# Solvability Complexity Index ( $=\mathrm{SCI}$ ) and Towers of Algorithms 

Olavi Nevanlinna<br>Aalto SCI

February 20, 2015

## Goal of the talk

- Is $\sigma(A)$ computable for $A \in B\left(\ell_{2}(\mathbb{N})\right)$


## Goal of the talk

- Is $\sigma(A)$ computable for $A \in B\left(\ell_{2}(\mathbb{N})\right)$
- To explain what different theories say about it


## Goal of the talk

- Is $\sigma(A)$ computable for $A \in B\left(\ell_{2}(\mathbb{N})\right)$
- To explain what different theories say about it
- This is a simplified layman overview


## Goal of the talk

- Is $\sigma(A)$ computable for $A \in B\left(\ell_{2}(\mathbb{N})\right)$
- To explain what different theories say about it
- This is a simplified layman overview
- Then I focus on Towers of Algorithms and on the Solvability Complexity Index,


## Goal of the talk

- Is $\sigma(A)$ computable for $A \in B\left(\ell_{2}(\mathbb{N})\right)$
- To explain what different theories say about it
- This is a simplified layman overview
- Then I focus on Towers of Algorithms and on the Solvability Complexity Index,
- J. Ben-Artzi, A. Hansen, O. Nevanlinna, M. Seidel


## Definition of a Tower

## PROBLEM

$\Omega$ : primary set, e.g $\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$
$\Lambda$ : evaluation set, e.g. $f_{i j}: A \mapsto<A e_{i}, e_{j}>$ for $A \in \mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$ $\mathcal{M}$ : metric space
三: problem function $\Omega \rightarrow \mathcal{M}$, such as $\sigma(A)$ for $A \in \mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$

## TOWER

三 $(A)=\lim _{n_{k} \rightarrow \infty} \Gamma_{n_{k}}(A)$
$\Gamma_{n_{k}}(A):=\lim _{n_{k-1} \rightarrow \infty} \Gamma_{n_{k}, n_{k-1}}(A)$
.....
.....
$\Gamma_{n_{k},,, n_{2}}(A):=\lim _{n_{1} \rightarrow \infty} \Gamma_{n_{k},,, n_{2}, n_{1}}(A)$

## Matrices first

$A \in B\left(\mathbb{C}^{n}\right) \quad$ solve for $\pi_{A}(z)=0$

- $n \leq 3$ : generally convergent rational iteration exists (McMullen 1987)


## Matrices first

$A \in B\left(\mathbb{C}^{n}\right) \quad$ solve for $\pi_{A}(z)=0$

- $n \leq 3$ : generally convergent rational iteration exists (McMullen 1987)
- $n \leq 5$ : a tower of generally convergent rational iterations (Doyle, McMullen 1989)


## Matrices first

$A \in B\left(\mathbb{C}^{n}\right) \quad$ solve for $\pi_{A}(z)=0$

- $n \leq 3$ : generally convergent rational iteration exists (McMullen 1987)
- $n \leq 5$ : a tower of generally convergent rational iterations (Doyle, McMullen 1989)
- $n>5$ : no such towers (Doyle, McMullen 1989)


## Matrices continues

radicals, $z \mapsto|z|$ available, then convergent iterations exist for solving roots of polynomials
input finite: the complex coefficients of the polynomial

## Computabilities...

"Turing view": problem computable if a computing device exists which solves the problem

Computation in the limit and higher hierarchies
BSS (Blum, Shub, Smale) $\mathbb{R}$-machine model
IBC (infromation based complexity) uses BSS, "tractability"
constructivism, computability on $\mathbb{Z}$ and within computable numbers

## Any compact can be spectrum

Represent compact $K \subset \mathbb{C}$ from outside:

$$
K=\bigcap K_{n}
$$

where

$$
\cdots \subset K_{n+1} \subset K_{n} \subset \cdots
$$

and testing $z \notin K_{n}$ "easy"

## Any compact can be spectrum, so look at Julia sets

We first look at the Julia set $\mathcal{J}$ for the quadratic polynomial $z^{2}+4$.

