Since

R ([ sin(kn/(oN)) ™"
oNp(k+roN) = <W>

(S ()

k/(oN) >2m
kE/(ocN)+r

— oo (

and due to the above Lemma

A 4m (k/(oN))*™
B < ||F .
< Mflh 5= rert (k/(oN) — 1)2m

Since u/(u — 1) increases for u € [0,1/2], the assertion follows for
k= N/2.
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Nonequispaced FFT- Error estimates, Gaussian

E} =~ E, [Dutt & Rokhlin, G. Steidl]

Theorem: Let f(z;), j=0,...,M — 1, be computed by the NFFT
with ¢ > 3/2 and
1

e—(o'Nx)z/b’

p(x) == \/ﬁ

20 m . . .
where b := 52757 Then the approximation error can be estimated

Eoo < 4e ™ (1=5=1) |||
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Nonequispaced FFT- Error estimates, Gaussian

A S AN
“/ - N\

10 1071

05 01 0 of 05 -60 -45 45 0 14 4“4 60
(a) Gaussian window function (b) Fourier transform ¢ with
p(r) = ceow?, sampled on “pass” (¢), ‘“transition”, and
2m+1nodes — 2, ... 2 (o). “stop” band (x).

Parameters are set to N = 30, 0 = 2, n = 60, m = 6.
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Nonequispaced FFT- Error estimates, Gaussian

In place of a proof: cx(p) = @(k) = ﬁe*(ol\f
The errors can be estimated by

Ea(z;) < |flhe ™ 0-7)

ag 2 g
1 s —2bm? /o 1 s
( 2o 2 ¢ ( +(20+1)b772)>’

(k)

8-

B(e) < [ (@)

Choose b = 232 = to get
<m>2 1\? _q 1
br 20) o
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Nonequispaced FFT- Error estimates, summary

E, = 0: Sinc function [potts), Kaiser-Bessel function [Fourmont, Potts]

Theorem: Approximation error

E(xj) = |f(x;) = s(2;)] < Clo,m)| ],

with
2m
4 (r&) B-spline,
4e—mm(1-1/(20-1)) Gaussian,
C(o,m) = 5 2m—1 _
= (ﬁ) Sinc,
Am(y/m +m){/1 — Lemm2mV1-1/7  Kaiser-Bessel.

Corollary: Precision ¢ for fixed o > 1 when m ~ |loge].
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Nonequispaced FFT - Summary

Fast Fourier tranform (FFT) [cooley, Tukey 1965; Frigo, Johnson 1997-] COMputes

£ o—2mikj/N s o 7d
fi= Y hee™9N ey,
kel

in O (Nd log N) ﬂOpS, S€ee www.fftw.org.

Nonequispaced FFT [Dutt, Rokhlin 1993; Beylkin 1995-; Potts, Steidl, Tasche 1997-; Greengard, Lee

2004; Keiner, Kunis, Potts 2002] COmMputes

fi=Y fee, j=0,...,M-1,
kel

in O (Nd log N + ’log €’d M> ﬂOpS, S€€ www.tu-chemnitz.de/~potts/nfft.
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Nonequispaced FFT - Matlab

NDFT:

x=rand(M,1)-1/2;
f_hat=rand(N,1)+i*rand(N,1);
f=exp (-2xpixi*xx(-N/2):(N/2-1))*f_hat;

NFFT, Taylor expansion

freq=-2xpixi*x(-(N/2):(N/2-1))’;
ix=round(n*(x+0.5));
dx=x-(ix/n-0.5);
ix=mod(ix,n)+1;
for 1=0:m
g_hat=[zeros((n-N)/2,1);f_hat.*(freq."1);...
zeros((n-N)/2,1)];
g=fftshift (fft(fftshift(g_hat)));
f=f+g(ix) .*(dx."1)/prod(1:1);
end;
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Nonequispaced FFT - Matlab

NFFT, Gaussian window

freq=(-(N/2) : (N/2-1))’;
b=2*sigma*m / ((2*sigma-1)*pi);
inv_phi_hat=exp(b*(pi*freq/n) . 2);
g_hat=[zeros((n-N)/2,1);f_hat.*(inv_phi_hat);...
zeros((n-N)/2,1)]1;
g=fft (fftshift(g_hat));
for j=1:M
c_j=n*x(j);
u_j=floor(c_j-m);
o_j=ceil(c_j+m);
supp_j=mod(u_j:o_j,n)+1;
psi_j=(pix*b) ~(-1/2)*exp(-(n*x(j)-(u_j:0_3j))."2/b);
f(j)=psi_j*g(supp_j);
end;
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Nonequispaced FFT - Matlab

Computing nonequispaced DFT and FFT

ft_optl.method=’direct’;
f1=ndft(f_hat,x,N,ft_optl, ’notransp’);

ft_opt2.method=’gaussian’;
ft_opt2.m=6;

ft_opt2.sigma=2;
f2=nfft(f_hat,x,N,ft_opt2,’notransp’);

and adjoints

h_hatl=ndft(f_hat,x,N,ft_optl,’transp’);
h_hat2=nfft(f_hat,x,N,ft_opt2,’transp’);
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Nonequispaced FFT - C

Simple example

nfft_plan p;

int N=14;

int M=19;

nfft_init_1d(&p,N,M);
nfft_vrand_shifted_unit_double(p.x,p.M_total);
if (p.nfft_flags & PRE_ONE_PSI)

nfft_precompute_one_psi(&p);

nfft_vrand_unit_complex(p.f_hat,p.N_total);

nfft_trafo(&p);
nfft_finalize(&p);
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Nonequispaced FFT - C

Data structure nfft_plan
int d;

int *N;

int N_total;

int M_total;

double complex *f_hat;
double complex *f;

double *x;

double *sigma;
int m;

unsigned nfft_flags;
unsigned fftw_flags;
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Nonequispaced FFT - C, precomputation flags

For j=0,...,M — 1 compute

1 f —2mikl/n " 1
fi~ Z = Z (@(i)) o 2mikl/ ¢<Xj_ﬁ>'

l—xjn|<m kerd

Evaluate 1/; and ¢ on the fly or precompute and store the values?

d
pk)=]]etk:)  k=(ks,... k)"
t=1

Method memory evaluations
- - No-...-Ng_1
PRE_PHI_HUT | Ng+ ...+ Ng_1 -




Nonequispaced FFT - C, precomputation flags

d
¥(x) :Hw(fﬂt), X = (71,29,...,24)"
t=1
Method memory | evaluations
- - méM
PRE_PSI dmM -
PRE_FULL_PSI | miM -

lookup table and linear interpolation PRE_LIN_PSI
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Nonequispaced FFT - C, precomputation flags

fast Gaussian FG_PSI, PRE_FG_PSI [Greengard, Lee]
for d =1 and a fixed z;, I' € {{xjn] —m, ..., [z;n] +m}

l/ (nacj—l,)2 (n:vj—u)2 2(naj—u) ! 2
\/ﬂ-b.go x‘]_f :e_ b :e_ b e b e_?,
n

where v = min I, p,(2;) and [ =0,...,2m.

nfft_init_guru(&p, d, N, M, n, m,
PRE_PHI_HUT| PRE_PSI|
MALLOC_F_HAT| MALLOC_X| MALLOC_F]|
FFTW_INIT| FFT_OUT_OF_PLACE,
FFTW_ESTIMATE| FFTW_DESTROY_INPUT);
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Nonequispaced FFT - C

— doc (API docs)
—include (C headers)
— util (utility functions)

— fpt (fast polynomial transform)
— nfct (nonequispaced fast cosine transform)
— nfft (nonequispaced fast Fourier transform)

— nfsft (nonequispaced fast spherical Fourier transform)

— kernel

—examples (for each in kernel)

L— applications

— nfst (nonequispaced fast sine transform)
— nnfft (nonequispaced in space and frequency FFT)

— nsfft (nonequispaced sparse fast Fourier transform)

L—solver (inverse transforms)

— fastgauss (fast Gauss transform)

— fastsum (summation schemes)

fastsumS2 (summation on the sphere)

— polarFFT (fast polar Fourier transform)

L—radon (radon transform)
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Summary

Fast computation of

N/2-1
f]: Z fke*2ﬂ-ikxj7 jzov"‘7M_]-7
k=—N/2
and
M—-1 .
hk:ije+27lemj, kZ_N/Q,,N/2—]_’
7=0

for x; € [-1/2,1/2).

In short: f = Af, h = A™f with A € CM*N | g, = =27k

Computational costs: O(N log N + |loge|M) instead of O(NM).
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| Part | — Fourier Analysis and the FFT l

Stefan, Monday, 14:15 — 16:00, Room U322

Part Il — Orthogonal Polynomials

Jens, Tuesday, 12:15 — 14:00, Room U141 (Lecture Hall F)

Practice Session: 14:30 — 16:00, Room Y339b (Basics and Matlab Hands-On)

Part Il — Fast Polynomial Transforms and Applications
Jens, Wednesday, 12:15 — 14:00, Room U345

Practice Session: 14:30 — 16:00, Room Y338c (C Library Hands-On)

Part IV — Fourier Transforms on the Rotation Group
Antje, Thursday, 14:15 — 16:00, Room U322

Part V — High Dimensions and Reconstruction
Stefan, Friday, 10:15 — 12:00, Room U322
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Introduction

“Orthogonal polynomials are of great importance in mathematical
physics, approximation theory, the theory of numerical quadrature,

etc., and are the subject of an enormous literature.”
[Nico M. Temme]

A.-M. Legendre C. Hermite E. T. Whittaker G. Szegd
1752 - 1833 1822 - 1901 1873 — 1956 1895 — 1985
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c Orthogonal Polynomials
9 Classical Orthogonal Polynomials

e Discrete Polynomial Transforms
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Orthogonal Polynomials

A brief definition:

Orthogonal polynomials are polynomials {p,} ere
defined over a range [a,b] that obey an orthogonality
relation,

b
/ Pu () pm () w(z) do = On,m M, hyn > 0.

Weisstein, Eric W. ,Orthogonal Polynomials.”, MathWorld
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Orthogonal Polynomials

A more general definition:

Let \(x) be a nondecreasing function on the real line R
with finite limits x — +oo and an induced positive
measure d\ having finite moments

o = i (dN) ::/a:"d)\(a;), n=0,1,2,...,
R

with g > 0. Then for any two polynomials f, g, one
may define an inner product as

(f.g) = / f(@)g(z) dA(z).

Orthogonal polynomials are polynomials {pn}n N that

are orthogonal with respect to such an inner product.

Gautschi, Walter ,Orthogonal Polynomials — Computation and Approximation*
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Orthogonal Polynomials — Basic Properties

Let a sequence of orthogonal polynomials {p, } be given, i.e.

n€Nyp

(pna pm) = 5n,mhn

What fundamental properties can we deduce?
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Orthogonal Polynomials — Basic Properties

Let a sequence of orthogonal polynomials {p, } be given, i.e.

n€Nyp

(pna pm) = 5n,mhn

What fundamental properties can we deduce?

@ Symmetry A measure d\(z) = w(z)dx is symmetric, iff

supp(w) = [—a,a],a > 0, and w(—z) = w(z).

Symmetric measures on [—1,1] Non-symmetric measures on [—1, 1]
w(t)
3.0

2.5
2.0
1.5

t t
-1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0

If the measure d\ is symmetric, then p,(—x) = (—1)"py(x).
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Orthogonal Polynomials — Basic Properties

@ Basis The set {pj :0<5 < n} constitutes a basis for the
space P, of polynomials of degree at most n.

@ Zeros All zeros of p,, are real, simple and located in the
interior of the support interval of dA.
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Orthogonal Polynomials — Basic Properties

@ Basis The set {pj :0<5 < n} constitutes a basis for the
space P, of polynomials of degree at most n.

@ Zeros All zeros of p,, are real, simple and located in the
interior of the support interval of dA.

Chebyshev zeros for = in [—1, 1] with w(z) = —=——

T20(X)

YA,
ik

o
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Orthogonal Polynomials — Basic Properties

@ Interlacing The zeros of p,, 11 alternate with those of p,,.
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Orthogonal Polynomials — Basic Properties

@ Interlacing The zeros of p,, 11 alternate with those of p,,.

Chebyshev zeros for z in [—1,1] with w(z) = ——

Te(x), T7(X)
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Orthogonal Polynomials — Basic Properties

@ Interlacing The zeros of p,, 11 alternate with those of p,,.

Chebyshev zeros for z in [—1,1] with w(z) = ——

Te(x), T7(X)

@ Three-term recurrence Orthogonal polynomials {p, }
satisfy a three-term recurrence with initial conditions:

neNy

pTL-‘rl(x) = (an.’E - bn)pn(fﬂ) - Cnpn_l(l‘), n= 07 17 ceey
p-1(z) =0, po(z) = ko.
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Orthogonal Polynomials — Basic Properties

Example: Chebyshev polynomials of first kind T,, are orthogonal
with respect to the inner product

o= [ o) s
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Orthogonal Polynomials — Basic Properties

Example: Chebyshev polynomials of first kind T,, are orthogonal
with respect to the inner product

o= [ o) s

@ Definition: T),(z) = cos(narccosz) for z € [—1,1].
@ Symmetry: T),(—x) = (—1)"T},(x).
@ Basis: Theset {7 : 0 < j <n} is a basis for P,.

@® Zeros: Tn<cos Céﬂﬁg”)) =0forj=0,1,...

n—1.

DN NN

@ Three-term recurrence:

Thi1(z) = (2 = 6nyo) z Tn(z) — Th—1 (), n=0,1,...,
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Orthogonal Polynomials — Basic Properties

One can rewrite the three-term recurrence
Prt1(x) = (anz — by)pn () — cnpn—1(x), n=0,1,...,
in the alternative form

xpn(x) = dnpn+1(l’) + Bnpn(x) + Enpn—l(x)v n=0,1,....

The Jacobi matrix is the infinite tridiagonal matrix

l_)() agp 0
a by @

Joo = C2 BQ
0

Its n X n principal minor matrix is denoted J,,.



Orthogonal Polynomials — Basic Properties

One can also put the alternative recurrence
TP (T) = ppny1(z) + Enpn(x) + Enpn—1(z), n=0,1,...,

in matrix-vector form
xp(x) = an(x) +anpn(x)en; n=0,1,...,

p(z) = (po(x),p1(x),... ,Pnfl(x))T, e, =(0,0,...,0, 1)T.

The zeros 7,5, 7 = 0,1,...,n — 1, of p, are the eigenvalues of
J,.. The corresponding eigenvectors are p(7,), j =0,...,n — 1.

Proof
Put x = 7, ;, for j = 0,1,...,n — 1 and note that

P(7jn) # 0. [ |
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9 Classical Orthogonal Polynomials
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Classical Orthogonal Polynomials — Introduction

How do orthogonal polynomials actually arise?
Time-dependent PDE

\L Remove time variable

Time-independent PDE

\L Coordinate transformation

New time-independent PDE

\L Separation of variables

Multiple ODEs

\L Boundary or other conditions

Polynomial solutions
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Classical Orthogonal Polynomials — Introduction

Time-dependent PDE [ AAARMMMRLASINE T e independent PDE

Typical PDEs that arise in mathematical physics:

Laplace's equation:  Au =0 u=u(t,x1,x2,...,Tn)
Heat equation: Au = u, L b

2
— dxj

Wave equation:  Au = uy I
j
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Classical Orthogonal Polynomials — Introduction

Time-dependent PDE [ AAARMMMRLASINE T e independent PDE

Typical PDEs that arise in mathematical physics:

Laplace’s equation: Au =10 u=u(t,zy,z2,...,2n)
Heat equation: Au = uy "2
Wave equation:  Au = uy B - dx?
]:

How to remove the time variable?
@ Pull out time dependency, e.g. u(t,z1,22,...,2,) = *v(z1, 2a,. .., xn)

@ Fourier or Laplace transformation

@ New equation: Helmholtz Av + k?v = 0, Schrédinger equation
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Classical Orthogonal Polynomials — Introduction

Time-dependent PDE [ AAARMMMRLASINE T e independent PDE

Typical PDEs that arise in mathematical physics:

Laplace’s equation: Au =10 u=u(t,zy,z2,...,2n)
Heat equation: Au = uy "2
Wave equation:  Au = uy B - dx?
]:

How to remove the time variable?
@ Pull out time dependency, e.g. u(t,z1,22,...,2,) = *v(z1, 2a,. .., xn)

@ Fourier or Laplace transformation

@ New equation: Helmholtz Av + k?v = 0, Schrédinger equation

Example: 2D-Laplace %v + %v =0, v=0v(z,vy)

already time-independent 01



Classical Orthogonal Polynomials — Introduction

Time-independent PDE New coordinates "l New time-independent PDE

2 d2
2D-Cartesian Laplace @v + d_y2

v=0,v=0v(z,vy)

r=rcosf, y=rsinf

2 1 1 2
2D-Polar Laplace d—v + - d d

2 S +2d92 =0,v=uv(r0)
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Classical Orthogonal Polynomials — Introduction

Time-independent PDE New coordinates "l New time-independent PDE

2 d2
2D-Cartesian Laplace @v + d_y2

v=0,v=0v(z,vy)

r=rcosf, y=rsinf

2 1 1 2
2D-Polar Laplace d—v + - d d

a2t gt T gy =0 v = vind)

Under certain conditions, we can seek solutions of the form

o(r,0) = f(r)g(0).
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Classical Orthogonal Polynomials — Introduction

. . Separation of variables -
New time-independent PDE " Multiple ODEs

d? 1d 1 a2
2D-Polar Laplace d—v—i— rdr v+ — 2302

—v=0,v=uv(r/0)

| o000 = s0900)

2 i+?_o, f=f(r), g=g(0)

l Terms in f and g are constant.

k € Ny

Function ¢g(f) must be 27-periodic!
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Classical Orthogonal Polynomials — Introduction

Solve individual ODEs:

/"

e 9 — 12 has solutions g(0) = eFk0
g
" /
® 2 f J} —k? has solutions f(r)=r*k

Laplace's equation Av = 0 has fundamental solutions of the form
v(r, 0) = rEketit?,

Often, the solution with 7~* can be removed because of the pole
at the origin.
Connection to Fourier series:

On the unit circle, i.e. for r = 1, one obtains the complex
exponentials e+
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Classical Orthogonal Polynomials — Introduction

Real part of solution v(r, ) = r*e*? for k = 10.
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Classical Orthogonal Polynomials — Introduction

Real part of solution v(r, ) = r*e*? for k = 10.
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Classical Orthogonal Polynomials — Introduction

Real part of solution v(r, ) = r*e*? for k = 10.
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Classical Orthogonal Polynomials

... arise as solution to ODEs of the form

oy +1y + Ay =0, ogePy, 7P, \, € Rin € Ng,y =y(x), I

that follow from solving PDEs using separation of variables.
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Classical Orthogonal Polynomials

... arise as solution to ODEs of the form

oy +1y + Ay =0, ogePy, 7P, \, € Rin € Ng,y =y(x), I

that follow from solving PDEs using separation of variables.

