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The time-dependent density functional theory (TDDFT) of electron- structure calcu-
lations is an exact formulation of the time-dependent quantum mechanics in which
the basic variable is the electron density (n(r, t)) instead of the many-body wave
function [1]. All the complexity of the many-body interactions between the electrons
is buried in the so-called exchange-correlation potential vxc for which reasonably well
working approximations exist. The strength of the TDDFT is that in contrast to
the usual time-independent DFT also excited states of the electron system can be
treated. In practice, one ends up with solving a set one-body equations, the so-called
Kohn-Sham (KS) equations.

If the time-dependent external perturbation on the electron system is strong, for
example, it is a femtosecond laser pulse, the true time evolution of the system has
to be calculated by solving the time-dependent KS Schrödinger equation

i∂tφi = Ĥφi, (1)

where the Hamiltonian

Ĥ = −
∇2

2
+ vext(r, t) +

∫
dr′

n(r′, t)

|r − r′|
+ vxc[n(r, t)] (2)

is time-dependent. The electron density depends on the occupied states as

n(r, t) =
occ∑
i

|φi(r, t)|
2 (3)

making the problem non-linear. Within this formalism also the time-dependence of
the ionic configuration can be described.

In this group work we are interested mainly in the mathematical methods to solve
the time propagation of the wave function according to Eq. (1). Several schemes
have been proposed and tested [2]. The task can be separated to two parts: (i) the
propagation of the wave function when the Hamiltonian is time-independent and
(ii) the approximation of the time-evolution operator Û(t, 0) when the Hamilto-
nian depends on time. The first task requires the evaluation exp(−iδtĤ)φ(0). The
exponential exp(−iδtĤ) of the matrix corresponding to the Hamiltonian can not
be calculated directly because the typical size of the matrix is of the order of 105

or more. Therefore iterative methods yielding directly exp(−iδtĤ)φ(0) are used.
The methods include the polynomial expansions (e.g. the Chebyshev propagator
[3]), projection in Krylov subspaces (Lanczos propagator), and the spit-operator
techniques (the usual second order scheme and the the fourth order Suzuki-Trotter
propagator [4]). The latter task (ii) is encountered always in the TDDFT calcu-
lations. The approximations include the midpoint rule and the so-called Magnus
expansions.



Many of the mathematical methods mentioned above are implemented in the TDDFT
code OCTOPUS [5]. We can eventually run some test cases and demonstrations dur-
ing the workshop. However, the use of the above time propagation methods is not
restricted to TDFT. They can be used even in the context of the propagation of
many-body wave functions.
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SOLVING OF GREEN’S FUNCTIONS TO THE QUANTUM TRANSPORT

One way to model transport properties of the nanostructures is to use the Green’s func-
tion method combined with the density-functional theory. The method allows so-called
open boundary conditions between the nanostructure and the lead, making the finite-size
effects small. The problem of the Green’s function method is that it is computationally
demanding.

In order to calculate the self-consistent electron density we need to solve single-particle
Green’s retarded function from the equation

(
ω +

1

2
∇2 − Veff(r, n(r))

)
Gr(r, r′; ω) = δ(r− r′). (1)

In the equilibrium the Fermi levels in the right and left leads are equal (fL(ω) = fr(ω))
and the Green’s lesser function is calculated from

G<(r, r′; ω) = 2fL/R(ω) Gr(r, r′; ω). (2)

The electron density is calculated by integrating over the electron energy,ω

n(r) =
−1

2π

∫ ∞

−∞
Im(G<(r, r; ω)) dω. (3)

This integration path is moved to the complex plane in order to avoid sharp peaks in the
density of states. BecauseVeff depends onn(r) the solution has to be calculated iteratively.

In Eq. (2) we are only interested in the Green’s function terms withr = r′, Gr(r, r). Is
there a way of calculate only this part ofGr? Or some kind of approximation? In the
discrete formGr is

Gr(r, r′; ω) ≈
N∑

i,j=1

gij(ω) φi(r) φj(r
′), (4)

Where we see that the interesting elements of the coefficient matrixgij are those whose
basis functionsφi(r) andφj(r

′) are overlapping.

Finally we write Eq. (1) in the variational form so that the open boundary conditions are
visible. I.e.,

∫

Ω

{
−∇v(r) · 1

2
∇Gr(r, r′; ω) + v(r)

[
ω − Veff (r)

]
Gr(r, r′; ω)

}
dr

− 〈Σ̂LGr, v〉 − 〈Σ̂RGr, v〉 = v(r′),
(5)

〈Σ̂L/RGr, v〉 =∫

∂ΩL/R

∫

∂ΩL/R

1

4
Gr(r′L/R, r′; ω)

∂2ge(rL′/R′ , rL/R; ω)

∂nL/R∂nL′/R′
v(rL/R) drL′/R′ drL/R.

(6)

wherev(r) is a sufficiently smooth function.ge is the Green’s function in the extarnal
region (leads) and it have zero boundary condition in the boundary∂ΩL/R.