Consider the question

$$
z \in \mathcal{J} ?
$$

Then the corresponding question for the spectrum $\sigma(A)$ is

$$
\lambda \in \sigma(A) ?
$$

The natural formulation of these questions is, can you decide whether the answer is yes or no?
2.1 Julia set $\mathcal{J}$ for $z^{2}+4$

Let

$$
p(z)=z^{2}+4
$$

Iterate

$$
z_{n+1}=p\left(z_{n}\right)
$$

If $z_{n} \rightarrow \infty$ then $z_{0} \notin \mathcal{J}$.
Note that if $\left|z_{k}\right|>1+\sqrt{5}$ for some $k$, then $\left|z_{k+1}\right|>2\left|z_{k}\right|$ and then $z_{n} \rightarrow \infty$.
For this $p(z)$ the Julia set is homeomorphic to a Cantor set. Observe that $\mathbb{C} \backslash \mathcal{J}$ is open.
S. Smale and coworkers: $\mathcal{J}$ is not decidable ("semidecidable")

## Computation in the limit...

Output as follows:
if $\left|z_{k}\right| \leq 1+\sqrt{5}$, then $\operatorname{Out}(k)=1$
if $\left|z_{k}\right|>1+\sqrt{5}$, then $\operatorname{Out}(k)=0$.
So depending on the initial value we obtain sequences of the form

$$
1,1, \ldots, 1,0,0,0 \ldots
$$

and

$$
1,1,1, \ldots
$$

In either case the limit exists; and then you (would) know

## Similar question for the spectrum in abstract Banach

 algebraConsider the subalgebra generated by just one element a (say, in Banach algebra $\mathcal{A}$ ). Then the spectrum within the subalgebra is fill( $\sigma(a)$ ).
If we are allowed to produce polynomials of $a$ and compute their norms but inverting is not allowed, then:

The question

$$
\lambda \notin \operatorname{fill}(\sigma(a))
$$

is semidecidable as follows:
If answer positive: finite termination with sure answer, while
if negative, you will never know (the one you look after does not exist)

## What exists is easier to find!

Conclude: Think positive, construct the resolvent

$$
\begin{gathered}
\mathbb{C} \backslash \text { fill }(\sigma(A)) \rightarrow B(X) \\
\lambda \mapsto(\lambda-A)^{-1}
\end{gathered}
$$

instead!
Get a multicentric holomorphic calculus - but not during this talk...

## Computation in the limit

## Example

Let $A$ be diagonal operator in $\ell_{2}(\mathbb{N})$ such that $a_{i i} \in\{0,1\}$. Input information: read one diagonal element in time, in a fixed enumeration.
Then

- $\sigma(A) \in\{0,1\}$ : this we can build in the "machine" based on the problem description


## Computation in the limit

## Example

Let $A$ be diagonal operator in $\ell_{2}(\mathbb{N})$ such that $a_{i i} \in\{0,1\}$. Input information: read one diagonal element in time, in a fixed enumeration.
Then

- $\sigma(A) \in\{0,1\}$ : this we can build in the "machine" based on the problem description
- $\sigma_{\text {ess }}(A) \neq \emptyset:$ this can also be build in


## Computation in the limit

## Example

Let $A$ be diagonal operator in $\ell_{2}(\mathbb{N})$ such that $a_{i i} \in\{0,1\}$. Input information: read one diagonal element in time, in a fixed enumeration.
Then

- $\sigma(A) \in\{0,1\}$ : this we can build in the "machine" based on the problem description
- $\sigma_{\text {ess }}(A) \neq \emptyset:$ this can also be build in
- $1 \in \sigma(A)$ : this cannot be be computed except at the limit


## Computation in the limit

## Example

Let $A$ be diagonal operator in $\ell_{2}(\mathbb{N})$ such that $a_{i i} \in\{0,1\}$. Input information: read one diagonal element in time, in a fixed enumeration.
Then