Example:
@ Legendre differential equation (— Legendre polynomials P,)

(1 -2y —2xy +n(n+1)y=0
This equation arises when solving the Laplace equation
Awv = 0 in spherical coordinates (7,6, ¢) with boundary
conditions that have axial symmetry (no dependence on ¢).
Then the solution v can be expanded as

o0

v(r,0) = (akrk + bkr_k)Pk(x).
k=0
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Classical Orthogonal Polynomials

Further examples:
@ Chebyshev differential eq. (— Chebyshev polynomials T;,)

(1—2?)y" —ay +n’y=0
@ Hermite differential equation (— Hermite polynomials H,,)

y" —2xy 4+ 2ny =0

This equation is equivalent to the Schrodinger equation for a
harmonic oscillator in quantum mechanics.
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Classical Orthogonal Polynomials

... arise as solution to ODEs of the form

oy’ +7y + My =0, o€Py7eEP, N\, €RneNy,y=y(x), I

that follow from solving PDEs using separation of variables.

What can be derived from the differential equation:
@ Polynomial solution p, € P, <= X\, = —n7’' — @J”.
@ The sequence {p/, }nen, satisfies an ODE of similar type.

@ There is a Rodrigues formula, that is,

B,
w(zx) dzn

pn(z) = (c™(z)w(z)), B, €R.

@ The function w(z) = EON o) 47 gives the self-adjoint form

(cwy') + Mwy = 0.
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Classical Orthogonal Polynomials

I All classical polynomials characterized by choice of o and 7! I

@ Distinguish three cases for o (up to constant factors):
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Classical Orthogonal Polynomials

I All classical polynomials characterized by choice of o and 7! I

@ Distinguish three cases for o (up to constant factors):

@ Write 7 € P; with two degrees of freedom, say, «, 3.
@ Determine w(z) for each case:

(b—2)%(x—a)’ ifo(x)=/
w(z) =< (x — a)®ef?, if o(x) = (
o’ +6z if o(x) =

b—z)(x—a),
x—a),

1.
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Classical Orthogonal Polynomials

I All classical polynomials characterized by choice of o and 7! I

@ Determine w(z) for each case:

(b—2)%(x—a)’ ifo(x)=(b—-2z)(z—a)
w(z) = < (x — a)ef?, if o(z) = (z —a),
eax2+ﬁx, if o(x) =1.
After linear change of variable:
(1—2)*(1+2)%, ifo(x)=1-22
w(z) =< %%, if o(x) =,
S if o(x) =1
We have omitted the case when ¢ has a double root which

gives rise to the Bessel polynomials.
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Classical Orthogonal Polynomials

What is the measure dA with respect to which the polynomials

corresponding to different values \,, = —n7’ — wg” are
orthogonal?
Theorem (Orthogonality)
If w(z), as defined before, satisfies
o(x)w(x)z" =0, n=0,1,...,
r=a,b

at the endpoints of an interval [a, b]. Then the polynomials p,,
corresponding to different values \,, are orthogonal with respect
to the measure dA(z) = w(z) X[qp)(2) dz, i.e.

b
/ il @B)iplen) W) i = Gppaltny e = 0
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Classical Orthogonal Polynomials

Proof.
Take the differential equations for p,, and p;,,

(awp%)/ + Awpn, =0, (aw p;n)/ + Apw pm = 0.
Multiply the first by p,,, the second by p,, and subtract,
d
(/\n - >\m) W Pn Pm = Pn (Ume), — DPm (Uwpn)/ = a (Uw W(pnapm))

Pn Pm
/ /
n m

with the Wronskian W (p,,pm) := . Integrate both sides,

1

b
[ o@pnl@yu(@) do = 5= [ @u@W pn(o) pm(@)];.

n_/\m

Since W (pn(z), pm(z)) € P, the right hand side vanishes. ]
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Classical Orthogonal Polynomials — Examples

b
oy + 1y + Ay = 0, / P (@) pm () () Az = Gnmhin. |

Hermite polynomials H,,

o(z) =1,
w(z) =e — a,b] = (=00, 00)
o(z) o(z) =z, Laguerre polynomials L
w(z) = 2% " [a,b] = [0, 00)
2 Jacobi polynomials pld)
[a,b] = [-1,1]
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Classical Orthogonal Polynomials — Examples

Hermite polynomials H,,

@ are orthogonal on (—o0, 00)

@ o(z)=1 7(z)

—2z, w(z) = e \, = 2n

@ Differential equation

@ Rodrigues formula

y" + =22y + 2ny =0

H,(x) = (—1)"ew2 & (e_xz) ,

@ Three-term recurrence

Hn+1(x)

20H,(x) — 2nHp,_1(z),
H 1(1’) = 0, H()(.’L‘) =1.
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Examples of Classical Orthogonal Polynomials

Laguerre polynomials L%

@ are orthogonal on [0, o0)
Q@ ox)=z7@)=—a+a+1, wx)=2%" N\, =n, -1<a
@ Differential equation

ay’ + (~r+a+ 1)y +ny=0
@ Rodrigues formula

1 d"
L (z) = =2~ %" —

n! dam ($a+ne—w) ’

@ Three-term recurrence

(n+ 1)L (@) = (—a + 2n+a+ 1)L (@) — (n+ @)L, (2),
@) =0, L@ =1
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Classical Orthogonal Polynomials — Examples

Jacobi polynomials P{*?

@ oare orthogonal on [—1, 1]
@ox)=1-227(x)=—(a+B+2)x+F—q,
w(z)=1-2)*1+2)% A\y=nn+a+p+1), -1 <a,p
@ Differential equation
(1-2*)y" = ((a+B+2)z+a—B)y +nn+a+B+1)y=0
@ Rodrigues formula

_1)71 dn
1—z) %(14z) P—
gy L 72) (F2) T

P (z) = ( (1—2)" T (1+2)"P).

@ Three-term recurrence too complicated to put here.
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Classical Orthogonal Polynomials — Examples

Important special cases of Jacobi polynomials:
@ Legendre polynomials P,:

Py(z) = P (x),

@ Chebyshev polynomials of first and second kind 7T}, and U,,:

Tn(z) = F(ééi)i(f/gl)Pél/2,l/2) (x) = cos(nb),

@ Gegenbauer/Ultraspherical polynomials i,

IMNa+ %)I’(n + 2) (a_%,a_%)(
I(nt+a+ H(2a) "

x), a # 0.
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e Discrete Polynomial Transforms
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Discrete Polynomial Transforms

The road to discrete polynomial transforms:

N—-1
- o ~ - kj
Discrete Fourier Tranform Lo 2TR
k=0
Allow arbitrary nodes l
N/2—-1
Nonequispaced Discrete Fourier Transform Z fre2mike;
k=—N/2
Allow other basis l

N
Discrete Polynomial Transforms > fepn(zy)
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Discrete Polynomial Transforms — Applications

Discrete Fourier transform on the sphere S* (NDSFT)

Compute the sums

(35, 05) Z Z frrp(cos9))e™?i, j=1,2,..., M.
=0 m=—/
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Discrete Fourier transform on SO(3) (NDSOFT)

Discrete Polynomial Transforms — Applications

Compute the sums

N l ¢
flog, Bim) =D D Y Ji"e ™ d) " (cos Bj)e™™

{=0 m=—f n=—~

forj=1,2,..., M.

(Antje’s talk. ... |
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Discrete Polynomial Transforms — Definition

Definition (Discrete Polynomial Transform)

Given a sequence of orthogonal polynomials/functions {p, }nen,
coefficients fi, k=0,...,N, and nodes =, j =1,..., M,
compute

N
k=0

Goal: fast and numerically stable algorithms
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Discrete Polynomial Transforms — Matrix-Vector Notation

@ The equations

N
f]:kapk<mj)7 j:1727"'7Ma
k=0

correspond to the matrix-vector product
. M,N MxX(N
f=PFf  P=(pla;)jorp € RM*VHL,
@ The transposed problem reads

M
hie=>_ fipe(x;),  k=0,1,...,N,
=1

or, equivalently,
f=PTf.
@ Rationale: Can be used to recover the expansion coefficients

fk if a suitable quadrature formula to discretise the inner
product fj = f}l f(@x)pr(x) dX\(z) is available.
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Discrete Polynomial Transforms — Comparison to NFFT

What is the benchmark algorithm against which
any other algorithm should be valuated?

Comparison with nonequispaced discrete Fourier transform

AR [ ikx.\M,N/2—1
f=Af A= (¢ ’31)].:17,6:_]\[/2
Direct Direct NFFT
Method (online) (precomputed) € = accuracy
Time O(NM) O(NM) O(Nlog N +log(1/e)M)
Memory o(1) O(NM) O(1) — O(N +log(1/e)M)
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Discrete Polynomial Transforms — Comparison to NFFT

What is the benchmark algorithm against which
any other algorithm should be valuated?

Comparison with nonequispaced discrete Fourier transform

_ a _ ke \M,N/2—1
f=Af A= (¢ xj)j:l,k:—N/Q
Direct Direct NFFT
Method (online) (precomputed) € = accuracy
Time O(NM) O(NM) O(Nlog N +log(1/e)M)
Memory o(1) O(NM) O(1) — O(N +log(1/e)M)

@ Direct method (online evaluation): slowest of all methods, constant
amount of memory

@ Direct method (precomputation): fastest for small transform sizes,
large amount of memory needed

@ NFFT: fastest for large enough transforms, moderate and adjustable
memory requirements
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Discrete Polynomial Transforms — Algorithms

What is the benchmark algorithm against which any

other algorithm should be valuated?

Discrete polynomial transform
2 M,N
f=Pf, P= (pk(wj))jzlyk:o
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Discrete Polynomial Transforms — Algorithms

What is the benchmark algorithm against which any

other algorithm should be valuated?

Discrete polynomial transform
2 M,N
f=Pf, P= (pk(wj))jzlyk:o

@ Direct method (online evaluation, precomputation)

pi alone cannot be evaluated in constant time!
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Discrete Polynomial Transforms — Algorithms

What is the benchmark algorithm against which any

other algorithm should be valuated?

Discrete polynomial transform
2 M,N
f=Pf, P= (pk(wj))jzlyk:o

@ Direct method (online evaluation, precomputation)
pi alone cannot be evaluated in constant time!

@ Fast method

What is a fast polynomial transform?
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Discrete Polynomial Transforms — Algorithms
Clenshaw Algorithm

(Clenshaw 1955, Smith 1965)
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Discrete Polynomial Transforms — Clenshaw Algorithm

Each entry pi(z;) in the matrix P cannot be evaluated in constant
time, but each inner product between a single row of P and the

vector f can be computed O(N) arithmetic operations

N
f(x;) = (po(x;), p1(@;), - - P () - (fo,flau-,fN) Z KDk (T5)-
k=0

Discrete Polynomial Transforms — Clenshaw Algorithm
For x fixed, evaluate a finite linear combination of polynomials,
N
= Z fjpn(x)
=0

that satisfy a three-term recurrence

Pnt1(x) = (anx — by)pn(z) — enpn—1(x), n=0,1,...,
p-1(v) =0, po(z) = ko.
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Discrete Polynomial Transforms — Clenshaw Algorithm

Clenshaw Algorithm (Clenshaw 1955, Smith 1965)

Input: uszk, k=0,1,...,N, x € R.

fori=N—-1,N—-2...,1do
Ui + = (aix—bi) Uit1

Ui—1 — = CjUj+1
end for
up + = (aoac = bo) U1
f(l‘) = k()uO

Output: f(z), Time: O(N), Memory: O(1) — O(N).

RIS
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Discrete Polynomial Transforms — Clenshaw Algorithm

Clenshaw Algorithm (Clenshaw 1955, Smith 1965)

Input: uszk, k=0,1,...,N, x € R.

fori=N—-1,N—-2...,1do
Ui + = (aix—bi) Uit1

Ui—1 — = CjUj+1
end for
up + = (aoac = bo) U1
f(l‘) = k()uO

Output: f(z), Time: O(N), Memory: O(1) — O(N).

aﬁil?—bﬁ
RN
oo [ Jn [ [ [ e [ 0
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Discrete Polynomial Transforms — Clenshaw Algorithm

Clenshaw Algorithm (Clenshaw 1955, Smith 1965)

Input: uszk, k=0,1,...,N, x € R.
fori=N—-1,N—-2...,1do
Ui + = (aix—bi) Uit1

Ui—1 — = CjUj+1
end for
up + = (aoac = bo) U1
f(l‘) = k()uO

Output: f(z), Time: O(N), Memory: O(1) — O(N).

a5x—b5
LSRN .
BB T K
ER——

121



Discrete Polynomial Transforms — Clenshaw Algorithm

Clenshaw Algorithm (Clenshaw 1955, Smith 1965)

Input: uszk, k=0,1,...,N, x € R.

fori=N—-1,N—-2...,1do
Ui + = (aix—bi) Uit1

Ui—1 — = CjUj+1
end for
up + = (aoac = bo) U1
f(l‘) = k()uO

Output: f(z), Time: O(N), Memory: O(1) — O(N).

asx — by
LSRN e
‘UO’ul’uQ‘U3‘U4‘U5[U6:U7:
P
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Discrete Polynomial Transforms — Clenshaw Algorithm

Clenshaw Algorithm (Clenshaw 1955, Smith 1965)

Input: uszk, k=0,1,...,N, x € R.

fori=N—-1,N—-2...,1do
Ui + = (aix—bi) Uit1

Ui—1 — = CjUj+1
end for
up + = (aoac = bo) U1
f(l‘) = k()uO

Output: f(z), Time: O(N), Memory: O(1) — O(N).

agl‘—bg
/-\ TT T Y T T T TY T T T ™Y
‘u0’u1’u2‘U3‘U4{U5:u6:u7}
[ S S
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Discrete Polynomial Transforms — Clenshaw Algorithm

Clenshaw Algorithm (Clenshaw 1955, Smith 1965)

Input: uszk, k=0,1,...,N, x € R.

fori=N—-1,N—-2...,1do
Ui + = (aix—bi) Uit1

Ui—1 — = CjUj+1
end for
up + = (aoac = bo) U1
f(l‘) = k()uO

Output: f(z), Time: O(N), Memory: O(1) — O(N).

a233‘—b2
/-\ ————————— Y- T T Ty T T
‘uo’ul’uz‘u3[u4lu5lu6lu7l
R D S S
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Discrete Polynomial Transforms — Clenshaw Algorithm

Clenshaw Algorithm (Clenshaw 1955, Smith 1965)

Input: uszk, k=0,1,...,N, x € R.

fori=N—-1,N—-2...,1do
Ui + = (aix—bi) Uit1

Ui—1 — = CjUj+1
end for
up + = (aoac = bo) U1
f(l‘) = k()uO

Output: f(z), Time: O(N), Memory: O(1) — O(N).

alx—bl
/\ —————————————— Y- T T Ty T T
‘Uolul’u2[uslu4lu5lu6lu7l
P D S S S |
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Discrete Polynomial Transforms — Clenshaw Algorithm

Clenshaw Algorithm (Clenshaw 1955, Smith 1965)

Input: uy =fk, k=0,1,...,N, x € R.
fori=N—-1,N—-2...,1do
Ui + = (aix = bi) Uit1

Ui—1 — = CjUj+1
end for
up + = (aoac = bo) U1
f(@) = koug
Output: f(z), Time: O(N), Memory: O(1) — O(N).
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Discrete Polynomial Transforms — Clenshaw Algorithm

Clenshaw Algorithm (Clenshaw 1955, Smith 1965)

Input: uszk, k=0,1,...,N, x € R.

fori=N—-1,N—-2...,1do
Ui + = (aix—bi) Uit1

Ui—1 — = CjUj+1
end for
up + = (aoac = bo) U1
f(l‘) = k()uO

Output: f(z), Time: O(N), Memory: O(1) — O(N).
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Discrete Polynomial Transforms — Clenshaw Algorithm

