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Plasma-wave eq (PWE)

Uge — U = V(x)u, z,t€ER

Bayliss, Li, Morawetz, Math. Comp. 52 (1989) 321-338

e time-domain approach
e assume V' has no bound states
e assumption on support of V

e scattering sol behaving like a plane wave as t — —o0
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Time-domain picture for PWE

e plane wave incoming from “free space,” x &~ —o0
e encounters the nonhomogeneity V (x)
e the wavefront starts “picking up” a trailing tail

e the tail is determined by V'

e sol: w(x,t) =d0(x —t) + gi(z, t)
d(x —t) wavefront incident from left

gi(z,t) trailing tail

15



Time-domain picture for PWE

e plane wave incoming from “free space,” x &~ —o0
e encounters the nonhomogeneity V (x)
e the wavefront starts “picking up” a trailing tail

e the tail is determined by V'

e sol: w(x,t) =d0(x —t) + gi(z, t)
d(x —t) wavefront incident from left
gi(z,t) trailing tail

g(z,t) =0 for z > t, causality
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Time-domain picture for PWE

e plane wave incoming from “free space,” x &~ —o0
e encounters the nonhomogeneity V (x)
e the wavefront starts “picking up” a trailing tail

e the tail is determined by V'
e sol: w(x,t) =d0(x —t) + gi(z, t)

e Example 1: wave probing with Dirac-delta wavefront
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Our interest

e include bound states of V'
e no support assumption on V'
e V belongs to the Faddeev class

o0

real valued, measurable, / dr (1 + |z|) |V(z)| finite

—00
e causal scattering sols that “focus” to a point

Aktosun and Rose, J. Math. Phys. 43 (2002) 247-266
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Focusing sols

e incoming from left (or right)

e causal, consisting of a planar wavefront and trailing tail
e encounters the nonhomogeneity V(z)

e the tail gets smaller

e the tail disappears at a (prescribed) moment, say ¢t = 0
e the wavefront is at o when ¢t =0

e at ¢ = 0 the wave focuses to the point zg

e the tail starts reappearing

e the tail at any moment is determined by V'
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Focusing sol incident from left
Uge — U = V(x)u, z,t€ER
u(z,t; o) = 0(x — t — o) + g1z, t; x0)

e §(x —t — x9) planar wavefront moving to right
e gi(z,0;29) =0
e gi(z,t;x9) =0 for x >t + xp, causality

e gi(z,-;70) € L*(R) if V has no bound states
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Focusing sol incident from left
Uge — U = V(x)u, z,t€ER
u(z,t; o) = 0(x — t — o) + g1z, t; x0)

e Direct problem:
given xg and V' (z), construct the tail g|(x,t; zo)
e Inverse problem:

how to construct V(zg) from gi(z,t; o)
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PWE and Schrdédinger eq (SE)

PWE: ug, —uy = V(x)u, reR, teR.

SE: d2—w+k2¢—V()w cR
L = )Y, x .
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Sols to SE with V(z) ~0 as x — £o00

e left physical sol
W (k, x) ~ etkz L(k) e"thr x5 00

Dk, z) ~ T(k)e*®, z — +oo

e right physical sol
Ye(k,x) ~ e~ + R(k)e*® 2 — +o0
Uk, z) ~T(k)e ™®®, 1z = —c0

e L(k), R(k) left and right reflection coeff

e T'(k) transmission coeff, with simple poles at ix;
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e left physical sol
W (k, x) ~ etkz L(k) e"thr x5 00

Dk, z) ~ T(k)e*®, z — +oo

e right physical sol
Ye(k,x) ~ e~ + R(k)e*® 2 — +o0
Uk, z) ~T(k)e ™®®, 1z = —c0

e left and right Jost sols

1

filk,x) := T(k)l/)l(k,a:)
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Sols to SE with V(z) ~0 as x — £o00

e left physical sol
W (k, x) ~ etkz L(k) e"thr x5 00

Dk, z) ~ T(k)e*®, z — +oo

e right physical sol
Ye(k,x) ~ e~ + R(k)e*® 2 — +o0
Uk, z) ~T(k)e ™®®, 1z = —c0

e left and right Jost sols

1 1

f](k,:l?) = T(k) wl(kvx)a fr(kax) = m

Yr(k, )
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e right physical sol
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Sols to SE with V(z) ~0 as x — £o00

e left physical sol
e right physical sol
e left and right Jost sols

ik, z) = T(lk)wl(k,x), £k, @) = ﬁ

,(/)I'(k’ x)

e normalized bound-state sols

pj(z) == aj filikg, z) = crj fr(ikg, z), j=1,...,N
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Sols to SE with V(z) ~0 as x — £o00

e left physical sol
e right physical sol
e left and right Jost sols

e normalized bound-state sols

(,0]($) -= Cly fl(i’{’j7$) = Crj fr(i’{’jax)a ]: 17
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Sols to SE with V(z) ~0 as x — £o00

e left physical sol
e right physical sol
e left and right Jost sols

e normalized bound-state sols

() == ciy filik;, x) = ¢ fr(iKg,2), j=1,..