- $\sigma(A) \in\{0,1\}$ : this we can build in the "machine" based on the problem description
- $\sigma_{\text {ess }}(A) \neq \emptyset:$ this can also be build in
- $1 \in \sigma(A)$ : this cannot be be computed except at the limit
- $1 \in \sigma_{\text {ess }}(A)$ this needs "two limits", i.e. a "tower"


## How to get the answers

$1 \in \sigma(A)$

- define function for each $n$

$$
\begin{gathered}
\Gamma_{n}(A)=1, \text { if } \sum_{i=1}^{n} a_{i i}>0 \\
0, \text { otherwise }
\end{gathered}
$$

and set

$$
\Gamma(A)=\lim _{n \rightarrow \infty} \Gamma_{n}(A)
$$

Then, answer is "yes", when $\Gamma(A)=1$

## How to get the answers

## $1 \in \sigma(A)$

- define function for each $n$

$$
\Gamma_{n}(A)=1, \text { if } \sum_{i=1}^{n} a_{i i}>0
$$

0 , otherwise
and set

$$
\Gamma(A)=\lim _{n \rightarrow \infty} \Gamma_{n}(A)
$$

Then, answer is "yes", when $\Gamma(A)=1$

- Using quantifiers: $\exists n\left(\sum_{i=1}^{n} a_{i i}>0\right)$


## How to get the answers

$1 \in \sigma_{\text {ess }}(A)$

- this needs "two limits", i.e. a "tower" of height 2

$$
\begin{gathered}
\Gamma_{m, n}(A)=1, \text { if } \sum_{i=1}^{n} a_{i i}>m \\
0, \text { otherwise }
\end{gathered}
$$

$$
\begin{aligned}
\Gamma_{m}(A) & =\lim _{n \rightarrow \infty} \Gamma_{m, n}(A) \\
\Gamma(A) & =\lim _{m \rightarrow \infty} \Gamma_{m}(A)
\end{aligned}
$$

Again, answer is "yes", when $\Gamma(A)=1$

## How to get the answers

$1 \in \sigma_{\text {ess }}(A)$

- this needs "two limits", i.e. a "tower" of height 2

$$
\begin{gathered}
\Gamma_{m, n}(A)=1, \text { if } \sum_{i=1}^{n} a_{i i}>m \\
0, \text { otherwise }
\end{gathered}
$$

$$
\begin{aligned}
\Gamma_{m}(A) & =\lim _{n \rightarrow \infty} \Gamma_{m, n}(A) \\
\Gamma(A) & =\lim _{m \rightarrow \infty} \Gamma_{m}(A)
\end{aligned}
$$

Again, answer is "yes", when $\Gamma(A)=1$

- With two quantifiers: $\forall m \exists n\left(\sum_{i=1}^{n} a_{i i}>m\right)$


## Another example

We define $A \in B\left(\ell_{2}(\mathbb{N})\right)$ using diagonal blocks:

$$
A=\bigoplus_{j=1}^{\infty} A_{k(j)}
$$

where $A_{k}$ are $k \times k$-matrices with number 1's in the corners, like

$$
A_{3}=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

and $k(j) \geq 2$ is some sequence. Thus, $A$ is algebraic, $\sigma(A)=\sigma_{\text {ess }}(A)=\{0,2\}$.

## Constructivism, computability

- The operator

$$
A=\bigoplus_{j=1}^{\infty} A_{k(j)}
$$

is effectively determined if one can determine the sequence $\{k(j)\}$ recursively.

## Constructivism, computability

- The operator

$$
A=\bigoplus_{j=1}^{\infty} A_{k(j)}
$$

is effectively determined if one can determine the sequence $\{k(j)\}$ recursively.

- But,


## Constructivism, computability

- The operator

$$
A=\bigoplus_{j=1}^{\infty} A_{k(j)}
$$

is effectively determined if one can determine the sequence $\{k(j)\}$ recursively.