Repeat procedure for each node:

o | v [ un [ [ [ s [ | wr |

o [ o [ un [ [ e [ s [ w0 | wr |

o v e [ s [ e [ vs [ wo [ o |
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Discrete Polynomial Transforms — Clenshaw Algorithm

Repeat procedure for each node:

a1 — b6
RN

o | [

s | ua [ e | o (S

-

—cg

agrs — bg
RN

BN

s | ua [ us | o [Fu]

-

—cg

agrs — bg
X N\

EIENES

w [ [ | v [ur]

*_

—cg
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Discrete Polynomial Transforms — Clenshaw Algorithm

Repeat procedure for each node:

Lo [ Jua [os [ v [ w0 Jusf vr
J

- T ™
Lo [ Jua [os [ v [ w0 Jusf vr
J

‘UO‘Ul‘UZ‘U3‘U4‘U5‘UG{U7:
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Discrete Polynomial Transforms — Clenshaw Algorithm

Repeat procedure for each node:

Lo [ [ea [ v [ e L8] o

o [ Joa Jus [ [lu8] s

‘Uo‘ul‘U2‘U3‘U4‘u5{u6lu7l
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Discrete Polynomial Transforms — Clenshaw Algorithm

Repeat procedure for each node:

—— e = = — —

~——4

- - -3
<
(=2}

-——
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Discrete Polynomial Transforms — Clenshaw Algorithm

Repeat procedure for each node:

e e — = — = —.
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Discrete Polynomial Transforms — Clenshaw Algorithm

Repeat procedure for each node:

P
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=
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=
o
o
g0
<
=
T
{am
(2]
=
<2
)
|
(2]
=
—
L
(2]
(o
©
o
T
.
=
(@)
=
=
(@)
(a1
(O}
4+
(0]
e
O
-2
QO

Repeat procedure for each node:

apx1 — by

==

apx3 — by

L ug ) us o, Us | Ur
Ao P SR S,

g
|
uz |
- —— = A

Uz
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L
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o
T
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(@)
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(a1
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(0]
e
O
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Repeat procedure for each node:

==

R e T T

uy

Ue

A

Us

Uq

u3

Uz

u1

S S G
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Discrete Polynomial Transforms — Clenshaw Algorithm

Summary:
@ Time: O(NM) X
@ Memory: O(1) — O(N) v
v

@ Numerically stable (Barrio, 2002)

|f(z)- <UZ|kapk )|+O(u?), u = unit roundoff

@ Requirements: Three-term recurrence

How to derive the transposed version of this algorithm?
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Discrete Polynomial Transforms — Clenshaw Algorithm

The Clenshaw algorithm computes

f(x) = (po(z),p1(x),...,pN(T)) - (fo,fh .- -,fN)
N

= fipe(z) =p(2)"f,
=0

essentially by factorizing p(x)" in particular way:

o [ o [ un [ [ [ us [ w0 | v |

corresponds to

fz) = f.
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Discrete Polynomial Transforms — Clenshaw Algorithm

The Clenshaw algorithm computes

f($) = (pﬂ(x)apl("r)?' s apN(-T)) : (fO)fla . 7fN)
N

= fkpk(w) = p(x)" f,
=0

essentially by factorizing p(x)" in particular way:

an—bgj
RN
EIEIEIEIEIEIE]

corresponds to
f(z) = PO f.
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Discrete Polynomial Transforms — Clenshaw Algorithm

The Clenshaw algorithm computes

f($) = (pﬂ(x)apl("r)?' s apN(-T)) : (fO)fla . 7fN)
N

= fkpk(w) = p(x)" f,
=0

essentially by factorizing p(x)" in particular way:

a5x—b5
RN N
[0 [ [ [ J s [ o [lua] v
PR —

corresponds to
f(z) = PP PP §.
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Discrete Polynomial Transforms — Clenshaw Algorithm

The Clenshaw algorithm computes

f(@) = (po(@),p1(x),- .., pn () - (fo frse oo fv)
N

~

= fkpk(w) = P(x)T f,
=0

essentially by factorizing p(x)" in particular way:

aqsr — b4

corresponds to

f(z) = PUO PO PO F
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Discrete Polynomial Transforms — Clenshaw Algorithm

The Clenshaw algorithm computes

f(@) = (po(@),p1(x),- .., pn () - (fo frse oo fv)
N

~

= fkpk(w) = P(x)T f,
=0

essentially by factorizing p(x)" in particular way:

a3.’I}—b3
/_\ T T Y T T T Y T T T M
‘UO”U,l”ZJ,Q‘U;;‘U4{U5:U6:U7:
[ N S ——
-
corresponds to
o) PO PLIPY PO §.
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Discrete Polynomial Transforms — Clenshaw Algorithm

The Clenshaw algorithm computes

f(@) = (po(@), p1(2),

N

apN(x)) ’ (fO)fla“‘)fN)

fkpk(w) = P(x)T f,
=0

essentially by factorizing p(x)" in particular way:

ag.’L‘—bQ
/_\ e e e e ¥
1
‘Uolul’uz‘u3[u4.u5lu6lu7l
[ S S S

124



Discrete Polynomial Transforms — Clenshaw Algorithm

The Clenshaw algorithm computes

f(@) = (po(@),p1(x),- .., pn () - (fo frse oo fv)
N

~

fkpk(w) = P(x)T f,
=0

essentially by factorizing p(x)" in particular way:

alx—bl
KN o
‘Uolulluz[uslmlufjluﬁlwl
____________ P R
-
corresponds to
f@) = PUPE PO POPO P

=p(z)T
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Discrete Polynomial Transforms — Clenshaw Algorithm

The Clenshaw algorithm computes

f(@) = (po(@),p1(x),- .., pn () - (fo frse oo fv)
N

~

fkpk(w) = P(x)T f,
=0

essentially by factorizing p(x)" in particular way:

apgx — b()
RN

T T T Y T T T Ty T T T Ty T T T T Y T T T TY T T T M
- X )

corresponds to

=p(z)T
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Discrete Polynomial Transforms — Clenshaw Algorithm

The Clenshaw algorithm computes

f(@) = (po(@), p1(2),

N

N (T)) - (fo,fh . -,fN)

= fkpk(w) = P(x)T f,
=0

essentially by factorizing p(x)" in particular way:

=p(z)T
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Discrete Polynomial Transforms — Clenshaw Algorithm

Recap:

Clenshaw Algorithm for Multiple Nodes

Input: fp, k=0,1,...,N, z; €R, j=1,2,..., M.

for j =1,2,...,M do

fla;) = ke PO PY . PIDE
end for
Output: f(z;),j=1,2,...,M
Time: O(NM), Memory: O(1).

Obtain transposed algorithm by transposing

the matrix factorization.
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Discrete Polynomial Transforms — Clenshaw Algorithm

Transposing the factorization:

ko I S A A S S S
f(z)—| uo Up | U2, U3, U4, Us | U | UT
—— ) A s X P S

corresponds to

A(z) = ko ().

=p(z)
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Discrete Polynomial Transforms — Clenshaw Algorithm

Transposing the factorization:

=p(z)
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Discrete Polynomial Transforms — Clenshaw Algorithm

Transposing the factorization:

alx—bl
. S S
‘Uolul’u2[uslu4lu5lu6lu7l
JEE N S S S

~____ A

corresponds to
. T T

h(x) = PP Iy f(x).

=p(z)
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Discrete Polynomial Transforms — Clenshaw Algorithm

Transposing the factorization:

a233—b2
/\ _________ Y T T T TY T T T ™
‘uo’ul’W‘Us[wl%lueslwl
[ S S S

~____

corresponds to
. T T T

h(x) PP P POk f(a).
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Discrete Polynomial Transforms — Clenshaw Algorithm

Transposing the factorization:

agl‘—bg
/\ I e e |
‘UO”U&’UQ‘U3‘U4{U5:U6:U7:
[ S S

~_

corresponds to
~ T T T T

h(z) P PR P POk f(x).
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Discrete Polynomial Transforms — Clenshaw Algorithm

Transposing the factorization:
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Discrete Polynomial Transforms — Clenshaw Algorithm

Transposing the factorization:

a5:v—b5
% .
o [ J v [ J s [ o e v
R ——

corresponds to

126



Discrete Polynomial Transforms — Clenshaw Algorithm

Transposing the factorization:

agsc—bﬁ
X
EIEIEIEIRIEIE]

corresponds to
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Discrete Polynomial Transforms — Clenshaw Algorithm

Transposing the factorization:

BT

corresponds to

In general: h(z) # f
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Discrete Polynomial Transforms — Clenshaw Algorithm

Transposed Clenshaw Algorithm for Multiple Nodes

Input: z; e R, f(z;) €R, j=1,2,..., M.
for j=1,2,...,M do

. T T T

h(z;) =PY Y PO PO kg f(a)
end for
h =h(z;)+h(x2) + ...+ h(z)

Output: h, Time: O(NM), Memory: O(N).

In general: h #* f
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Discrete Polynomial Transforms — Clenshaw Algorithm

Transposed Clenshaw algorithm for multiple nodes:

ko \ ) 1 \ ) v )
fay)=={ o] w1 > }us L ua | us | ug | ur

ko V v Y ) v Y )
Fwa)==[uo ] wr | us fus | ua fus | ug fur |

IR R N S S R

k \ )
oo T
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Discrete Polynomial Transforms — Clenshaw Algorithm

Transposed Clenshaw algorithm for multiple nodes:

aol‘l—bo
a0$2—b0

.’172 —>U2'U3'u4'u5'uﬁ'u7‘

a0333 —bo
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Discrete Polynomial Transforms — Clenshaw Algorithm

Transposed Clenshaw algorithm for multiple nodes:

alxl — b1

______

_Cl

a1xa — by
/X
ko TTTYT Ty T T YT Ty T T
)= o | s [ ws s s s | ur |
o
a1xr3z — by
/X
kO TTAYT T YT T YT Ty T
)= {uwo | wn [} va | ua fus | ug | ur |

—c1
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Discrete Polynomial Transforms — Clenshaw Algorithm

Transposed Clenshaw algorithm for multiple nodes:

azx1 — by
/X

k, TTTiT Ty Tyt T
f(xl)—o"%’ul ‘U2‘U3 LU4:U5:U6:U7:

NS

—Co

azx2 — by
/X

k, B e R R
f("r?)_o"uolul‘U2‘U3LU4:U5:UG:U7;

NS

—C9

asx3 — by
/X

ko i R Tt B
f(ﬂf?,)—"uo‘ul ‘U2‘U3 VM:US:uﬁ:u?:

NS

—c
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Discrete Polynomial Transforms — Clenshaw Algorithm

Transposed Clenshaw algorithm for multiple nodes:

ko
f(xl)—>‘ () ’ U1 ‘UQ ‘ us ’ Uy LU5 U | U7 |

k’o !
f(5172)—" UuQ ’ U1 "U,g ‘ us ’ Ug Lu5 U | U7 |

SR
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Discrete Polynomial Transforms — Clenshaw Algorithm

Transposed Clenshaw algorithm for multiple nodes:

ko
f(.fUl)-)‘uO’ul‘UQ‘U3IU4‘U5'U6:U7:

IR

e ey
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Discrete Polynomial Transforms — Clenshaw Algorithm

Transposed Clenshaw algorithm for multiple nodes:
asxr1 — bs
XY
ko )
f(xl)ﬁ‘uolul ‘UQ‘U3’U4‘U5‘UG Lm;
NS

—c5

aswa — bs
i /)
0 \
f(flfz)—"UO’ul ‘U2‘U3’u4‘u5‘u6 LU7:
N S

—c5

asxs — bs
L /X
0 !
f(ggg)—>‘u0‘u1 ‘UQ‘U?,"LL4‘U5"U,6 Luﬂ
\/4

—cs5
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Discrete Polynomial Transforms — Clenshaw Algorithm

Transposed Clenshaw algorithm for multiple nodes:
agr1 — bg
/)
ko
f(xl)_)‘u()’ul‘UQ‘U3’u4‘U5‘U6’U7’
v

—cg

CL6.’L‘2—b6
k XY
f(flfz)—o>‘U0’u1‘U2‘U3’u4‘u5‘u6’u7’
v

—cg

agr3 — bg
k /X
f(l“s)—(;‘uo‘ul‘U2‘U3‘u4‘U5‘u6‘U7’
\/4

—cg
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Discrete Polynomial Transforms — Clenshaw Algorithm

Transposed Clenshaw algorithm for multiple nodes:

ko “
f(ﬁl)ﬁ‘uoyul‘UQ‘U3’U4‘U5‘U6IU7’_>}II

ko R
f(flfz)—>‘U0’U1‘U2‘U3’u4‘u5‘u6’zL7’_>h2

ko o
oo R B[
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Discrete Polynomial Transforms — Clenshaw Algorithm

Transposed Clenshaw algorithm for multiple nodes:

ko .
f($1)—>‘U0’U1‘uz‘%’w‘us‘uﬁ’m’_}hl_

ko

f(5172)—"“0’u1‘UZ‘U3’u4‘u5‘uf5’u7’_>ﬁ2—<+>—>ﬁ

ko .
f(ﬂf?,)—"uo‘ul‘U2‘U3‘U4‘U5‘u6‘U7’_>h3_
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Part | — Fourier Analysis and the FFT

Stefan, Monday, 14:15 — 16:00, Room U322

Part Il — Orthogonal Polynomials

Jens, Tuesday, 12:15 — 14:00, Room U141 (Lecture Hall F)

Practice Session: 14:30 — 16:00, Room Y339b (Basics and Matlab Hands-On)

Part [Il — Fast Polynomial Transforms and Applications

Jens, Wednesday, 12:15 — 14:00, Room U345
Practice Session: 14:30 — 16:00, Room Y338c (C Library Hands-On)

Part IV — Fourier Transforms on the Rotation Group
Antje, Thursday, 14:15 — 16:00, Room U322

Part V — High Dimensions and Reconstruction
Stefan, Friday, 10:15 — 12:00, Room U322
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c Recap

9 Discrete Polynomial Transforms

e Discrete Fourier Transform on the Sphere
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Recap — Definition

Definition (Discrete Polynomial Transform)

Given a sequence of orthogonal polynomials/functions {p, }nen,
coefficients fi, k=0,...,N, and nodes =, j =1,..., M,
compute

N
k=0

Goal: fast and numerically stable algorithms
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Recap — Matrix-Vector Notation

@ The equations

N
f]:kapk<mj)7 j:1727"'7Ma
k=0

correspond to the matrix-vector product
. M,N MxX(N
f=PFf  P=(pla;)jorp € RM*VHL,
@ The transposed problem reads

M
hie=>_ fipe(x;),  k=0,1,...,N,
=1

or, equivalently,
f=PTf.
@ Rationale: Can be used to recover the expansion coefficients

fk if a suitable quadrature formula to discretise the inner
product fj = f}l f(@x)pr(x) dX\(z) is available.
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Discrete Polynomial Transforms — Transposed Problem

The transposed problem reads: Given function samples f;,
compute the sums

M
hi=>_ fielz;),  k=0,1,...,N.
j=1
This corresponds to the matrix-vector product
h=PTft.

This can be used to recover the Fourier coefficients f if function
values f; = f(x;) are known:

@ Fourier coefficients fk are calculated via the integrals

R b
fk:/ f(@) pr(z) w(x) de, k=0,1,...,N.
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Discrete Polynomial Transforms — Transposed Problem

@ Fourier coefficients fk are calculated via the integrals
N b
a

@ Assume f to be a polynomial of degree at most N and that a
quadrature rule with degree of exactness 2N for the nodes z;,
and with weights w; is available. Then,

M
fe=">_w; fz)pe(a)), k=0,1,...,N.
7=0

@ n matrix-vector notation, this reads

f=PTWT, W = diag(w;)},;.



Discrete Polynomial Transforms — Transposed Problem

A fast algorithm for the transposed Problem is needed to recover
Fourier coefficients.

Summary:
@ If f is a polynomial of degree at most N, then the exact
Fourier coefficients are recovered.
@ If f is not a polynomial of degree at most N, then the

computed Fourier coefficients  will contain some aliasing
error (depending on f).
@ In both situations, the computation of

f=PTWf, W =diag(w;)}L,.
computes a projection of f onto the polynomials
bo,P15---,PN-
@ This projection, however, is usually not the orthogonal
projection, but can often be shown to have the same order of

convergence.
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Discrete Polynomial Transforms — Algorithms
Clenshaw Algorithm

(Clenshaw 1955, Smith 1965)

Cascade Summation

(Driscoll, Healy, 1994; Potts, Steidl, Tasche, 1998;
Potts 2003; Keiner, Potts, 2006)
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Discrete Polynomial Transforms — Cascade Summation

The goal is to efficiently evaluate

N
f@)=>" fepn(x).
k=0

The Clenshaw algorithm makes use of the three-term recurrence
pn—i—l(x) = (anm - bn)pn(x) - Cnpn—l(x)a n=0,1,...,
to evaluate the linear combination at one node at a time.

This can be made more efficient in two ways:

o Use a more general form of the three-term recurrence.

e Compute with polynomials instead of numbers
(Make as many computations node-independent as possible).
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Discrete Polynomial Transforms — Cascade Summation

Definition (Associated Polynomials)
Let {p"}nENo be a sequence of orthogonal polynomials. Then the

polynomials {pLZ”]}, m € Ny, defined by the recurrence and initial
conditions

pq[z_]1(33) = (@ntm® — bnim) Qn] (z) — Cn—l-mpgn_]p n=0,1,...,

@) =0, p§(@) = ko,
are called associated polynomials of order m.