e left and right norming consts
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Sols to SE with V(z) ~0 as x — £o00

e left physical sol
e right physical sol
e left and right Jost sols

e normalized bound-state sols

() == ciy filik;, x) = ¢ fr(iKg,2), j=1,..

e left and right norming consts
1

Cl; =
’ \/ffooo dz fi(ik;, z)?
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Sols to SE with V(z) ~0 as x — £o00

e left physical sol
e right physical sol
e left and right Jost sols

e normalized bound-state sols

(,0]($) = Cly fl(i’{’j7$) = Crj fr(/’;’{’jax)a ] - 17 .. 'aN

e left and right norming consts
1 1

Clj = , Cri =
i I e i,
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Probing (nonfocusing) sols to PWE

PWE: ug, —uy =V(z)u, z,t€R

T‘-—OO

N
1 oo
J=1

— Qo0

1 [ N
= L [ s S
=1

73



Probing (nonfocusing) sols to PWE

PWE: ug, —uy =V(z)u, z,t€R

™

N
1 oo

o if V =0 for x < 0, then

74



Probing (nonfocusing) sols to PWE

PWE: ug, —uy =V(z)u, z,t€R

™

N
1 oo

o if V =0 for x < 0, then
w(z,t) =0z —t)+I(—z—1t), =<0

75



Probing (nonfocusing) sols to PWE
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™

N
1 oo

o if V =0 for x < 0, then
w(z,t) =0z —t)+I(—z—1t), =<0

N
I(t) :== L(—t) + Z cfj e impulse response
i=1
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o if V =0 for x < 0, then
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~

N
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Probing (nonfocusing) sols to PWE
PWE: ug, —uy =V(z)u, z,t€R

o if V =0 for x < 0, then

u(z,t) =0(z —t)+I(—z—1t), <0

~

N
I(t) :== L(—t) + Z cfj e impulse response
J=1

e inverse problem when V =0 for x < 0
find V(z) for z € (0, 21) from I(¢) for t € (0,2z)
B 2dK(:13,:13_)
. N dx
K@)+ 1 +9)+ [ K@) I:+y) =0, 0<y<a
0

Marchenko method: V(x)
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e transmission coeff T'(k)
meromorphic in C*
continuous in C+ except at simple poles at k = 1K

1+ O(1/k) as k — oo in C+
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analytic in C* and continuous in C+
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Analyticity properties

e transmission coeff T'(k)
meromorphic in C*
continuous in C+ except at simple poles at k = 1K

1+ O(1/k) as k — oo in C+

e for each fixed z, Jost sols fi(-,z) and f,(-, x)
analytic in C* and continuous in C+
e~ fi(k,z) =14+ O(1/k) as k — oo in C+
e fi(k,x) =14+ O(1/k) as k — oo in C+
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Completeness relation for SE

% * [k, 2) 61k, 20) +e(k, ) ()|
T J -

+ZSOJ ‘Pj 5170 —5(37_330)

Unitarity of the scattering matrix leads to

1 o0

or | kT filk,2) filk, o +Z% z) p;(w0) = 6(z — o)

93



Focusing sols to PWE

94



Focusing sols to PWE

PWE: ugz, —uy =V(z)u, z,t€R

95



Focusing sols to PWE

PWE: ugz, —uy =V(z)u, z,t€R

o u(x,t;29) =0(x —t — xz9) + g1(z, t; o)

96



Focusing sols to PWE
PWE: ugz, —uy =V(z)u, z,t€R

o u(x,t;29) =0(x —t — xz9) + g1(z, t; o)

o u(z,t;x9) =6(x +1t—xo) + gr(x,t; z0)

97



Focusing sols to PWE
PWE: ugz, —uy =V(z)u, z,t€R

o u(x,t;29) =0(x —t — xz9) + g1(z, t; o)

o u(z,t;x9) =6(x +1t—xo) + gr(x,t; z0)

Completeness relation and analyticity properties lead to

98



Focusing sols to PWE
PWE: ugz, —uy =V(z)u, z,t€R
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o u(x,t;x9) =0(x+t— x0) + ge(x,t; 20)
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Focusing sols to PWE
PWE: ugz, —uy =V(z)u, z,t€R
o u(x,t;29) =0(x —t — xz9) + g1(z, t; o)

o u(x,t;x9) =0(x+t— x0) + ge(x,t; 20)