- But,
- then one can "tailor" a computing machine which computes the spectrum in a finite number of operations


## Constructivism, computability 2

- The operator

$$
B=\bigoplus_{j=1}^{\infty} \beta_{j} A_{k(j)}
$$

is effectively determined if one can determine the sequence $\{k(j)\}$ recursively and the coefficient sequence $\left\{\beta_{j}\right\}$ is a computable sequence of reals.

## Constructivism, computability 2

- The operator

$$
B=\bigoplus_{j=1}^{\infty} \beta_{j} A_{k(j)}
$$

is effectively determined if one can determine the sequence $\{k(j)\}$ recursively and the coefficient sequence $\left\{\beta_{j}\right\}$ is a computable sequence of reals.

- Then,


## Constructivism, computability 2

- The operator

$$
B=\bigoplus_{j=1}^{\infty} \beta_{j} A_{k(j)}
$$

is effectively determined if one can determine the sequence $\{k(j)\}$ recursively and the coefficient sequence $\left\{\beta_{j}\right\}$ is a computable sequence of reals.

- Then,
- the spectrum is computable.


## Constructivism, computability 3

- In this theory effectively described bounded self-adjoint operators have computable spectra


## Constructivism, computability 3

- In this theory effectively described bounded self-adjoint operators have computable spectra
- but


## Constructivism, computability 3

- In this theory effectively described bounded self-adjoint operators have computable spectra
- but
- there exists an effectively determined bounded non-selfadjoint operator which has a noncomputable real as an eigenvalue.


## Computability; towers

We assume:

- algorithm given for a class of operators $A=\left(a_{i j}\right) \in B\left(\ell_{2}(\mathbb{N})\right)$


## Computability; towers

We assume:

- algorithm given for a class of operators $A=\left(a_{i j}\right) \in B\left(\ell_{2}(\mathbb{N})\right)$
- can be adaptive but only based on what it has already computed


## Computability; towers

We assume:

- algorithm given for a class of operators $A=\left(a_{i j}\right) \in B\left(\ell_{2}(\mathbb{N})\right)$
- can be adaptive but only based on what it has already computed
- input enters by reading one element $a_{i j}$ at a time


## Example

Then for each such fixed algorithm one can "tailor" a sequence $\{k(j)\}$ such that the algorithm keeps the number 1 as a candidate for the spectrum for the operator

$$
A=\bigoplus_{j=1}^{\infty} A_{k(j)}
$$

## Example continues

In fact, the algorithm would be made to see a finite matrix consisting of diagonal blocks $A_{k(j)}$ and a block having just one nonzero element

$$
\left(\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
\cdot & & & \\
\cdot & & & \\
\cdot & & &
\end{array}\right)
$$

Thus,

- just one limit would give wrong answer


## Example continues

In fact, the algorithm would be made to see a finite matrix consisting of diagonal blocks $A_{k(j)}$ and a block having just one nonzero element

$$
\left(\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
\cdot & & & \\
\cdot & & & \\
\cdot & & &
\end{array}\right)
$$

Thus,

- just one limit would give wrong answer
- but limits on two levels work


## Idea of a tower for the example

Let $A=A^{*} \in B\left(\ell_{2}(\mathbb{N})\right)$ and denote by $\gamma_{m, n}(t)$ the smallest singular value of the $n \times m$ - matrix $A_{n m}(t)$ representing

$$
P_{n}(A-t l)
$$

when restricted to the range of $P_{m}: P_{m} \ell_{2}(\mathbb{N})$.

## Example continues

Applied to

$$
A=\bigoplus_{j=1}^{\infty} A_{k(j)}
$$

the matrices $A_{n m}(t)$ shall consist of a finite number of square blocks and possibly one rectangle which for fixed $m$ and all large enough $n$ is of the form

$$
\left(\begin{array}{cccc}
1-t & 0 & 0 & \cdot \\
0 & -t & 0 & \cdot \\
\cdot & \cdot & -t & \cdot \\
\cdot & & & \\
\hline 1 & & & \\
0 & & & \\
\cdot & & &
\end{array}\right)
$$

## Proto for the tower at the Example

Since 1 appears, the rectangle has full rank at $t=1$.