One can prove that the sequence {pZ”}} is again orthogonal.

n€Ng
(But usually, the corresponding measure d\ is not known.)
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Discrete Polynomial Transforms — Cascade Summation

Theorem (Generalized Three-Term Recurrence)

A sequence of orthogonal polynomials {p, }nen, satisfies the
generalized three-term recurrence

Prte(@) = P (@)pa(2) — cap N (@)pni (2).

140



Discrete Polynomial Transforms — Cascade Summation

Theorem (Generalized Three-Term Recurrence)

A sequence of orthogonal polynomials {p, }nen, satisfies the
generalized three-term recurrence

Prte(@) = P (@)pa(2) — cap N (@)pni (2).

The generalized recurrence allows to modify the procedure:

o [ o [ un [ s [ [ s [ | v |
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Discrete Polynomial Transforms — Cascade Summation
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Discrete Polynomial Transforms — Cascade Summation
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Discrete Polynomial Transforms — Cascade Summation

Theorem (Generalized Three-Term Recurrence)

A sequence of orthogonal polynomials {p, }nen, satisfies the
generalized three-term recurrence
+1
Prre(®) = P @)pu(@) = cop 3 (@)pua (@),

The generalized recurrence allows to modify the procedure:
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Discrete Polynomial Transforms — Cascade Summation
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Discrete Polynomial Transforms — Cascade Summation

Theorem (Generalized Three-Term Recurrence)

A sequence of orthogonal polynomials {p, }nen, satisfies the
generalized three-term recurrence

Prte(@) = P (@)pa(2) — cap N (@)pni (2).

The generalized recurrence allows to modify the procedure:

140



Discrete Polynomial Transforms — Cascade Summation

Theorem (Generalized Three-Term Recurrence)
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Discrete Polynomial Transforms — Cascade Summation

Theorem (Generalized Three-Term Recurrence)

A sequence of orthogonal polynomials {p, }nen, satisfies the
generalized three-term recurrence

Prte(@) = P (@)pa(2) — cap N (@)pni (2).

The generalized recurrence allows to modify the procedure:

e e e e e N\
f(x)<— up | uz | U3 | ug | Us |
—— ) b _d____1 Py

This does not yet yield a faster algorithm!
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Discrete Polynomial Transforms — Polynomial Multiplication

Divide computation into two parts:
@ Node-independent part (compute with actual polynomials)
@ Node-dependent part (final evaluation)
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Discrete Polynomial Transforms — Polynomial Multiplication

Divide computation into two parts:
@ Node-independent part (compute with actual polynomials)
@ Node-dependent part (final evaluation)

To make computations independent of x, one needs to compute
with polynomials instead of numbers:

o J v [ s [uo [ua [Lus [ w0 [ wr |
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Discrete Polynomial Transforms — Polynomial Multiplication

Divide computation into two parts:
@ Node-independent part (compute with actual polynomials)
@ Node-dependent part (final evaluation)

To make computations independent of x, one needs to compute
with polynomials instead of numbers:

o J v [ Lun [ uo [ ua [Lus [ vo [ wr |

W

Polynomials of degree at most 0 (i.e. constants).
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Discrete Polynomial Transforms — Polynomial Multiplication

Divide computation into two parts:
@ Node-independent part (compute with actual polynomials)
@ Node-dependent part (final evaluation)

To make computations independent of x, one needs to compute
with polynomials instead of numbers:

1 5
P2y P P9y P @)

P A N A

— x_—~
po (@) () o (@) plPl(z)
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Discrete Polynomial Transforms — Polynomial Multiplication

Divide computation into two parts:

@ Node-independent part (compute with actual polynomials)
@ Node-dependent part (final evaluation)

To make computations independent of x, one needs to compute
with polynomials instead of numbers:
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Discrete Polynomial Transforms — Polynomial Multiplication

Divide computation into two parts:

@ Node-independent part (compute with actual polynomials)
@ Node-dependent part (final evaluation)

To make computations independent of x, one needs to compute
with polynomials instead of numbers:

Polynomials of degree at most 3.
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Discrete Polynomial Transforms — Polynomial Multiplication

Divide computation into two parts:
@ Node-independent part (compute with actual polynomials)
@ Node-dependent part (final evaluation)

To make computations independent of x, one needs to compute
with polynomials instead of numbers:
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Discrete Polynomial Transforms — Polynomial Multiplication

Divide computation into two parts:

@ Node-independent part (compute with actual polynomials)
@ Node-dependent part (final evaluation)

To make computations independent of x, one needs to compute
with polynomials instead of numbers:

Polynomials of degree at most 7.
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Divide computation into two parts:

@ Node-independent part (compute with actual polynomials)
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Discrete Polynomial Transforms — Polynomial Multiplication

Divide computation into two parts:

@ Node-independent part (compute with actual polynomials)
@ Node-dependent part (final evaluation)

To make computations independent of x, one needs to compute
with polynomials instead of numbers:

Polynomial of degree exactly 7.
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Discrete Polynomial Transforms — Polynomial Multiplication

Divide computation into two parts:

@ Node-independent part (compute with actual polynomials)
@ Node-dependent part (final evaluation)

To make computations independent of x, one needs to compute
with polynomials instead of numbers:
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Discrete Polynomial Transforms — Polynomial Multiplication

Divide computation into two parts:

@ Node-independent part (compute with actual polynomials)
@ Node-dependent part (final evaluation)

To make computations independent of x, one needs to compute
with polynomials instead of numbers:

How to compute with polynomials instead of numbers?
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Discrete Polynomial Transforms — Polynomial Multiplication

Represent polynomial p of degree n by its Chebyshev expansion
n
p=>Y_ Tk, p ~ (ok)fi—o
k=0

or, equivalently, by its values at Chebyshev nodes of order n,

o) =o(cos (BH7). o Gl

How to convert between both representations?

Read: Trefethen, “Computing numerically with functions instead of numbers”
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Discrete Polynomial Transforms — Polynomial Multiplication

Efficient conversion via discrete cosine transforms:

n

P = (p(7n)) g

p=Ca

f

Discrete cosine transform (DCT-III), O(nlogn)

o = (ak)Z:o

For larger sizes, the vector v can be padded with zeros.

p = (p(r)" g ———a = 1CTp

=0 o = (O‘k)Z:O

Discrete cosine transform (DCT-I1), O(nlogn)
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Discrete Polynomial Transforms — Polynomial Multiplication

Input pEP, q€eP,

Chebyshev coefficients Qo,...,0n Bo, ...y Bn

Values at Chebyshev nodes  p(72n,0),...,P(T2n,2n) @(T2n,0)- -, q(T2n,2n)

| ? |
Pointwise multiplication 7(70) 7(T2n,2n)

l
e

Chebyshev coefficients

Output € Pa,
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Discrete Polynomial Transforms — Polynomial Multiplication

After the Clenshaw procedure, one obtains the Chebyshev
expansion of f:

N ] e e e e e — — — e — — — o — — — —.

ko v v v v v v
f:Z§ka<— up | Uz | U3 | U4 g Us | U | UT |
P S S X A A J

This can be evaluated at arbitrary target nodes z;, j =1,2,..., M
with a nonequispaced fast cosine transform (NFCT).

Cost:
@ Node-independent part:
Time O(N log? N), Memory O(N log N),
@ Node-dependent part:
Time O(N log N +log(1/e)M),
Memory O(1) — O(N + log(1/e)M).
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Discrete Polynomial Transforms — Cascade Summation

Summary:
@ Time: O(N?%log N + log(1/e)M)
@ Memory: O(Nlog N) — O(Nlog N +log(1/e)M)

@ Numerically unstable

@ Depends on polynomial system,

@ Problems already for small sizes n > 16.

@ Instabilities caused by boundary layers of associated
polynomials in combination with the use of a global
interpolation method (DCT)

@ Requirements: Three-term recurrence
@ Best suited for polynomials on an interval
@ Original Driscoll-Healy algorithm is the transposed version

v
v
X
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Discrete Polynomial Transforms — Cascade Summation

Summary:
@ Time: O(N?%log N + log(1/e)M) v
@ Memory: O(Nlog N) — O(Nlog N +log(1/e)M) v
@ Numerically unstable X

@ Depends on polynomial system,

@ Problems already for small sizes n > 16.

@ Instabilities caused by boundary layers of associated
polynomials in combination with the use of a global
interpolation method (DCT)

@ Requirements: Three-term recurrence
@ Best suited for polynomials on an interval
@ Original Driscoll-Healy algorithm is the transposed version

Can the stability issues be remedied?
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Discrete Polynomial Transforms — Stabilization

Idea (Driscoll, Healy, Rockmore, 1996; Potts, Steidl, Tasche, 2002):
@ !dentify unstable multiplication steps (boundary layers)

unstable
PP P (@ P (x)
Lo | [ue [us | wa | ws s | ur
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Discrete Polynomial Transforms — Stabilization

Idea (Driscoll, Healy, Rockmore, 1996; Potts, Steidl, Tasche, 2002):
@ !dentify unstable multiplication steps (boundary layers)

@ Suspend unstable step, process rest as usual
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Discrete Polynomial Transforms — Stabilization
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@ !dentify unstable multiplication steps (boundary layers)
@ Suspend unstable step, process rest as usual
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Discrete Polynomial Transforms — Stabilization

Idea (Driscoll, Healy, Rockmore, 1996; Potts, Steidl, Tasche, 2002):
@ !dentify unstable multiplication steps (boundary layers)
@ Suspend unstable step, process rest as usual

@ Map relegated polynomial to first two polynomials (expensive)
@ Continue with rest as before
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Discrete Polynomial Transforms — Stabilization

Idea (Driscoll, Healy, Rockmore, 1996; Potts, Steidl, Tasche, 2002):
@ !dentify unstable multiplication steps (boundary layers)
@ Suspend unstable step, process rest as usual

@ Map relegated polynomial to first two polynomials (expensive)
@ Continue with rest as before

@ Cost per stabilization step O(N log N).
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Discrete Polynomial Transforms — Cascade Summation

Stabilized Version

Summary:
@ Time: O(N?log N + log(1/e)M) (maybe)
@ Memory: O(Nlog N) — O(Nlog N + log(1/e)M)

@ More stable than unstabilized version

X NSNS

@ Numerical stability not proven
@ Depends on polynomial system
@ boundary layers still a problem

@ Stabilization steps can destroy asymptotic cost bound

@® O(N?log N) behaviour lost, if more than O(log N)
stabilization steps. X

@ Requirements: Three-term recurrence

@ Best suited for polynomials on an interval
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Discrete Polynomial Transforms — Algorithms

Clenshaw Algorithm

(Clenshaw 1955, Smith 1965)

Cascade Summation
(Driscoll, Healy, 1994; Potts, Steidl, Tasche, 1998;
Potts 2003; Keiner, Potts, 2006)

Tridiagonal Matrices

(Tygert, 2005)
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Discrete Polynomial Transforms — Tridiagonal Matrices

N
f@) =Y fupk(@).
k=0

Split computation into two parts:

o Evaluate linear combination at zeros of py1

9 Interpolate to arbitrary nodes x;, j = 1,2,..., M.

First step: Recall eigenvector matrix of the Jacobi matrix Jy 41 is

Q = (p (TN+1J))§V:7](Ik=0'

Thus, evaluation of f(x) at zeros Tn41,; of pn1 is equivalent to

z 5 z N
f=Qf, f=(f(rv+1,)),—0

Can use fast divide-and-conquer method (Gu, Eisenstat, 1994) to

do this step in O(N log N log(1/¢)) time/memory (see later).
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Discrete Polynomial Transforms — Tridiagonal Matrices

Second step: Must interpolate from zeros of py .1 to target nodes
x;. Use barycentric interpolation formula

N
f(2) = £(x) Z wkf(TN—&-l,k),

Xr — T,
— N+1,k
N N 1
() = ] (&= mnr1m); wk:HT —
0 jop TN+LE — TN+1

i#k

@ The factor £(x) does not depend on the target nodes x;.
@ The sum can be evaluated at all target nodes using the Fast
Multipole Method (Greengard, Rokhlin, 1987) in
O(Nlog(1/e)) time/memory.
Read: Trefethen, “Barycentric Lagrange Interpolation”;
Dutt, Gu, Rokhlin “Fast algorithms for polynomial interpolation, integration,

and differentiation”
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Discrete Polynomial Transforms — Tridiagonal Matrices

Summary:
@ Time: O((Nlog N + M)log(1/e))

@ Memory: O((Nlog N + M)log(1/e))

NN SN

@ Relatively stable (numerical experience)
@ Suited for all classical orthogonal polynomials
@ Requirements: Three-term recurrence

@ Should also work well for polynomials on unbounded intervals
(Laguerre, Hermite)
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Discrete Polynomial Transforms — Algorithms

Clenshaw Algorithm

(Clenshaw 1955, Smith 1965)

Cascade Summation
(Driscoll, Healy, 1994; Potts, Steidl, Tasche, 1998;
Potts 2003; Keiner, Potts, 2006)

Tridiagonal Matrices

(Tygert, 2005)

Semiseparable Matrices
(K., 2007)
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Discrete Polynomial Transforms — Semiseparable Matrices

Want to evaluate N
f@) =" fupr(x).
k=0

Split computation into two parts (similar to Cascade Summation):

o Convert to Chebyshev expansion (node-independent)

N
fl@) =" gTi(x).
k=0

9 Evaluate at target nodes z; using an NFCT/NFFT.

More general view of first step:

I Change of basis from pj to . I
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Discrete Polynomial Transforms — Semiseparable Matrices

The first step corresponds to the linear transformation

~ . — N
= Bf, with B = (hj 1<qjvpk>)j,k:0’

where
/ flx = :v2 dx, hj = (45, 4;)-

Idea:

@ Construct a matrix G such that B contains its eigenvectors.

@ !dentify the structure of G to get a fast algorithm for
multiplication with B.

How to construct the matrix G?



Discrete Polynomial Transforms — Semiseparable Matrices

I Change of basis from p;, to g. I

Need the following ingredients:
@ Three-term recurrence

Qn—i—l(x) = (anx - bn)QH(aj) - CTLQn—l(x)7 n = 07 17 ety
q-1(x) =0, qo() = ko.
@ Differential equations (¢ needs to be the same!)
Py 4+ TD + Aupn =0, 0q) + T + Angn =0
@ Derivative identity (express ¢, through g, k =0,1,...,n—1)

n—1 n—1
d

= Ay kz:o Bragr + Cy kZODka,
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Discrete Polynomial Transforms — Derivative ldentity

A preliminary form of the derivative identities can be derived from
the Rodrigues formula:

The following identities for monic orthogonal polynomials are
true:

d _
dx Ly = ”Lfffil),

d _

= P7(10¢ﬂ) — npéi‘{l,ﬁq'l)‘

Use the Rodrigues formula and identify terms. [ |
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Discrete Polynomial Transforms — Derivative ldentity

Example: For the Laguerre polynomials, the Rodrigues formula is

dm

1 z7%* d~ ™

(a) _ - a+n_ —x
daxm Ly (=) = n! zm dx"_m( ).
Therefore,
d 1 qr—1
2 r(w) _ = —(a+1) x a+n . —x
d:cL" (z) = ol ¢ d:c"_l( ),
—1

(a+1) 1 —(a+1) & d atn —x

Lnfl (:C) - n— 1)| € dl,nfl ( )
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Discrete Polynomial Transforms — Derivative ldentity

The actual derivative identity is given in the following theorem:

Let n > 1. Then for the Laguerre polynomials, one has
_L(a A, Z BkL(a)

with
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Discrete Polynomial Transforms — Derivative ldentity

Before we can prove the theorem, we need yet another result:

For the Laguerre polynomials LSL&), we have

L=y U ey
n = (_1)kk! k

Comment: The proof of this theorem is another story. Identities of
this form have been known for a long time, e.g. Szegd, 1975 gives
a formula for Gegenbauer polynomials. The formula for the
Laguerre case is derived in my upcoming PhD thesis, but almost
certainly has been known before.
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Discrete Polynomial Transforms — Derivative ldentity

Now, the actual proof is simple:

Use the results
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Discrete Polynomial Transforms — Semiseparable Matrices

I Change of basis from p;, to g. I

Constructing G:

Orthogonal polynomials

— pl@f) _ pe'.8)
(from same family) Pn = Pn Gn = P

l |

TP+ TP+ Aapn =0, og) + Fq) + Angn =0,
Dy = —oy" -7y Dy = —oy" — 7y

| |
!

Dy :=Dy—Dy=(r —7)y

Differential equation

Differential operator
with simple structure

Derivative identity,
three-term recurrence
Matrix with certain structure G
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Discrete Polynomial Transforms — Semiseparable Matrices

With h; = (gj,q;), define the matrix G as

B N
G := (h; {45, D(ar))) j -
Compare this to
3 N
B = (hj 1<Qj7p/€>)j,k:0'
That is:

The source polynomial pg has been replaced by the
corresponding differential operator D applied to the
target polynomial g, i.e., D(qx).

Theorem (K., 2008)

The matrix B = (bg, by, ...,by) contains the eigenvectors of G.
Moreover, the corresponding eigenvalue for by, is Ag.