Completeness relation and analyticity properties lead to

(e, tiv0) = o [ ART(R) ik, 2) £l ) ”"t+Z%

— o0

ur(x,t;z0) = %/ dkT(k) f.(k,z) fi(k, zo) Zkt—I—Z @;(z

— o0
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Further properties of focusing waves

o if V=0 for z <0 or for z > 0, then
(focusing sol to g = 0) = (probing physical sol)
e time antisymmetries
e support of the tail
e gap between the tail and the wavefront
e kinks of focusing waves, discontinuities of V'
e uniqueness of focusing sols

e blurring, approximate focusing sols
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Further properties of focusing waves

o if V=0 for z <0 or for z > 0, then
(focusing sol to g = 0) = (probing physical sol)
e time antisymmetries
e support of the tail
e gap between the tail and the wavefront
e kinks of focusing waves, discontinuities of V'
e uniqueness of focusing sols
e blurring, approximate focusing sols

e relation to Marchenko method
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Recovery of V(zy) by focusing to z
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Recovery of V(zy) by focusing to z

If V is continuous at zg, then for any t € R

Ogi(zy +t,¢; x0)

V(zg) =V(zo+1t)+2q(zg +t,t;20)* + 4 5
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Some generalizations
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Some generalizations

e radial SE: uy, —uy =V(x)u, x>0, teR
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Some generalizations

e radial SE:  ug, — uy = V() u,

e variable-speed wave eq: Uy, —

x>0, teR
1
C(.’I})Q utt - V(‘/’E) 'U,,
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Example 2: focusing within nonhomogeneity

Potential V, vanishing when z < 0

8

0.2

0.4

0.6

0.8

1

t= t=- t=0 = t=2
1 ! 1 1 1
0.75 0 0.75) 0.75) 0.75
0.5) 0.5) 0.5 0.5 0.5
0.25 0.25 0.25 0.25 0.25
3 -2 -1 -1 2 - 12 4 - 1 3 4

-0.25 -0.25) -0.25) -0.25

-0.5 -0.5 -0.5 -{) \//
-0.75 -0.75) -0.75) 0.75
-1

uy with zg =1latt=-2,-1,0,1, 2.
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Example 3: focusing behind nonhomogeneity

4

w

)

—

-1 -08 -0.6 -0.4 -02

Potential V, vanishing when z > 0

Support of u;, with zg =1

t=0 t=0.5 t=1 t=22
1 1 1 1
0.75 0.75 0.75 0.75
0.5 0.5 0.5 0.5
0.25 0.25 0.25 0.25

-4 2 -6 - -2 -2 -2 / 2
. -0.25) -g/25) -0, -0.25
-0.5 -0.5 Ns 5 s
-0.75 -0.75) -0.75) -0.7 -0.75

u; with zg =1att =-1,0,0.5,1, 2.
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Example 4: focusing in front of nonhomogeneity

8

t=0 t=1 t=1.2 t=2 =3
1 1 1 1 1
0.75) 0.75) 0.75 0.75 0.75)
0.5 0.5 0.5 0.5 0.5
0.25 0.25 0.25 0.25 0.25
2 -1 -1 1 2 3 2 -1 ;{ 1 2 3 v
-0.25] -0.25 -0.2 -0.25 -0.
-0.5 -0.5 -0.5 R \ -05’\
-0.75) -0.75 -0.75 -0.75 -0.75
-1 -1 -1 -1 -1
u; with zg = —-1att=20,1,1.2,2,3.
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Example 5: focusing within nonhomogeneity

4

-1 -08 -0.6 -0.4 -02

Potential V, vanishing when z > 0

|
32 1 7 3 T3 o2 1 ] 1 1 3 T 7 3 73
0.1 0.1
0.2 0.2
03 03
0.4 0.4
05 05
0.6 0.6 0.6 0.6

u; with zg = —-1latt=-1,0,1,2,3.
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Example 6: focusing with bound states

2 U o 3

Potential V, nonvanishing, negative everywhere

1 1 -1 1 1
L5 L1.5) 15 15 15
2 2 -2 2 2

u; with with xg =1at t=-3,—-2,—-1,0,1.
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Example 7: focusing with bound states

2

1

1

Potential V, nonvanishing, negative everywhere

120

=2 , ; t=0 s t=1 5 t=2
2.5 2.5 2.5 2.5 2.5
2 2| 2| 2) 2
1.5 15 1.5 1.5} 1.5
1 1 1 1
0.5 0.5 0.5 J‘: 0.5
5\4\ 2 IAOIS 1 2 ﬁ\g\ . 1 2 5 2 1-05 5 4 3 2 1 s 1 2 "
u; with ztg =—-1latt=-2,-1,0,1, 2.




Example 8: focusing with Dirac delta distribution
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Example 9: focusing to edge of potential

o if V =0 for x <0, then

(focusing sol to g = 0) = (probing physical sol)
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