- For example

$$
\left(\begin{array}{ccc}
1-t & 0 & \boxed{1} \\
0 & -t & 0
\end{array}\right)\left(\begin{array}{cc}
1-t & 0 \\
0 & -t \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
(1-t)^{2}+\boxed{1} & 0 \\
0 & t^{2}
\end{array}\right)
$$

## Proto for the tower at the Example

Since 1 appears, the rectangle has full rank at $t=1$.

- For example

$$
\left(\begin{array}{ccc}
1-t & 0 & \boxed{1} \\
0 & -t & 0
\end{array}\right)\left(\begin{array}{cc}
1-t & 0 \\
0 & -t \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
(1-t)^{2}+\boxed{1} & 0 \\
0 & t^{2}
\end{array}\right)
$$

- Denote $\Gamma_{m, n}(A)=\{t \in \mathbb{R}: \gamma(t)=0\}$. Then we have with two quantifiers

$$
\forall m \exists n_{m}\left\{n>n_{m} \Longrightarrow \Gamma_{m, n}(A)=\{0,2\}\right\}
$$

## Proto for the tower at the Example

Since 1 appears, the rectangle has full rank at $t=1$.

- For example

$$
\left(\begin{array}{ccc}
1-t & 0 & \boxed{1} \\
0 & -t & 0
\end{array}\right)\left(\begin{array}{cc}
1-t & 0 \\
0 & -t \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
(1-t)^{2}+\boxed{1} & 0 \\
0 & t^{2}
\end{array}\right)
$$

- Denote $\Gamma_{m, n}(A)=\{t \in \mathbb{R}: \gamma(t)=0\}$. Then we have with two quantifiers

$$
\forall m \exists n_{m}\left\{n>n_{m} \Longrightarrow \Gamma_{m, n}(A)=\{0,2\}\right\}
$$

- In particular, we may set $\Gamma_{m}(A)=\lim _{n \rightarrow \infty} \Gamma_{m, n}(A)$ so that


## Proto for the tower at the Example

Since 1 appears, the rectangle has full rank at $t=1$.

- For example

$$
\left(\begin{array}{ccc}
1-t & 0 & 1 \\
0 & -t & 0
\end{array}\right)\left(\begin{array}{cc}
1-t & 0 \\
0 & -t \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
(1-t)^{2}+\boxed{1} & 0 \\
0 & t^{2}
\end{array}\right)
$$

- Denote $\Gamma_{m, n}(A)=\{t \in \mathbb{R}: \gamma(t)=0\}$. Then we have with two quantifiers

$$
\forall m \exists n_{m}\left\{n>n_{m} \Longrightarrow \Gamma_{m, n}(A)=\{0,2\}\right\}
$$

- In particular, we may set $\Gamma_{m}(A)=\lim _{n \rightarrow \infty} \Gamma_{m, n}(A)$ so that
- $\Gamma(A)=\lim _{m \rightarrow \infty} \Gamma_{m}(A)=\{0,2\}=\sigma(A)$.


## From Proto to a true tower one needs to have

- approximate version of $\gamma_{m, n}$ which can be performed with a finite number of arithmetic operations and radicals to give $\Gamma_{m, n}(A)$


## From Proto to a true tower one needs to have

- approximate version of $\gamma_{m, n}$ which can be performed with a finite number of arithmetic operations and radicals to give $\Gamma_{m, n}(A)$
- suitable assumptions (e.g. $A$ bounded and self-adjoint ) that guarantee the existence of the limits

$$
\Gamma_{m}(A)=\lim _{n \rightarrow \infty} \Gamma_{m, n}(A)
$$

## From Proto to a true tower one needs to have

- approximate version of $\gamma_{m, n}$ which can be performed with a finite number of arithmetic operations and radicals to give $\Gamma_{m, n}(A)$
- suitable assumptions (e.g. $A$ bounded and self-adjoint ) that guarantee the existence of the limits