163



Discrete Polynomial Transforms — Semiseparable Matrices

Proof

By definition, p, = ijo b;rq;. Denote by (G bk) the (j + 1)st
component of the product G by, and by

2|

bi = (bo s b1 ks 0N E) T

the (k + 1)st column of G. Then,

N
(G by); Zggebek :Zh (g5, D(qe))bek
=0

Yg;, D meqé = hj H{a;, D(p))
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Discrete Polynomial Transforms — Semiseparable Matrices

Proof (continued).
We have

(Gby); = hy(g;, D(pk))
Use that py is an eigenfunction of D, i.e, D(pr) = gDk,

(Gby); = Ak g, pr)

Then work backward until

N
(Gbr); = Ak Y gjeber = A (Gby); .
=0

Does G have any structure to exploit?
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Discrete Polynomial Transforms — Semiseparable Matrices

To characterize G, must define classes of structured matrices

Definition

A matrix A € R"*" is called generator representable
semiseparable of semiseparability rank r, if there exist two
matrices Ry and Rs, both of rank r, such that

triu(A) = Ry, tril(A) = Ro.

Matlab notation: triu(A) = upper triangular part of A, tril(A) =
lower triangular part of A.
One can write

A = trin(X YT, 1) + tril(W Z7),
with the generators

X, Y,W,Z € R"™".
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Discrete Polynomial Transforms — Semiseparable Matrices

Semiseparable matrices in a nutshell:

A = trin(X YT, 1) + tril(W Z7),

@ Generator-representable semiseparable matrices are the
inverses of irreducible banded matrices.

@ Symmetriccase: X =7Z,Y =W.

@ Different ranks: (p, q)-generator representable semiseparable

@ Triagular forms: p=0or¢=20

@ Diagonal free of choice: diagonal plus (p, q)-generator
representable semiseparable

@ Super/Subdiagonal free of choice: bi-diagonal plus
(p, q)-generator representable semiseparable

Read: Vandebril, Van Barel, Golub, Mastronardi, “A bibliography on

semiseparable matrices”
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Discrete Polynomial Transforms — Semiseparable Matrices

A matrix A = (a; ;) € R™*™ is called checker board-like, if the
following condition is satisfied:

aij =0, if ¢ + 7 odd.

Checker board-like matrices can be interpreted

as two interwoven /interlaced matrices.
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Discrete Polynomial Transforms — Semiseparable Matrices

Checker-board like matrices can be split into two matrices that can
be treated independently:

Row/column

N
~_

permutation
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Discrete Polynomial Transforms — Semiseparable Matrices

Checker-board like matrices can be split into two matrices that can
be treated independently:

Row/column

N
~

permutation
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Discrete Polynomial Transforms — Semiseparable Matrices

Checker-board like matrices can be split into two matrices that can
be treated independently:

Row/column

N
~_

permutation
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Discrete Polynomial Transforms — Semiseparable Matrices

One can prove the following relations (K. 2008)

@ fp, = Lfgza) and ¢, = L,(za/), then

G is bi-diagonal plus (1,0)-generator representable
semiseparable

@ fp, = ' and ¢, = ') then
G is checker board-like diagonal plus (1,0)-generator
representable semiseparable

® fp, = P and Gn = Péa’ﬁ’), then

G is bi-diagonal plus (2,0)-generator representable
semiseparable
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Discrete Polynomial Transforms — Semiseparable Matrices

Lemma (As an example)

Let {pn }nen, be orthogonal polynomials that satisfy

d n—1
apn(x) = An kzzo kak(x)~

Then the matrix G = (gm);.\fk:o € R+ x(N+1)

- _ d
ik = h; p;, apw

is diagonal plus (1,0)-generator semiseparable matrix, i.e.,
G = diag(0) + triu(B A", 1),
0=(0,0,...,0)T,

A = (Ao, As1,...,An)T,
B = (Bo,B1,...,B,)" .
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Discrete Polynomial Transforms — Semiseparable Matrices

By orthogonality, (pj, s-pi) = 0if k < j—1, i.e. G is a strict
upper triangular matrix. For the rest of the entries, we have

_ d
9k = h5 " (s, -Pk)
k—1

= hi " (pj, Ar > Bepe)
=0
k-1

= h"Ap Y Bilpj, pe)
£=0
= h; ' AxBjh;

= BjAk.
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Discrete Polynomial Transforms — Semiseparable Matrices

Divide-and-conquer algorithm (K. 2008) for eigendecomposition of

A = diag(d) + triu(xy™).

Divide Phase

The matrix A can be written as

_ A; O r T
A‘(o A2)+Xy’

where A1, and Ay are of same type as A and

G) =)
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Discrete Polynomial Transforms — Semiseparable Matrices

Conquer phase

Assume, A1 = Q1 D Ql_l, As = QDo Qz_l. Then A can be
represented as

_ Vl 0 T V1 0
A= (% Q)orwa (G L)

where D is the diagonal matrix and w, z are vectors defined by

Vl_l X1 0
D = diag(d), W = , z = .
0 Vg y2

With the eigendecomposition D +wzT = UD U™, one obtains

=il
(Vy 0 (Vi 0
A= (% 2)uou (Y 2)7.
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Discrete Polynomial Transforms — Semiseparable Matrices

d1 0 0 V1IWk4+1 V1Wk42 ... ViWnp
0 do " D V2Wgy1  V2Wk42 V2 Wn
0
d VW VW ... vRw
Diwzl — k EWk+1 kW2 kWn
di+1 0 .. 0
di42
0
0 0 dn
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Discrete Polynomial Transforms — Semiseparable Matrices

Theorem (K. 2008)

For B=D +wz", we have
@® A = UDU ! with the eigenvector matrix U and its inverse
U~! of the form

(1 C 4 (1 —C
v-(a7) v-(a7T)

where C € RF* (k)
@ The matrix C is defined by

A k,n
C:(dzé> '
v %5/ =1, j=k+1
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Discrete Polynomial Transforms — Semiseparable Matrices

Definition (Cauchy-like Matrix)
A matrix C of the form

is called a Cauchy-like matrix.

@® The matrix C = (%)kn ' is a Cauchy-like matrix.
v /=1, j=k+1
@ Matrix-vector multiplication normally takes O(k(n — k)) .
@ Fast multipole method (FMM) exploits Cauchy-like
structure to reduce the number of arithmetic operations.
@ Fast summation takes O(nlog(1/e)) up to accuracy e.

@ Any level of accuracy ¢ possible.

177



Fast Multipole Method

Fast Multipole Method in a nutshell:
@ Published by Rokhlin and Greengard in 1987 to speed up the
calculation of long-ranged forces in the n-body problem.
@ Divides matrix into smaller block.
@ Uses low-rank approximations for each blocks.
@ Clever organization leads to O(nlog(1/¢)) algorithm.

k

A
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Discrete Polynomial Transforms — Semiseparable Matrices

Precomputation: O(N log N log(1/¢)) — O(N?1log N log(1/¢))

/\

/ g / g

/ /N /N \

@ Divide matrix recursively
@ Compute smallest eigenvector matrices Q explicitly
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Discrete Polynomial Transforms — Semiseparable Matrices

Precomputation: O(N logNlog(l/E)) — O(N?1og N log(1/¢))

/\

U 18] U U
AR N

\ /N /N

Qooo Qoo1 Qo10 Qo11 Q100 Q101 Q110 Q111

@ Divide matrix recursively

@ Compute smallest eigenvector matrices Q explicitly
@ Solve rank-one modified eigenproblems

@ Store data that determines each matrix U
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Discrete Polynomial Transforms — Semiseparable Matrices

The complete eigenvector matrix Q has the representation

U
El
@ Multiplication with each Q of fixed size s x s takes O(s?)

@ The constant s is chosen beforehand
@ Multiplication with each U of size n x n takes O(nlog(1/¢))

In total: Multiplication with matrix Q takes O(N log N log(1/¢))
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Discrete Polynomial Transforms — Semiseparable Matrices

Summary (same as for tridiagonal matrices):
@ Time: O((Nlog N + M)log(1/¢)) v
@ Memory: O((Nlog N + M)log(1/e)) v
@ Relatively stable (numerical experience) v

@ Suited for all classical orthogonal polynomials

@ Requirements: Three-term recurrence, differential equation,
derivative identity
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Discrete Polynomial Transforms — Algorithms

Clenshaw Algorithm

(Clenshaw 1955, Smith 1965)

Cascade Summation
(Driscoll, Healy, 1994; Potts, Steidl, Tasche, 1998;
Potts 2003; Keiner, Potts, 2006)

Tridiagonal Matrices

(Tygert, 2005)

Semiseparable Matrices
(K., 2007)

Direct Matrix Compression
(Rokhlin, 1991, K., 2007)
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Discrete Polynomial Transforms — Matrix Compression

Want to evaluate

Program (similar to Cascade Summation):

@ Convert to Chebyshev expansion (node-independent)

N
fl@) =" oTu().
k=0

@ Evaluate at target nodes x; using an NFCT/NFFT.

More general view of first step:

Change of basis from pj to gx. I
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Discrete Polynomial Transforms — Matrix Compression

@ Direct matrix compression uses the same algorithm that
appears in the usual Fast Multipole Method to apply the
matrix for the first step (pi to ¢x) efficiently

@ For this, we need explicit expressions for the entries in the
matrix B = (bj7k)§vk:0 that appears in

g = BF.

Example: If p; are the Legendre polynomials P and g are the
Chebyshev polynomials of first kind T}, we have

1
1
bir= Ti(x) Pp(x) —— dx.
3,k /;1]()’9()\/@
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Discrete Polynomial Transforms — Matrix Compression

@ Explicit expressions for the entries b;j can be given for all
classical orthogonal polynomials.

@ Laguerre polynomials:

T(k—j+a—a)Tl(k+1)

b (_1)itk ith j < k
= e @G rE gy MR
@ Gegenbauer polynomials C’,io‘), C,gﬁ):
L(B)G + BT (45 +a = B)T (4 +a)
bjr = , with 7 <k

I'(a)T(a — ﬂ)r(’“—gl + 1)r(’“—;i +B+ 1)

@ Jacobi. ..



Discrete Polynomial Transforms — Matrix Compression

Example: Gegenbauer polynomials C’,ga), C,iﬂ).

Fundamental obersavtions:
@ If |o — §] € N, then B is either banded or semiseparable.

@ If |a — (] < 1, then the entries b; of B are samples of a
smooth function, allowing application of FMM.

order k semiseparable (checker board)\

order-1 semiseparable (checker board)

&

a+1 a+2 a+k—1 a+k
t
&'

2+
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Discrete Polynomial Transforms — Matrix Compression

To show “smoothness” of coefficients b; ;, whenever |oe — 3| < 1, we
interpret b;j, as samples of a function B(z,y)

r(ﬁ)(x+ﬂ)r<%y ta —ﬁ)r(% +a>
()l (a — ﬁ)F(L;y + 1)F(L§y +B+ 1)'

Need to show that this function can be well-approximated on each
square separated from the diagonal.

B(l‘,y) =

N
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Discrete Polynomial Transforms — Matrix Compression

Formal definition for well-separated squares:

A square S C R x R defined by the formula
S = [0, 20 + ¢] X [y0, Y0 + ¢] with ¢ > 0 is said to be
well-separated if yg — xg > 2c.

Theorem (K. 2008)
Let S = [xo,x0 + ¢] X [y0, Y0 + ¢] with ¢ > 0 be a well-separated

square, (z,y) € S, and |a — 8] < 1. Then
1B(-,y) = Bu(+,9)lloc = O((3+V8) "),
1B(z, -) = Bu(®, -)loo = O((3+v8)™"),
where B,, is the degree-n Chebyshev approximation to B.

Improves and generalizes a previous result (Alpert, Rokhlin, 1991).
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Discrete Polynomial Transforms — Matrix Compression

Summary:
@ Time: O((Nlog N + M)log(1/e))
@ Memory: O((Nlog N + M)log(1/e))

NN SN

@ Relatively stable (numerical experience)
@ Suited for all classical orthogonal polynomials

@ Requirements: Connection coefficients
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Discrete Polynomial Transforms — Algorithms

Clenshaw Algorithm

(Clenshaw 1955, Smith 1965)

Cascade Summation

(Driscoll, Healy, 1994; Potts, Steidl, Tasche, 1998;
Potts 2003; Keiner, Potts, 2006)

Tridiagonal Matrices

(Tygert, 2005)

Semiseparable Matrices
(K., 2007)

Direct Matrix Compression
(Rokhlin, 1991, K., 2007)
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Unit sphere in R?
S? .= {xe R3: ||x[]2 = 1}
= {(sim,psinz?,cosgpsh&ﬁ,cosf})T 9 € 0,7, p € [—7r,7r)}

Polynomials f (x)
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Discrete Polynomial Transforms — Sphere

Spherical harmonics of degree k& and order n
Yic(x) = Y{'(9,¢) = | = =B (cos 9)e™
Orthonormal basis of L?(S?)

27r
/ / Vit (9, @) Y™ (9, @) sind dvde

Addition theorem

192



Discrete Fourier Transform on the Sphere

Sampling set (x;),_o 1 =& C S?

Nonequispaced Fourier matrix on the sphere

2
Y = (Yx (Xj))j:0,...,M—1;k€JN € CHMVHY

f € CVD? given, compute

fF=YE,  fi=f(x)=> AYi(x), j=0,....M—1
keJn
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Discrete Fourier Transform on the Sphere

Algorithm
o Compute coefficients gy, ,, in

I R YN | .
F@e)= 3 3 fiy = B cos )™
n=—N k=|n|
N N
_ Z Z gk elkﬁ ing
—Nk=—N

@ Apply the 2d-NFFT
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Discrete Fourier Transform on the Sphere

Three-term recurrence relation
Pt () = (agx + By) B (x) + v By (),
Multiple applications of the three-term recurrence relation
n _ pn,lk] " n pns[k—1] n
Plic(@) = PPE(2) P (z) + g P2y (2) Py ()

FPT - Fast polynomial transform for fixed (even) n

Z frpM = ng nTh

k=|n|

takes O(N log? N) flops



Discrete Fourier Transform on the Sphere

NFFT on the Sphere [Driscoll, Healy, Rockmore 1994-; Potts, Steidl, Tasche 1998; Mohlenkamp

1999; Suda, Takami 2001; Rokhlin, Tygert 2004; K., Potts, Kunis 2002-]

O <N2 log? N + |log e|? M)

NDFT on the sphere takes O (MN2) (eg. N = 1000, M = N?)

~ 1.7min vs. =~1.1d
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Discrete Fourier Transform on the Sphere — Gaussians

Compute for 0 > 0, x;,y; € S? the sums

L-1
=0

Truncated Fourier-Legendre expansion

N
o olxi—yill3 _ q20(x;-y1-1) Z kPr (X5 - y1)
k=0

where

1
Wy = 1 e2o(z=1) p. () dzx
271' -1

= 20_%e_207rgfk+% (20)
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Discrete Fourier Transform on the Sphere — Gaussians

Using the addition theorem for spherical harmonics

adjoint NFSFT

-
NFSET

Approximation error
1
lg — gnlloe o V7T (7 — D)o 2
lafly = (N +3)
Total number of floating point operations

O (N?log? N + |log eneer| (M + L)) vs. O (LM)
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Discrete Fourier Transform on the Sphere — Gaussians

Comparison to truncated SVD, L = M = 400 pseudo random
nodes

10° 10’ 10°

oc=0.1 o =10
TSVD (blue), Approximation (o), and Error estimate (blue, dashed)
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Discrete Fourier Transform on the Sphere — Gaussians

Computation time

L = M | direct alg. | w/pre-comp. | FS, NFSFT error
261 0.00001 s 0.00008 s 0.62s | 7.7-107 1
28 | 0.00025s 0.0014s 0.62s | 4.1-10" 1
210 0.04s 0.021s 0.65s | 3.6-1071*
212 6.4s 0.35s 0.72s | 1.3-107 %
214 1.6min *5.6's 1.0s | 5.5-10715
216 | 27 6min *1.5min 2.3s|29-1071®
218 7.2h *23.3min 75s | 1.9-1071
220 *4.8d *6.4h 28's —
221 *19.7d *1.0d 55s —

* — estimated




Part | — Fourier Analysis and the FFT

Stefan, Monday, 14:15 — 16:00, Room U322

Part Il — Orthogonal Polynomials

Jens, Tuesday, 12:15 — 14:00, Room U141 (Lecture Hall F)

Practice Session: 14:30 — 16:00, Room Y339b (Basics and Matlab Hands-On)

Part I1l — Fast Polynomial Transforms and Applications
Jens, Wednesday, 12:15 — 14:00, Room U345

Practice Session: 14:30 — 16:00, Room Y338c (C Library Hands-On)

Part IV — Fourier Transforms on the Rotation Group

Antje, Thursday, 14:15 — 16:00, Room U322

Part V — High Dimensions and Reconstruction
Stefan, Friday, 10:15 — 12:00, Room U322
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Part IV - Fourier Transforms on the Rotation Group




What this talk is about...

c The Rotation Group
9 Fourier Analysis on the Rotation Group

9 Algorithms for SO(3) Fourier Transforms

0 Applications
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...and why do we care?

Considering
o the Rotation Group

may lead to
e a template for Fourier analysis on other groups

@ locally compact groups in general
@ SU(2)
@ SE(3) (the motion group)

whereas fast
9 Algorithms for Fourier transforms on the Rotation Group

are useful in various

e applications
@ motion estimation
@ texture analysis
@ Protein-Protein-Docking
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Getting started

0 The Rotation Group

@ based on:
Gregory S. Chirikjian, Alexander B. Kyatkin,
Engineering Applications of Noncommutative Harmonic Analysis with
Emphasis on Rotation and Motion Groups



What is a rotation?

@ ... 2 movement of a rigid body that keeps any given point of

that body at a constant distance from a fixed line.
G2

@ ... 2 linear transformation that preserves angles, lengths and
orientations of vectors.

206



Representations of Rotations:

‘ A rotation is a linear transformation ’

}

consider R € R3*3 as a rotation
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Representations of Rotations:

‘ A rotation is a linear transformation that preserves angles, ’

\

I consider inner product: v,w € R? and R € R3*3:

v-w = Rv-Rw
eviw = (Rv)'Rw
aviw = vIR"TRw

<~

Is
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Representations of Rotations:

‘ A rotation is a linear transformation that preserves angles, ’

*R € R3*3 is a rotation

I consider inner product: v,w € R? and R € R3*3:

‘a ngle preservation

I R € R3*3 is orthogonal I

v-w = Rv-Rw
eviw = (Rv)'Rw
aviw = vIR"TRw

<~

Is

207



Representations of Rotations:

‘ A rotation is a linear transformation that preserves angles, lengths

already done

Ivlle = Vv v
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Representations of Rotations:

A rotation is a linear transformation that preserves angles, lengths
and orientations of vectors.

\

orientation preserving if det(R) > 0

!

orthogonal matrices have determinant either —1 or 1
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Representations of Rotations: Rotation matrices

A rotation is a linear transformation that preserves angles, lengths
and orientations of vectors.

Rotations can be represented by orthogonal 3 x 3 - matrices having
determinant 1.
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What's in a name: SO(3)

The set of all rotation matrices
{ReR¥>3|det(R) =1 A R'R =13}

constitutes the group of Special Orthogonal transformations in R3:

SO(3), the rotation group
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What's in a name: SO(3)

The set of all rotation matrices
{ReR¥>3|det(R) =1 A R'R =13}

constitutes the group of Special Orthogonal transformations in R3:
SO(3), the rotation group

@ group operation is composition

@ I1; is the identity element

@ R7 is the inverse element (or back rotation) of R
@ non-abelian
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Representations: Axis - Angle

We also defined a rotation to be:

. a movement of a rigid body that keeps any given point of that
body at a constant distance from a fixed line.

A more natural describtion of a rotation:
o Where does the rotation take place? (Where is the fixed line?)
— rotation axis r € R3

9 How much do we rotate?
— rotation angle w € [0, 7] (absolute value of a rotation)
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Connection between Rotation Matrices and Axis & Angle

R—R,(w)

@ The eigenvalues of all rotation matrices are given by A\ =1
and \g3 = e where 0 < w < 7.
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Connection between Rotation Matrices and Axis & Angle

R—R,(w)

@ The eigenvalues of all rotation matrices are given by A\ =1
and \g3 = e where 0 < w < 7.

@ w defines the angle of rotation (= the absolute value of
rotation)

@ it is uniquely determined by cosw = %trace(R) —1.
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Connection between Rotation Matrices and Axis & Angle

R—R,(w)

@ the rotation axis r is defined to be the normalized eigenvector
corresponding to the eigenvalue A = 1 of the rotation matrix.
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Connection between Rotation Matrices and Axis & Angle

R—R,(w)

@ the rotation axis r is defined to be the normalized eigenvector
corresponding to the eigenvalue A = 1 of the rotation matrix.

Note: If we have w = 0 then R;(0) = I3. In that case R has a threefold
eigenvalue A = 1. Therefore we can not determine the axis of rotation. It

can be any vector r € R®.
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Two important examples

A rotation about the z-axis reads as

cos(w) —sin(w) 0
R.(w) = [ sin(w) cos(w) O
0 0 1

Analogously the matrices for rotations about the y-axis is
cos(w) 0 sin(w)

R,w)=| 0 1 0
—sin(w) 0 cos(w)
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Deducing the rotation matrix from axis & angle

@ Any point r = (¢, 6) on the sphere can be reached by rotating
the unit vector of the z-axis

0
r= Rz(‘P)Ry(Q) 0
1

@ Consequently the back rotation Rg(@)Rf(go) rotates r onto
the z-axis.
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Deducing the rotation matrix from axis & angle

Let r = (¢, 6) be the rotation axis and w the rotation angle of
R, (w) € SO(3),

R,(w) =
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Deducing the rotation matrix from axis & angle

Let r = (¢, 6) be the rotation axis and w the rotation angle of
R, (w) € SO(3),

Re(w) = R, ()R ()
N————

@ rotate axis r on z-axis
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Deducing the rotation matrix from axis & angle

Let r = (¢, 6) be the rotation axis and w the rotation angle of
R, (w) € SO(3),

Re(w) = R.(w) R, (0)RI(¢)
N————

@ Jdoes a rotation about the actual rotation angle
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Deducing the rotation matrix from axis & angle

Let r = (¢, 6) be the rotation axis and w the rotation angle of
R, (w) € SO(3),

Ri(w) = R:(p)Ry(0)R:(w) Ry (ORI ()

@ rotate z-axis back onto the actual rotation axis
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Deducing the rotation matrix from axis & angle

Let r = (¢, 6) be the rotation axis and w the rotation angle of
R, (w) € SO(3),

Ri(w) = Ru(¢)Ry(0)R:(w) R, (O)R: ()

= FR.(w)F! similarity transform
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Deducing the rotation matrix from axis & angle

Let r = (¢, 6) be the rotation axis and w the rotation angle of
R, (w) € SO(3),
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Euler Angle Representation

We find that arbitrary rotations can be described by three angles
a, 8 and 7y, describing three consecutive rotations about
orthogonal axes in R3

@ composition of three rotations with fixed axes

@ 2xes of two consecutive rotations are orthogonal
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A common convention for Euler Angles

Given three angles «,y € [0,27) and 3 € [0, 7], the corresponding
rotation matrix R is given by

R=R,;.(0,3,7) = R.(a0)R,(B)R.(7)

or

cosacos3cosy —sinasiny —cosysina — cosacosfsiny cosasin
R = | cosfBcosysina+ cosasiny cosacosy —cosfsinasiny  sinasing
—cosysin 3 sin B'siny cos B
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Linking rotations and the sphere

There is a connection between the sphere S? and the rotation
group SO(3).

We already learned that any element on the sphere can be
represented as

52 = R.(a)R,(5) - [ 0
1

Looking at the Euler angle representation we find the same pair of
rotations
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Linking rotations and the sphere

There is a connection between the sphere S? and the rotation
group SO(3).

We already learned that any element on the sphere can be
represented as

Looking at the Euler angle representation we find the same pair of
rotations

R = R.()Ry(B)R:(7)
N——

S2—part
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Linking rotations and the sphere

There is a connection between the sphere S? and the rotation
group SO(3).

We already learned that any element on the sphere can be
represented as

Looking at the Euler angle representation we find the same pair of
rotations

R = R.(0)R,(B)R.(7)
—_—

S2—part St —part

The rotation R, () can be though of a one-dimensional rotation,
i.e, we can represent every point on the unit circle S! with it.
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Linking rotations and the sphere

Indeed, we have:

(S0(3): 82 x 8!}

Y

[80(3) generalizes the sphere SQ]

Y

Can we generalize the concept of S? Fourier transforms to the
rotation group as well?
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How does Fourier get into it?

e Fourier Analysis on the Rotation Group

based on:

@ Gregory S. Chirikjian, Alexander B. Kyatkin,

Engineering Applications of Noncommutative Harmonic Analysis with
Emphasis on Rotation and Motion Groups

@ Naum J. Vilenkin,
Special Functions and the Theory of Group Representations
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Fourier Analysis on Groups : the ingredients

Given a function f € L?(G) where G is a locally compact group
and g € G

o We need to know an integration invariant measure

[ 150 dutr() < o
G
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Fourier Analysis on Groups : the ingredients

Given a function f € L?(G) where G is a locally compact group
and g € G

o We need to know an integration invariant measure

9 We define the Fourier transform

/f (9%, 1)dg

where U(+,1) is some unitary matrix function with index I

@ unitary matrix: ﬁTU =1
@ satisfies U(gh) = U(g)U(h) where g,h € G
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Fourier Analysis on Groups : the ingredients

Given a function f € L?(G) where G is a locally compact group
and g € G

o We need to know an integration invariant measure
9 We define the Fourier transform

9 and the inverse Fourier transform

f(g) = /étrace<f<> (0, )dw (1)

where G is the space of all values [ and v an appropriate
integration measure on G
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Fourier Analysis on SO(3)

We consider an element R € SO(3) to be parameterized in Euler
angles and functions f € L%*(SO(3)):

JR) = fR(a,B,7)) = f(e,3,7)
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Fourier Analysis on SO(3)

We consider an element R € SO(3) to be parameterized in Euler
angles and functions f € L%*(SO(3)):

JR) = fR(a,B,7)) = f(e,3,7)

o an invariant integration measure:
dR = sin fdadf dy

arises from the coordinate transform to Euler angles as

27 T 2
/ dRz/ / / sin S dadf dy
SO(3) o Jo Jo
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Fourier Analysis on SO(3)

9 We define the Fourier transform :

- pows

where U(+,1) is some unitary matrix function with index I
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Fourier Analysis on SO(3)

9 We define the Fourier transform componentwise:

fm,n(l) = / f(R)Um,n(Rila l)dR
SO(3)

where Up, (-, 1) is the (m, n)th element of the unitary matrix
U(-,1) and [ € Ny
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Fourier Analysis on SO(3)

9 We define the Fourier transform componentwise:

fm,n(l) = / f(R)Um,n(Rila l)dR
SO(3)

where Up, (-, 1) is the (m, n)th element of the unitary matrix
U(-,1) and [ € Ny

Theorem (Peter-Weyl-Theorem for SO(3))

Let Uy,.n(+,1) be defined as above. Then

@ the collection of functions {Up, »(+,1)} for all | € Ny forms a
complete orthogonal basis for L?(SO(3)).

@® L3(SO(3 )) can be decomposed into orthogonal subspaces:
L*(SO(3)) = @D Harm,(SO(3

leNgy

@ For each fixed [ the functions Uy, (-, 1) form a basis of the
subspace Harm;(SO(3))
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Theorem (Peter-Weyl-Theorem for SO(3))

@ The collection of functions {U,, (:,1)} for all I € Ny forms a
complete orthogonal basis for L*(SO(3)).

|

Every function f € L%(SO(3)) has a unique representation in
terms of the basis functions Uy, (-, 1)

|

9 we get the inverse Fourier transform:

f(g) = / trace(f (U (g, 1)) dv (1)

G
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Theorem (Peter-Weyl-Theorem for SO(3))

@ The collection of functions {U,, (+,1)} for all I € Ny forms a
complete orthogonal basis for L?(SO(3)).

|

Every function f € L2(SO(3)) has a unique representation in
terms of the basis functions Uy, (-, 1)

l

9 we get the inverse Fourier transform:
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How do the functions U, (-, () arise?

... they arise as eigenfunctions of the Laplacian
PDE: Au = A\u

separation of variables

u(a, B,7) = ui(a)ua(y)us(B)

three ODEs:
uf +mPuy =0 ui(0) = ui(2m) wj(0) = uy(2m)
uy +nur =0 up(0) = up(2m)  uh(0) = uy(2m)

n? —2mncosﬂ+m2>
us

(sin Buf) + (l(l +1)sinfg — e

u3(0) = ug(m)  u3(0) = uy(m)
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How do the functions U, (-, () arise?

‘ ul(a) — e—ima |

us(y) = e
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How do the functions U, (-, () arise?

= 0

n? — 2mncos 3 + m2)

: us
sin 3

1set T = cos

‘ (sin Buy) + (l(l +1)sinfg —

(ia-anah) - (i - 222 ) oy~

1 — 22

@ the solution to this ODE is an associated function

@ from self-adjoint form (cwuj) + \jwus = 0 we get

oz) = (1-22)  w)=0-z) a4t
A= ll+1+|n—m|+|n+m|)
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A suitable polynomial for ug

The solution of the ODE for w3 is the so-called Wigner-d function.

_1\l—-m _ n—m l—m xn+l
(@) = D \/(z—n)(Hm)! \/(1 zyrm dm (14 7)

2t W+l —m)\ (14 z)mt" del—™ (1 — z)n!
where | € Ny, |m|, |n| <.
Wigner-d functions d;"*" are related to:

@ Jacobi polynomials:

|[n—m)| |n+m|

d;”:n(aj) =v(m,n)(l—-z) 2 (1+z) 2 P(In—m|,|n+m|)(x)

£—max(|m|,|n|)

for some factor v(m,n)
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Wigner-d functions as Classical Orthogonal Polynomials

Wigner-d functions d;""
@ are orthogonal on [—1, 1]
@ o(x)=(1-2?%),
w(z) = (1 —z)=m(1 + z)l+ml,
N=Ill+14+n—m|+[n+m|), -l <m,n <1
@ Differential equation

(di((l—ﬁ)d(i) (l(l+1)—n2_2mm+m2)>d}”” -0

1—22

@ Rodrigues formula

& () = y-m (l+m) (1 —z)r—m d™ (1 4+ )"t
(T=n)+n)!I—m)\ (14 z)mtn dzt—m (1 — z)n!

@ Three-term recurrence ugly
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Putting the pieces together: Wigner-D functions

@ \We considered the eigenfunctions u of the Laplace operator
on SO(3) by solving Au = \u.

@ We found a separation of w in Euler angles
u = up(a)uz(y)us(B) and gave explicit expression for each w;
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Putting the pieces together: Wigner-D functions

@ \We considered the eigenfunctions u of the Laplace operator
on SO(3) by solving Au = \u.

@ We found a separation of u in Euler angles
u = up(a)uz(y)us(B) and gave explicit expression for each w;

@ From now on we will denote the functions u by D" :=u a
Wigner-D function

@ It is given for |m|,|n| <1 € Ny by

\/—’\f-’

u1 u2

" Br) = ¢ A (cos )
—_——

us3

where d]"" is a so-called Wigner-d function.
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The sphere S? as a special case of SO(3)

@ associated Legendre functions P:

_n 1 (Il —n)! *

(I +n)!

Wigner-d function — generalized associated Legendre fct.

@ spherical harmonics Y™

20-1 ima j0m
Y8, o) = ¢ dd™ (cos B)
20 —1
6mm 07_m
= 1y 2L DP 0, )

Wigner-D function — generalized spherical harmonic
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Finally: An orthogonal basis for L*(SO(3))

By means of the Peter-Weyl-Theorem the spaces
Harm;(SO(3)) = span {D]"" : m,n = —1,...,l}

spanned by the Wigner-D functions satisfy
L*(SO(3)) = @ Harm,(SO(3)).
1=0

The collection of Wigner-D functions
{D/"(R): 1€ Ny,m,n=—l,...,l}

forms an orthogonal basis system in L2(SO(3)).

Now we have all ingredients for Fourier transforms on SO(3)

229



The SO(3) Fourier Transform

[{D;"’” | 1 € Ng,m,n=—I,...,l} forms a basis in LQ(SO(B))]

As a consequence a function f € L*(SO(3)) has a unique series
expansion in terms of the Wigner-D functions

with Fourier coefficients flm" given by the inner product

P 2l +1 2 2 o
o= = fa, B,7)D;"" (e, B,7) sin BdadFdy
20+ 1

= W(fa Dlm’n>L2(SO(3))-
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The Discrete SO(3) Fourier Transform

e Algorithms for SO(3) Fourier Transforms
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A space for the Discrete SO(3) Fourier Transform

Consider the space of polynomials of maximum degree L € Ny:
L
Dy = @span {D™"|m,n=—1,...,1} C L%(SO(3)).
1=0

with
@ the index set consisting of all admissible indices corresponding
to polynomials in Dy,

Jr={l,m,n) | 1=0,...,Lym,n=—I,...,l}
@ and dimension
L 1
dim(Dy) = |J0] =) (21+1)* = 5 (2L+1)(2L+2)(2L+3).