$$
\Gamma_{m}(A)=\lim _{n \rightarrow \infty} \Gamma_{m, n}(A)
$$

- and those of

$$
\Gamma(A)=\lim _{m \rightarrow \infty} \Gamma_{m}(A)=\sigma(A)
$$

## From Proto to a true tower one needs to have

- approximate version of $\gamma_{m, n}$ which can be performed with a finite number of arithmetic operations and radicals to give $\Gamma_{m, n}(A)$
- suitable assumptions (e.g. $A$ bounded and self-adjoint ) that guarantee the existence of the limits

$$
\Gamma_{m}(A)=\lim _{n \rightarrow \infty} \Gamma_{m, n}(A)
$$

- and those of

$$
\Gamma(A)=\lim _{m \rightarrow \infty} \Gamma_{m}(A)=\sigma(A)
$$

- Limits in the Hausdorff distance between compact sets in $\mathbb{C}$

$$
\operatorname{dist}_{H}(K, M)=\max \left\{\sup _{z \in K} \inf _{w \in M}|z-w|, \sup _{w \in M} \inf _{z \in K}|z-w|\right\}
$$

## Definition of Tower

## PROBLEM

$\Omega$ : primary set, e.g $\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$
$\Lambda$ : evaluation set, e.g. $f_{i j}: A \mapsto<A e_{i}, e_{j}>$ for $A \in \mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$ $\mathcal{M}$ : metric space
三: problem function $\Omega \rightarrow \mathcal{M}$, such as $\sigma(A)$ for $A \in \mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$

## TOWER

$\equiv(A)=\lim _{n_{k} \rightarrow \infty} \Gamma_{n_{k}}(A)$
$\Gamma_{n_{k}}(A):=\lim _{n_{k-1} \rightarrow \infty} \Gamma_{n_{k}, n_{k-1}}(A)$
.....
.....
$\Gamma_{n_{k},,, n_{2}}(A):=\lim _{n_{1} \rightarrow \infty} \Gamma_{n_{k},,, n_{2}, n_{1}}(A)$

## Definition of SCl

$k=$ height of tower
$\mathrm{SCI}=\min k$ of towers solving the problem for arbitrary $A \in \Omega$

## $\mathrm{SCI}=3$ for bounded operators, $\Xi=\sigma(A)$

- a tower of height 3 works for all $A \in \mathcal{B}\left(\ell_{2}(\mathbb{N})\right)$


## $\mathrm{SCI}=3$ for bounded operators, $\Xi=\sigma(A)$

- a tower of height 3 works for all $A \in \mathcal{B}\left(\ell_{2}(\mathbb{N})\right)$
- we have a construction which shows that three limits are needed in general


## $\mathrm{SCI}=2$, subsets of $\mathcal{B}\left(\ell_{2}(\mathbb{N})\right)$, for $\sigma(A)$

- Self-adjoint operators $A^{*}=A$, and further


## $\mathrm{SCI}=2$, subsets of $\mathcal{B}\left(\ell_{2}(\mathbb{N})\right)$, for $\sigma(A)$

- Self-adjoint operators $A^{*}=A$, and further
- $A$ is similar to normal: $A=T N T^{-1}$ where $N$ is normal with a known constant $C$ such that $\|T\|\left\|T^{-1}\right\| \leq C$ (but the decomposition is not known), so that

$$
\left\|(\lambda-A)^{-1}\right\| \leq \frac{C}{\operatorname{dist}(\lambda, \sigma(\mathrm{~A}))}
$$

## $\mathrm{SCI}=2$, subsets of $\mathcal{B}\left(\ell_{2}(\mathbb{N})\right)$, for $\sigma(A)$

- Self-adjoint operators $A^{*}=A$, and further
- $A$ is similar to normal: $A=T N T^{-1}$ where $N$ is normal with a known constant $C$ such that $\|T\|\left\|T^{-1}\right\| \leq C$ (but the decomposition is not known), so that

$$
\left\|(\lambda-A)^{-1}\right\| \leq \frac{C}{\operatorname{dist}(\lambda, \sigma(\mathrm{~A}))}
$$