=0
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The Discrete SO(3) Fourier Transform

Input:
@ sampling set on SO(3): Rg = (Ry,...,Rg) with
R, € SO(3), is a finite sequence of arbitrary rotations
@ Fourier coefficients f = (ﬁm’")(hm’n)e\ﬂ
Evaluation:

L [ l
=> > Zf’””Dm” Do a=1,...,0,

=0 m=—In=—

[nonequispaced discrete SO(3) Fourier transform (NDSOFT)]

Output:
@ =2 function f € Dy, evaluated at rotations R1,...,Rg
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The Discrete SO(3) Fourier Transform

In matrix-vector notation, the NDSOFT reads

~

f = Dg,f

with
@® f=(f(Ry))g=1,.,0, the function samples
@f-= (ﬁm’")(l’m’n)ejL, the SO(3) Fourier coefficients

@® Dy, = (D?W(Rq))q:lw@ (Lmm)eTs the nonequispaced
SO(3) Fourier matrix
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The Discrete SO(3) Fourier Transform reversed

@ The NDSOFT reads

~

f = Dg,f

@ in general Dr,, is not a square-matrix = not invertible
@ Instead: applying the adjoint transform

D7H€Q: Cce -
is called adjoint NDSOFT:
f=Dpf
@ For Wr, = diag(wg)g=1,...q with suitable weights wg,
=D, W, £

can be interpreted as a quadrature rule for the calculation of
the Fourier coefficients of f, yields the (pseudo) inverse
NDSOFT



A note on complexity

~

f =Dg,f
@ lower bound: O(L?) Fourier coefficients and O(Q) rotations
as input values
= O(L3 + Q) flops
@ naive approach: matrix-multiplication with D, € C@x|Jrl
= O(L3Q) flops
@ our approach on nonequispaced grids on the SO(3):
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A note on complexity

~

f = Dg,f

@ lower bound: O(L?) Fourier coefficients and O(Q) rotations
as input values
= O(L3 + Q) flops

@ naive approach: matrix-multiplication with D, € C@x|Jrl
= O(L3Q) flops

@ our approach on nonequispaced grids on the SO(3):

@ generalizing the algorithm for the Fourier transform of
scattered data on the sphere S? (Jens' talk yesterday)
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A note on complexity

~

f =Dg,f
@ lower bound: O(L?) Fourier coefficients and O(Q) rotations
as input values
= O(L3 + Q) flops
@ naive approach: matrix-multiplication with D, € C@x|Jrl
= O(L3Q) flops
@ our approach on nonequispaced grids on the SO(3):

@ an approximate algorithm called the nonequispaced fast SO(3)
Fourier transform (NFSOFT) using the Fast Polynomial
transform (Potts/Prestin/V.)
= O(L*log’ L+ Q)
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A note on complexity

f = Dg,f
@ lower bound: O(L?) Fourier coefficients and O(Q) rotations
as input values
= O(L3 + Q) flops
@ naive approach: matrix-multiplication with D, € C@x|Jrl
= O(L3Q) flops
@ our approach on nonequispaced grids on the SO(3):

@ an approximate algorithm called the nonequispaced fast SO(3)
Fourier transform (NFSOFT) using the Fast Polynomial
transform (Potts/Prestin/V.)
= O(L*log’ L+ Q)

@ a variation of the NFSOFT using a fast algorithm based on

semiseparable matrices (Keiner/V., in progress)
= O(L3log L + Q)

236



A closer look at the NFSOFT

We want to compute: f = DRQf‘I

Direct multiplication is slow.

Can we decompose Dx,, into a product of matrices that can be
computed with faster?

1We surely do.

The NFSOFT computes f = FRQAPf"

237



A closer look at the NFSOFT

We want to compute: f = DRQf‘I

Direct multiplication is slow.

Can we decompose Dx,, into a product of matrices that can be
computed with faster?

1We surely do.

The NFSOFT computes f = FRQAPf"

— only matrix Fr, depends on input rotations
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The NFSOFT, Step 1: Rearranging sums

[Basic Idea: Turning the NFSOFT into a three-dimensional NFFT]

We split up the Wigner-D functions according to the Euler angles
of f(Ry) = flag, Bg:7q) €D forg=1,...,Q:

fﬁ’nDT’n(aqaﬁq:'Yq)

M=
MN
MN

f(aqyﬁq77q) =

Iy
o
3
I
L
3
I
L

_ Freimened cos )

I
™=
M~
MN

l

Il
=)
Il
L

m=—In

and rearrange these sums:

L L L

flag,Basve) = Z e imaa Z e " Z fm """ (cos By).

m=—1L n=—L l=max(|m|,|n|)
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The NFSOFT, Step 1: Rearranging sums

We got

L

L L
flag, Beva) = Z oM Z e " Z ﬁm’ndlm’n(cosﬁq)~

m=—L n=—L l=max(|m|,|n|)
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The NFSOFT, Step 1: Rearranging sums

We got
L . L . L ~
flag, Besve) = Z e M Z e " Z frd " (cos By) -
m=-L n=—L I=max(|ml,|n|)

@ A closer look at the Wigner-d functions:

mon _ [(1 —g)n—m d-m 1+ x)"“
d;"" (x) = const A+ ) da—m (1 —z)n1

@ for m + n even: d;""(z) are polynomials of degree at most [

@ for m+n odd: (1—22)7/2d]""(x) are polynomials of degree
-1
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The NFSOFT, Step 2: Transforming the coefficients

o For a fixed pair of m,n we want to transform the
SO(3)-Fourier coefficients into Chebyshev coefficients

L

I Z t;""Ti(cos B) for m + n even,
Z ﬁm,nd'lrn,n(cos ﬁ) — =0

L—-1
l=max(|m/|,|n|)

sin 3 Z t;7""Ti(cos B) for m + n odd
=0

9 and these Chebyshev coefficients into 'standard’ Fourier
coefficients using

Ti(cos B) = coslf = (el + e71¥) and sin 3 = (e ¥ —&¥)

L L

Z t;""Ti(cos By) (sin ﬁq)mOd(m+n72) = Z fL;n,ne—il,Bq'

=0 I=—L
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The NFSOFT, Step 2: Transforming the coefficients

@ only coefficients are transformed (= node-independent)

O(L3log? L)

VAV

@ compute
n :Pm,n/f\m,n
H Pm,n Tm,n AmnT m,n m,n m,n\T
with £ :(fma’x(lm‘,w...,fL’) = (LT

@ The multiplication with P™" ¢ RE-max(jmlin)xL+1 js reglised

via
Fast Polynomial Transform

in O(Llog? L) flops per set of orders m,n for (2L + 1) many
vectors t""
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The NFSOFT, Step 2: Transforming the coefficients

9 Chebyshev coefficients can be transformed easily into
'standard' Fourier coefficients

L
Zt "y (cos B (sin B) ™42 = Z /’;};—n,nefilﬁq'
=L
A O(LP1og’ L) oLy L
\ ' — e
. L
After that we get:
L ) L ' L R
f(aq: ﬁth 'Yq) = Z e % Z e~ iMa Z flm,nd;n,n (COS ﬁ)
m=—t n=-L 1=max(jm|,|n])

L L L

3% S apreitmeatniation),

m=—Ln=—LIl=—L
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The NFSOFT, Step 3: The 3D-NFFT

Now, we are left with the computation of the three dimensional
NFFT

L

L L
flag Bpyg) = 3. 3 > hyteritmaatnyetise

m=—Ln=—LIl=—L

with complexity O(L?log L + Q).
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The NFSOFT

The NFSOFT computes

f=Fr,APT

@ 2 block diagonal matrix consisting of the matrices P""
representing the Fast Polynomial Transforms:

P = diag (P™")

mn=—0L,....L
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The NFSOFT

The NFSOFT computes

f=Fr,APT

@ 2 block diagonal matrix consisting of the matrices P""
representing the Fast Polynomial Transforms:

P = diag (P™")

mn=—0L,....L

@ - block diagonal matrix composed of blocks A™™ that
performs the change from Chebyshev to standard Fourier
coefficients for each pair of orders m,n:

A =diag (A™"), ._ 1 1
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The NFSOFT

The NFSOFT computes

f=Fr,APT

@ 2 block diagonal matrix consisting of the matrices P""
representing the Fast Polynomial Transforms:

P = diag (P™")

mn=—0L,....L

@ - block diagonal matrix composed of blocks A™™ that
performs the change from Chebyshev to standard Fourier
coefficients for each pair of orders m,n:

A =diag (A™"), ._ 1 1

@ 2 three-dimensional Fourier matrix Fr,,:
Fr, = (e—i(maq-‘rlﬁq—i-n'yq))
@ q:177Q7(l7m7n)EJL

244



Summary

Let Rg = (R1,...,Rg) be a finite sequence of arbitrary
rotations R, € SO(3). Then

evaluates a polynomial f € D, at rotations Ry, ..., Rg given its
Fourier coefficients f = (") (1mn)c7,; and is called

nonequispaced discrete SO(3) Fourier transform (NDSOFT).

It can be computed for Q arbitrary rotations in O(L3log® L + Q)
flops via the

nonequispaced fast SO(3) Fourier transform (NFSOFT)
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0 Applications
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Fast summation of radial functions on SO(3)

@ A radial function f € L?(SO(3)) with center Ry € SO(3) is a
function that depends only on the distance to Ry
@ What is the distance between two rotations?

@ from axis-angle representation: the rotation angle is the
absolute value of a rotation

@ We use the absolute value of a rotation R = RoR ! that
turns R onto Ry as a measure for the distance between R;
and Ry

1
d(Rg, Rq) = arccos §(trace(R0R1_1) -1

@ compare: summation of Gaussians on the sphere (Jens’ talk
yesterday)
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Radial Functions on SO(3):

¥ € L2(SO(3)) is a radial function with center R € SO(3) if and
only if there is a sequence of coefficients ¢; such that

q;lml’n = &lD;m’n(RO% l e NO’ m,n = _l’ tee ’l'

In particular,
l
7 m,n m,n h d(Ry, R
YR ~ S 0 Y DIRODMR) ~ Y 4y UQZ(COS(;)>,
leNg m,n=—I1 1eNg
where a1
Ui(cosw) = m, l € No, w € (0,7)
sin w

denotes the Chebyshev polynomials of second kind with
Ul(l) =[+1.
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Fast Summation

@ Input:
® Rg = (Ry,...,Rg) Ry € SO(3) a list of source rotations
@® 75 =(T4,...,Tg), Ts € SO(3) a list of target rotations,
@ ¢: SO(3) — C a pointwise given radial function,
@ c=(c1,...,cq) € C? a coefficient vector.
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Fast Summation

@ Input:
@® Ro = (Ry,....,Rg) R, € SO(3) a list of source rotations
@® 75 =(T4,...,Tg), Ts € SO(3) a list of target rotations,
@ ¢: SO(3) — C a pointwise given radial function,
@ c=(c1,...,cq) € C? a coefficient vector.

@ \We are concerned with evaluating the sum

Q
F(T) = cb(TsR;Y), s=1,....8,

g=1
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Fast Summation

@ Input:
@® Ro = (Ry,....,Rg) R, € SO(3) a list of source rotations
@® 75 =(T4,...,Tg), Ts € SO(3) a list of target rotations,
@ ¢: SO(3) — C a pointwise given radial function,
@ c=(c1,...,cq) € C? a coefficient vector.

@ \We are concerned with evaluating the sum

Q
F(T) = cb(TsR;Y), s=1,....8,

g=1

@ Approximate ¢ by its truncated Fourier series expansion for
L eNy

L l
FTs) = Y ey Y DD (Ry) D™ (Ty)

L
= > > W[ XD Ry) | D)
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Fast Summation Algorithm

L [ Q
= > Z ceD]""(Ry) | DJ""(Ts)
=0 m.n= 1

- q=

adjoint NFSOFT

,

NF§6FT

What to compute:
o an adjoint NDSOFT for the Q source rotations R,
— NFSOFT algorithm with O(L?log? L + Q) flops
e multiply with |7 |-many 0
— O(L?) flops
e another NDSOFT for the S target rotations T
— NFSOFT algorithm with O(L3log? L + S) flops
Total: O(L3log? L + Q + S) flops instead of O(QS)

250



Correlating functions on the sphere

Given a function or pattern f on the sphere we want to identify its
orientation and position, i.e. longitude and latitude.
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Correlating functions on the sphere

Given a function or pattern f on the sphere we want to identify its
orientation and position, i.e. longitude and latitude.

The Task
Find a rotation R € SO(3) which turns a function f € L*(S?)
into the function f with

f(x) = f(R™'x).
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Correlating functions on the sphere

Finding this rotation R € SO(3) leads us to correlating the
functions f and f by

max CR)= [ f(x)f(R1x)dx.
SQ
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Correlating functions on the sphere

Finding this rotation R € SO(3) leads us to correlating the
functions f and f by

max CR)= [ f(x)f(R1x)dx.
SQ
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Correlating functions on the sphere

Finding this rotation R € SO(3) leads us to correlating the
functions f and f by

max CR)= g f(x)f(R-1x)dx.

Naive attempt

Evaluation of C'(R) for a set of functions needs O(R3L?)
operations:

@ O(R?) different rotations R
@ O(L?) flops to compute the inner product in L2(S?).
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Correlating functions on the sphere

Finding this rotation R € SO(3) leads us to correlating the
functions f and f by

max CR)= g f(x)f(R-1x)dx.

Naive attempt

Evaluation of C'(R) for a set of functions needs O(R3L?)
operations:

@ O(R?) different rotations R
@ O(L?) flops to compute the inner product in L2(S?).

Instead:

NFSOFT

Evaluation of C(R) for O(R?) different rotations in
O(L?log? L + R®) operations
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Spherical Fourier expansion

The Fourier expansions of the two L-band-limited functions
- p
f, f € L2(S?) are

Z Z a"Y™(x) and f(x Z Z LY (

=0 m=—1 =0 m=—1

Their spherical Fourier coefficients can be computed using the
NFSFT in O(L?log? L) flops.

@ use rotation invariance of spherical harmonics

YR %) = 3 DPTR)Y" ()
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Correlation via NFSOFT

Inserting these expansions into C'(R) yields

CR) = f(X)f(R‘1X)dX
L—-1 U
— / (Z > YR x) (Z > opvr(x )
=0 m=—I 0n=-1"

Y Y Y Y DR [ v

=0 m=—In=—lk=—1

Y Y Y D" D R)

=0 m=—Iln=—1

It remains to compute this actual NFSOFT for O(R3) rotations in
O(L3log? L + R®) flops.
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Part | — Fourier Analysis and the FFT

Stefan, Monday, 14:15 — 16:00, Room U322

Part Il — Orthogonal Polynomials

Jens, Tuesday, 12:15 — 14:00, Room U141 (Lecture Hall F)

Practice Session: 14:30 — 16:00, Room Y339b (Basics and Matlab Hands-On)

Part I1l — Fast Polynomial Transforms and Applications
Jens, Wednesday, 12:15 — 14:00, Room U345

Practice Session: 14:30 — 16:00, Room Y338c (C Library Hands-On)

Part IV — Fourier Transforms on the Rotation Group
Antje, Thursday, 14:15 — 16:00, Room U322

Part V — High Dimensions and Reconstruction

Stefan, Friday, 10:15 — 12:00, Room U322




Part V - High Dimensions and Reconstruction




c NFFT on the Hyperbolic Cross

e Compressed Sensing

9 Least Squares

0 Optimal Interpolation
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NFFT on the Hyperbolic Cross

@ T~[01), feC(T),neN, z;=45/2"

fk _ /Ef(x) e—271'ik:1cd‘r
1 2" —1

on Z f (arj)e_%ikxf, k=—-2""1t41,. ..
§=0

Q

2n—1

I i

@ discrete Fourier transform (DFT)

2n—1

flap)= > Jee?™hm j=0,...,2" -1

k=—2n—141

@ Complexity
@ DFT: O (22"
@ FFT: O (n2)
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NFFT on the Hyperbolic Cross

@ discrete Fourier transformation

f(X) _ Z fke%rikx,

keG 9
at o= (g, ezl
. . T
J1 d . .
X = <2_n”g_n> e T, Jiy.-yJa €40,...,2" =1}

@ Complexity, problem size 27¢
@ DFT: 0 (22") or O (2(4+1))
@ FFT: O (nd2")

@ Limitation of the FFT

@ complexity increases fast with d
@ cquidistant grid
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NFFT on the Hyperbolic Cross

@ one dimensional grid in frequency domain
Gl ={-2""1+1,....2"71}, G{={0}

@ hyperbolic cross, dimension d € N, refinement n € Ny

d __ ! !
H, = U Gy x ... x Gy,
llall,=n
qeNd

@ kcH! = |k kg <2vd
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NFFT on the Hyperbolic Cross

Hyperbolic cross H?

¥

B
90000000000 ccoe

2

nnnnnnnnnnnnnnn

zzzzzzzzzzzzzzzzzzzzzz
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NFFT on the Hyperbolic Cross

@ Evaluation of
f(X) — Z fkeZﬂikx

keHd

@ one dimensional grid G, in spatial domain

@ sparse grid
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NFFT on the Hyperbolic Cross

025 05 075 1

(a) Sparse grid S?
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NFFT on the Hyperbolic Cross

@ discrete Fourier transform on the hyperbolic cross

Fx)= Y St xe sy

keHg

@ |5 =[S = O (n127)

@ HCDFT: O (n?=222") flops
‘ HCFFT O (ndQ") ﬂOpS [Baszenski, Delvos 1989; Hallatschek 1992; Gradinaru 2007]
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NFFT on the Hyperbolic Cross

Computational times HCDFT / HCFFT

&

—=—HCFFT
— =--HCDFT als Summe
. HCDFT als Matrix-

Vektor Multiplication

4 6 [ 0 12
Feinheit n

() d=2

Rechenzeit in Sekunden

= HCFFT
— = -HCDFT als Summe

. HCDFT als Matrix- S/
\ektor Multiplkation P
s
s
s
s
’
A
P .
A
/
2 3 4 6 o
Feinheit n

(b) d =10
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NFFT on the Hyperbolic Cross

@ cardinal B-Spline

X[0,1)s m=1

Ny, = L
m Nm—l * N1 = / Nm—l(‘ — t)dt, m > 2
0

@ dilated periodisation ¢, : T — R,

b0 = 3 N (2°(- + )
JEZ

@ translations ¢, ;. : T — R,

k

¢n,k:¢n<_2_n>7 k:07a2n_1
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NFFT on the Hyperbolic Cross

@ Spline space V,, =span{¢,,, : k=0,...,2" — 1}, m € 2N
@ Interpolation operator £,, : C(T) — V,, fulfils

ﬁ,ﬂ‘"(%) =f(2in), l=0,...,2" -1

@ Spline coefficients a,, ;, € C in

2" —1

Lof = ankdnk

k=0

can be com puted in 0 (2”) flops [Berger, Strémberg 1995; Bittner 1999]
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NFFT on the Hyperbolic Cross

@ Spline space
V) = span {0jk @ Pr—jy 7 =0,...,n,
k=0,...,22 =1, 1=0,...,2"7 -1}
@ L :c(T?) -V L = 2 i=0Li ® (Ln—j — Ln—j-1)
L fx) =f(x), xe8;
@ Spline coefficients a; (;.;) € C in

n 29—-12n—J9—-1

LPf= Z Z Z aj (k1) Pik @ Pr—jil

j=0 k=0 =0
can be computed in O (n2") flops
@ Evaluation of Eg)f(x) for x € T? takes O (n) flops
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NFFT on the Hyperbolic Cross

Algorithm NHCFFT Input: m € 2N, a > 2, X C T2, f € CIH#:
o HCFFT: Compute

f(X) _ Z kaQWikX
keH?2
for x € 52, where fiu=0forke HZ, \H?

9 Spline interpolation s = ,C?(izaf

6 Evaluation of s(x) for x € X
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NFFT on the Hyperbolic Cross

Interpolation error || f — s||. /|||l1 with respect to m

—=— gemessen, n=5
—+— abgeschatzt, n=6 2
— - gemessen, n=10
— -+ -abgeschatzt, n=10
gemessen, =14 fTind
abgeschatzt, n=14

—=— gemessen, n=6
—+— abgeschatzt, n=6
— B~ gemessen, n=10
— -+~ abgeschatzt, =10
= gemessen, =14
- abgeschatzt, n=14

relativer Fehler

Spline-Grad m

Spline-Grad m

(@) a=2 (b) =4
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NFFT on the Hyperbolic Cross

Computational times

10° ¢ - 10°
P[ e HoFFT 4 HCFFT
L ||+ Berechnung der Spiine-Koeffizienten L[|+ Berechnung der Spiine-Koeffizienten
10°F|  #  Auswertung des Spiines. A 10 ¢ Auswertung des Splines
|| —@— NHCFFT gesamt / —e— NHCFFT gesamt
. | [ —#— NHcDFT ) &— NHCDFT 3
- £ 10 t
I z g
I 2 7
2.0
d 310
3.
210
§
2
g 2
© 0% 4
. ’
o
10° /
10 10"
2 4 8 10 12 2 4 6 8 10 12
Feinheit n Feinheit n

(@Qym=4,a=2 (b) m =10, a =2

HCFFT O (n*2")
Spline interpolation | O (n2")
Spline evaluation O (n?2")

NHCFFT total O (n?2")
NHCDFT O (n?22")
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NFFT on the Hyperbolic Cross

@ Spline space
d .
VD = span{(X) djk, -3 k €NG, ills =n,ky =0,...,29 -1}
=1
@ Interpolation operator £ C(T%) — A
L= c;,..0L,
llilly=n

keNd

Theorem: Let n € No, m € 2N, a € N, f(x) = > fk827rikx and

keHd
5= Lgﬂaf, then
(2(n+ a) 4+ 2)1Fd . 72 4
— < < _
Hf S“OO = o(a—d+1)m Hlea g = Fp < T
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NFFT on the Hyperbolic Cross

1w 10°
—&— gemess: = 4 HCFFT
—+— abgesch + Berechnung der Spline-Koeffizienten
X e + Auswertung des Splines
10 ~10 1 10" || =—@=— NHCFFT gesamt
. - abgeschatzt, n=10 T NHeorr
<
§
2
& 107 H
[ <
= 107 H
8
-4
10°
.
- 4
10 10
2 4 B 1 12 14 18 2 4 6 8 10 12
Spline-Grad m Feinheit n

(a)d=3 m=4,a=3 (b)d=3, m=4,a=3

HCFFT O (n2m)
Spline interpolation | O (nd_12")
Spline evaluation O (n?i—22m)

NHCFFT total O (n?4-227)
NHCDFT O (n2d-222n)
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Reconstruction problems

So far: f € CV given, fast and approximate algorithms for
f = Af
Now: y € CM given, solve
Af ~ y
M = N equispaced nodes x; = j/N yield
A"A = AA" = NI
Considered problems:

||Af' —y|lw — min

”fHW—l — min s.t.

>
-
o

<«

|fllo — min  s.t.
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Compressed Sensing

Random sampling of sparse trigonometric polynomials [Rauhut, k]
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Compressed Sensing

Support T C Iy = {—%,...,% —1}, S=|T| < N, sparse
trigonometric polynomials

fiT—=C f(z) =) fre™?™

keT

Nonlinear spaces of trigonometric polynomials

Oy CIg,, vs. IO ()= |J Ir
TCIn:|T|<S

Reconstruct f € Il (S) from samples y; at nodes z; € T, i.e.,

yj = flag) = D fre??0, =0, M —1
keln
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Compressed Sensing

Dimension IV, Fourier coefficients fecN

Sparsity S = |T|, support T’ = supp(f)
Number of samples M, samples (z;,y;) € T x C

Interesting case
S~M<N

Nonequispaced Fourier matrix and its T§-restriction

A= (k) o motkery = (oo Oklopyr...) € CMN

A7z, = (¢p)ker, € CMXIT:]

S

Sampling a trigonometric polynomial

y = Af
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Compressed Sensing - Thresholding

Input: y € CM, maximum sparsity S € N

1: find T' C Iy to the S largest inner products {|(y, ¢1)|}iery
2: solve [|[Arc — y||, = min
3: (fr)wer =c¢

Output: fecN, TcIy

Remark:
@ e might hope that M~ (y, ¢;) = M~! Zjﬂial f(xj)ezﬂil’”j R~
fo(x)eQﬂllxdx — fl
@ computation of the inner products by ((y, #;))icry, = Ay in
O(Nlog N + M) floating point operations
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Compressed Sensing - Matching Pursuit

Input: y € CM, ¢ > 0, maximum number of iterations L € N

1: SZO,I'[):y,T():@,i}:O

2: repeat

33 s=s+1

4 k;s = argmaxgery [(rs—1, r)|
5 frko = fro T (ts—1, Pk,)

6: ry=rs 1 — (s 1, Pr,) Pk,

7 Ts=Ts 1 U {ks}

8: until s= L or ||rg|| <e

9: T =T

Output: f e CN, T C Iy
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Compressed Sensing - Orthogonal Matching Pursuit

Input: y e CM, £ >0

s=0,ro=vy, To=10
repeat
s=s5+1
Ts=Ts 1 U {al"g maXgery |<rs—17 ¢k>|}
solve [[Ar,ds —y||, 95 min
r« =Yy — ATsds
until s = M or lrs|| < e
: T =Ty, (fr)ker = ds

N T B

Output: fe CN, TclIy
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Compressed Sensing - Thresholding

Theorem:

@ fix f eIl (5)
@ define its dynamic range by

 maxger | fi|

minger |fk|

@ choose sampling nodes zy, ..., z—1 independently and
uniformly at random on T or on the grid %IN
@ if for somee >0

M > CR?- S -log(N/e)

@ then with probability at least 1 — € thresholding recovers T’
and f
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Compressed Sensing - OMP

Theorem:
@ fix f €1I;,(5), choose sampling nodes as before
@ if for some e >0

M >C-S-log(N/e),

then with probability at least 1 — € orthogonal matching

~

pursuit selects k; € supp(f)
Theorem:
@ choose sampling nodes as before
@ if for somee >0

M > C - S? log(N/e)

then with probability at least 1 — ¢ OMP recovers every
f (S H[N (S)
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Compressed Sensing - Thresholding

Sketch of proof
@ fix T C Iy, c € C®, and choose M sampling nodes
independently and uniformly at random on T or on %IN
@ for k ¢ T and 6 > 0 holds

Mé?
P ([(Arc, gp)| > Md) < dexp | ————5—
Afleflz + 5z llelld

@ Remark: this quantifies the “quadrature rule”

M-1
(Arc, k) = (v, ¢k) = Y fla)e”™r
7=0

~ M- / f(z)e*™kedy = 0
T



Compressed Sensing - Thresholding

@ thresholding recovers the correct support if
min [{¢;, Arc)| > max ,Arc
min (65, Arc)| > max | (61, Arc)|
@ for [ € T, the triangle inequality yields

|M~ ¢y, Arc)| = | + M~ oy, Ap ner )]

. -1
> minfe;| — max |[M™ {5, Aryer )|

@ hence, thresholding succeeds if

-1 .
I;IE%\M (05, An\pyergp| < I]%l:}lkj\/?

M Yo, A < min|c;]/2
rggg\ (¢, Arc)] min ¢/
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Compressed Sensing - Further results

Theorem: [Rauhug If
M<C-5%,

then with probability exceeding 1 — ¢1/S — ca/0? there exists an
f € I, (S) on which tresholding fails. Similar result for OMP
with S iterations.

Theorem: [Needell, Vershynin] If
M > C-S-log*(N)log(1/e),

then with probability at least 1 — € regularised OMP recovers every
f el (9).

Greedy methods for /1 minimisation [penoho, Tsaig]
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Compressed Sensing - Numerics

fixed dimension N = 1000, fixed X
number of samples M = 40, normalised Fourier coefficients |fi| = 1

—OMP, QR, FFT —OMP.QR.FFT |1
1 —TH, QR, FFT —TH, OB, FFT i
—BP, MOSEK, FFT |—BP, MOSEK, FFT_||

0

1 10 20 1 10 20

reconstruction rate vs. sparsity S computation time vs. sparsity S
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Compressed Sensing - Numerics

fixed reconstruction rate 90%, fixed sparsity S

64 1024 16384 3 1024 16384

Thresholding (| fx| = 1) OMP
generalised oversampling factor M /S vs. dimension N

OMP numerically: M ~ S'logy N samples are sufficient
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Reconstruction on the Sphere

NFSFT: f € CV+1)? given, compute

~

f=Yf

Now: y € CM given, solve

Mairhuber-Curtis: M > (N + 1)2 nodes do not guarantee
rankY = (N +1)?2
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Reconstruction on the Sphere

. 2
Singular values of Y € CMX(N+1)® (v _ o . 40, a1 = 400)

08 10° oocnccncunﬂﬂUII.!E!!ll'lll'llllllll'.'.
3 o

10°
0.5 °

10 °

iy 10
1 o

10—15 E

0 10 20 30 40

291



Reconstruction on the Sphere

Geodesic distance
dist (x,y) = arccos (y - x)
Mesh norm
ox = 21}&&S§j:0171‘f_1.i711\1/1_1 dist(x;, x)

Separation distance

¥ = min dist(x;,x
% = Gtiem (x5, x1)

292



Least Squares

Overdetermined (N +1)2 < M, W = diag(w;) € RM*M
YT — y|lw — min

=
YWY = YWy

Voronoi region €2; and weight w; = 11(£2;) to node x;
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Least Squares

Conjugate gradients for least squares (CGNR)

!
[vii— o, <2 (%) ¥l

Eigenvalues and Marcinkiewicz-Zygmund inequalities

ot
A = § EY WY 5 cvay
fF

Since f = YT and ||f||z2 = ||f||2, it remains to prove

2 2 2
emz 1 flIz: < Ifllw < Omz [ f1|z2
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Least Squares

Lem Ma: [Jetter, Stockler, Ward]

(1_7)”fHL omax |f ()] < (1+N*6) 1Al e -

Proof: Markov inequality (consider the great arc through x,y)

f () = f ()| < dist (x,5) - N [|fllpe, %,y €S

For arbitrary x € S? and its closest sampling node with index
J = argming<;< s dist (x,x;)

G <1 00 = O+ (5)] < 20 e mae 17 (7).

0<j<

Taking the maximum over x € S? yields the assertion.



Least Squares

Lem Ma: [Mhaskar, Narcowich, Ward; Filbir, Themistoclakis]
M—-1
(1= 153N6) [|fll,r < Y wy|f ()| < (1+153N6) || f]] 1 -
7=0

Proof: use a “nice” reproducing kernel vy for TIy (S?)

M-1
o= 3wy lf ()] Z/ 1 (%) = £ ;)] dpe ()
j=0
M-1
- / / (on (- ¥) —on (35 - 3)) £ () di ()] di ()
j=0 5
M-1
< j:o/a [ o e y) = o 31 1F )] e () e (0

<1l sup Z/ fon (- 3) — o (x5 - ) dp ().
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Least Squares

Theorem: [Mhaskar, Narcowich, Ward; Filbir, Themistoclakis; Keiner, Potts, K.]

Let the sampling set X C S? of cardinality M € N with mesh norm
4 and Voronoi weights wj, W = diag(w;);—o,...,m—1 be given.
Polynomial degree N € N with

1
Ne<
< 1540

f € Hn(S?) and its samples f = (f(%4));=0... as1 fulfil the norm
estimate

(1 154N0) | |22 < |[flly < (1+ 154N8) | f]|2. .
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Least Squares

Proof: Riesz-Thorin interpolation theorem

M-1

sup 3wyl (x5 /£

FENIN(S2), 0 ;=5
M-1

< s S lf o)l /I

FETIN(S2), f£0 525

x swp o max |F )] /11 e
Jelin(82), f0055<M -

Remark:
@ the condition V < § is optimal

@ for T the sharp condition N < 1/4 suffices, uses a Wirtinger
and a Bernstein inequality [Grschenig]
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Optimal Interpolation

Underdet. (N +1)2 > M, W = diag(wy) € ROTD*x(N+1)*

|2
B2, = S i s vi=
| HW—l . e — min s y
eJn

=
YWY =y, f=wWY"f
Polynomial kernel Ky : [-1,1] — R

and its associated matrix, wy = Wy = Wy,

YWY" =K = (Ky (x; 'Xl))j,l:o,...,M—l
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Optimal Interpolation

Conjugate gradients for optimal interpolation (CGNE)
2

l
Ji-wy'k || < 7 (%) Iyl

Gershgorin circle theorem (off diagonal decay of K)

M-1
’)\* — Kn (Xj* . Xj*)| < Z |KN (Xj* ) xl)|
1=0,l#£7

We need: packing argument on S? and localisation of Ky.
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Optimal Interpolation

Packing argument
@ for separation distance ¢ < m and 0 < m < |7q~!] define

Sq,m = {X S S2 :mgq < arccos(xo 'X) < (m_|_ ]_)q}7
S

olral] = {x€S*: g™ q < arccos (x¢-x) < 7}

@ restrictions to the set of sampling nodes Sx g = Sgm N X

@ the set Sy ., the ring S, (dashed), the larger ring S, .,
and a spherical cap of colatitude ¢/2 centred at one node
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Optimal Interpolation

Lemma: If X C S? is g-separated, then

|Sx.q.m| < 25m, m=1,..., Lﬂq_lj.

Proof: [Narcowich, Sivakumar, Ward; Prestin, Selig]
form=1,...,|mq7 '] -2
/. ((:_Jrf))qq sin 0d6
[2 sin6dg
_ sin((2m +1)
2

’SX,q,m| <

) sin (23)

q
2
g
sin 1

<8(2m+1).
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Optimal Interpolation

Localised kernels
@ normalised B-spline of order 3 € N, g5 : [—3, %] - R

95(2) = BN3(Bz + 1)

{1 0<z<1,

4
Nan (@)= [ Npndr, M) = .
21 0 otherwise
@ B-spline kernel Bg v : [-1,1] = R, N e N

Baw (0 =3~ (55m) 10
P gl M 2 T

N
gl = D 9 (ﬁ)

I=—N
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Optimal Interpolation

Lemma: The B-spline kernel Bg n obeys B n(1) =1 and for
N >p3—1,te[-1,1) the localisation

(2° ~1)¢(8) 7
T (B P

-

|Bg n (t)| < -|(N + 1) arccos (75)|_ﬂ

:Cﬁ

Moreover, the following representation with positive
Fourier-Legendre coefficients w;, holds

Proof: Poisson summation formula, integration by parts; explicit
calculation of connection coefficients.
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Optimal Interpolation

Theorem: Sampling set X C S? of cardinality M € N with
separation distance ¢, weights wy, set to the Fourier-Legendre
coefficients of the 3-th B-spline kernel, polynomial degree NV € N,
N>(3—-1>2and

(25¢5¢ (8 — 1)
q

N+1>

Then the kernel matrix obeys

25¢5¢ (B —1)

A — 1 < .
N ST
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Optimal Interpolation

Proof:
M—1
A1 S Ky (x, %)
1=0,l#7x
[mg™"]
<) [Sx.qml max. “|Bg.n (x4, - %)

m=1
lmq!]
< Z 25m. - ¢ |(N + 1)mg| ™" .
m=1
Remark:
@ the condition N > % is optimal
@ for T the condition N > fi suffices (5 = 2)

@ generalised for ST!, where N + 1 > 5’“1 suffices (5 = d)
@ similar results for T¢ and SO(3)
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Reconstruction on the Sphere

Least squares approximation stable for

C
N _
<3

['JI‘d Grdchenig; sd Mhaskar, Narcowich, Ward; Filbir, Themistoclakis; s2 Keiner, K., Potts; SO(3) Schmid]

Optimal interpolation stable for

v>¢
q

[T¢ K., Potts; S? Keiner, K., Potts; S% K., SO(3) Grif, K]
"“Curse of dimensions™. with spatial dimension d — oo

c— 0, C — o0.
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Summary

Fast approximative algorithms
@ Fourier transforms

@ polynomial transforms
@ convolutions

@ iterative reconstruction

@ numerical harmonic analysis on T¢, §2, SO(3)
for n degrees of freedom spend
O(nlog® n|loge|’)

flops
Software and papers on

http://www-user.tu-chemnitz.de/~potts/nfft
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