- there is a known function $g$ such that for $\lambda \notin \sigma(A)$

$$
\left\|(\lambda-A)^{-1}\right\| \leq 1 / g(\operatorname{dist}(\lambda, \sigma(\mathrm{~A})))
$$

## Dispersion known, again lowers the index

Dispersion: there is a known function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
\max \left\{\left\|\left(I-P_{f(n)}\right) A P_{n}\right\|,\left\|P_{n} A\left(I-P_{f(n)}\right)\right\|\right\} \rightarrow 0, \text { as } n \rightarrow \infty
$$

For example, if bandwidth $=d$ one has $f(n)=n+d$.
If $f$ is known for $A$, then $S C I=2$
and if both resolvent control $g$ and dispersion function $f$ are known, then $\mathrm{SCl}=1$.

## $\mathrm{SCI}=1$ for $\sigma(A)$ with $A \in \mathcal{B}\left(\ell_{2}(\mathbb{N})\right)$ compact

So, this is the situation in which computing eigenvalues of finite sections $A_{n}=\left(a_{i j}\right)_{i, j \leq n}$ and studing their limit behavior is ok.

## Computing the essential spectrum $\sigma_{\text {ess }}(A)$

Again $A \in \mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$

- If we only know that $A$ is bounded, then $\mathrm{SCI}=3$.


## Computing the essential spectrum $\sigma_{\text {ess }}(A)$

Again $A \in \mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$

- If we only know that $A$ is bounded, then $\mathrm{SCl}=3$.
- If additionally both $f$ and $g$ are known, then $\mathrm{SCI}=2$


## Computing the essential spectrum $\sigma_{\text {ess }}(A)$

Again $A \in \mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$

- If we only know that $A$ is bounded, then $\mathrm{SCl}=3$.
- If additionally both $f$ and $g$ are known, then $\mathrm{SCl}=2$
- if we know that $A$ is compact, then $\mathrm{SCI}=0$, since $\sigma_{\text {ess }}(A)=\{0\}$.


## Schrödinger as an example

Let

$$
H=-\Delta+V \text { where } V: \mathbb{R}^{d} \rightarrow \mathbb{C}
$$

- If $V$ is bounded and in a certain total variation space. The evaluation functions are pointwise evaluations $x \mapsto V(x)$. Then $\mathrm{SCl} \leq 2$.


## Schrödinger as an example

Let

$$
H=-\Delta+V \text { where } V: \mathbb{R}^{d} \rightarrow \mathbb{C}
$$

- If $V$ is bounded and in a certain total variation space. The evaluation functions are pointwise evaluations $x \mapsto V(x)$. Then $\mathrm{SCl} \leq 2$.
- If $V$ is continuous, $|V(x)| \rightarrow \infty$ as $\|x\| \rightarrow \infty$ and its values are in a sector with opening less than $\pi$ and including the positive real axis, then the resolvent of $H$ is compact and $\mathrm{SCl}=1$.


## References

## Arithmetic hierarchy <br> J. Knight. The Kleene-Mostowski hierarchy and the <br> Davis-Mostowski hierarchy. In Andrzej Mostowski and Foundational Studies. IOS Press, 2008.

J. R. Shoenfield. On degrees of unsolvability. Ann. of Math. (2), 69:644653, 1959.

Baire functions
Baire, R. (1905), Leons sur les fonctions discontinues, Professees au College de France, Gauthier-Villars

## References

## Curtis McMullen

S. Smale. The work of Curtis T McMullen. In Proceedings of the International Congress of Mathematicians I, Berlin, Doc. Math. J. DMV, pages 127132. 1998.
BSS-model and Julia sets
L. Blum, F. Cucker, M. Shub, S. Smale, and R. M. Karp.

Complexity and real computation. Springer, New York, Berlin, Heidelberg, 1998.

Computability in Analysis
Marian B.Pour-el, J.lan Richards, Computability in Analysis and Physics, Springer 1989
[Second Main Theorem, p 128 and Theorem 5 (Noncomputable eigenvalues, p 132)]

