Inverse problems for elliptic equations

Matti Lassas

HELSINKI UNIVERSITY OF TECHNOLOGY
Institute of Mathematics

Finnish Centre of Excellence
in Inverse Problems Research

1 Inverse problem in applications

Calderón's inverse problem: Measure electric resistance between all boundary points of a body. Can the conductivity be determined in the body?
Inverse problem for the wave equation: Let us send waves from the boundary of a body and measure the waves at the boundary. Can the wave speed be determined in the body?
Question: What happens if boundary is not well known?

Figure: University of Kuopio.

2 Inverse conductivity problem

Consider a body $\Omega \subset \mathbb{R}^{n}$. An electric potential $u(x)$ causes the current

$$
J(x)=\sigma(x) \nabla u(x)
$$

Here the conductivity $\sigma(x)$ can be an isotropic, that is, scalar, or an anisotropic, that is, matrix valued function. If the current has no sources inside the body, we have

$$
\nabla \cdot \sigma(x) \nabla u(x)=0 .
$$

Conductivity equation

$$
\begin{aligned}
& \nabla \cdot \sigma(x) \nabla u(x)=0 \quad \text { in } \Omega, \\
& \left.u\right|_{\partial \Omega}=f .
\end{aligned}
$$

Calderón's inverse problem: Do the measurements made on the boundary determine the conductivity, that is, does $\partial \Omega$ and the Dirichlet-to-Neumann map Λ_{σ},

$$
\Lambda_{\sigma}(f)=\left.\nu \cdot \sigma \nabla u\right|_{\partial \Omega}
$$

determine the conductivity $\sigma(x)$ in Ω ?

Some previous results for inverse conductivity problem:

- Calderón 1980: Solution of the linearized inverse problem.
- Sylvester-Uhlmann 1987: Uniqueness of inverse problem in $\mathbb{R}^{n}, n \geq 3$
- Nachman 1996: Calderón's problem in \mathbb{R}^{2}
- Astala-Päivärinta 2003: Uniqueness of Calderón's problem in \mathbb{R}^{2} with L^{∞}-conductivity
- Sylvester 1990: Inverse problem for an anisotropic conductivity near constant in \mathbb{R}^{2}.
- Siltanen-Mueller-Isaacson 2000: Explicit numerical solution for the 2D-inverse problem.
- Kenig-Sjöstrand-Uhlmann 2006: Reconstructions with limited data.

What happens when the following standard assumptions are not valid?

- The boundary $\partial \Omega$ is known.
- Topology of Ω is known.
- Conductivity satisfies

$$
C_{0} \leq \gamma(x) \leq C_{1}, \quad C_{0}, C_{1}>0 .
$$

3 Electrical Impedance Tomography with an unknown boundary

Practical task: In medical imaging one often wants to find an image of the conductivity, when the domain Ω is poorly known.

Figure: Rensselaer Polytechnic Institute.

Complete electrode model. Let $e_{j} \subset \partial \Omega, j=1, \ldots, J$ be disjoint open sets (electrodes) and

$$
\begin{aligned}
& \nabla \cdot \gamma \nabla v=0 \quad \text { in } \Omega, \\
& z_{j} \nu \cdot \gamma \nabla v+\left.v\right|_{e_{j}}=V_{j}, \\
& \left.\nu \cdot \gamma \nabla v\right|_{\partial \Omega \backslash \cup_{j=1}^{J} e_{j}}=0 .
\end{aligned}
$$

Here z_{j} are the contact impedance of electrodes and $V_{j} \in \mathbb{R}$. The boundary measurements are the currents

$$
I_{j}=\frac{1}{\left|e_{j}\right|} \int_{e_{j}} \nu \cdot \gamma \nabla v(x) d s(x), \quad j=1, \ldots, J .
$$

The matrix $E:\left(V_{j}\right)_{j=1}^{J} \rightarrow\left(I_{j}\right)_{j=1}^{J}$ is the electrode measurement matrix.

Mathematical formulation of EIT with unknown boundary:

1. Assume that γ is an isotropic conductivity in Ω.
2. Assume that we are given a set Ω_{m} that is our best guess for Ω. Let $F_{m}: \Omega \rightarrow \Omega_{m}$ be a map corresponding to the modeling error.
3. The given data is the electrode measurement matrix $E \in \mathbb{R}^{J \times J}$.

Fact: The deformation $F_{m}: \Omega \rightarrow \Omega_{m}$ can change an isotropic conductivity to an anisotropic conductivity.

4 Anisotropic inverse problems

- Non-uniqueness.
- Invariant formulation. Uniqueness and non-uniqueness results
- Applications to Euclidean space: non-uniqueness results.

Deformation of the domain. Assume that

$\gamma(x)=\left(\gamma^{j k}(x)\right) \in \mathbb{R}^{n \times n}$,

$$
\nabla \cdot \gamma \nabla u=0 \quad \text { in } \Omega .
$$

Let F be diffeomorphism

$$
F: \Omega \rightarrow \Omega,\left.\quad F\right|_{\partial \Omega}=I d .
$$

Then

$$
\nabla \cdot \widetilde{\gamma} \nabla v=0 \quad \text { in } \Omega,
$$

where

$$
v(x)=u\left(F^{-1}(x)\right), \quad \widetilde{\gamma}(y)=F_{*} \gamma(y)=\left.\frac{(D F) \cdot \gamma \cdot(D F)^{t}}{\operatorname{det}(D F)}\right|_{x=F^{-1}(y)}
$$

Then $\Lambda_{\tilde{\gamma}}=\Lambda_{\gamma}$.

Invariant formulation.

Assume $n \geq 3$. Consider Ω as a Riemannian manifold with

$$
g^{j k}(x)=(\operatorname{det} \gamma(x))^{-1 /(n-2)} \gamma^{j k}(x) .
$$

Then conductivity equation is the Laplace-Beltrami equation

$$
\begin{aligned}
\Delta_{g} u & =0 \quad \text { in } \Omega, \quad \text { where } \\
\Delta_{g} u & =\sum_{j, k=1}^{n} g^{-1 / 2} \frac{\partial}{\partial x^{j}}\left(g^{1 / 2} g^{j k} \frac{\partial}{\partial x^{k}} u\right)
\end{aligned}
$$

and $g=\operatorname{det}\left(g_{i j}\right),\left[g_{i j}\right]=\left[g^{j k}\right]^{-1}$.
Inverse problem: Can we determine the Riemannian manifold (M, g) by knowing ∂M and

$$
\Lambda_{M, g}:\left.\left.u\right|_{\partial M} \mapsto \partial_{\nu} u\right|_{\partial M} .
$$

Generally, solutions of anisotropic inverse problems are not unique. However, if we have enough a priori knowledge of the form of the conductivity, we can sometimes solve the inverse problem uniquely.

Uniqueness results

Theorem 1 (L.-Taylor-UhImann 2003) Assume that (M, g) is a complete n-dimensional real-analytic Riemannian manifold and $n \geq 3$. Then ∂M and

$$
\Lambda_{M, g}:\left.\left.u\right|_{\partial M} \mapsto \partial_{\nu} u\right|_{\partial M}
$$

determine (M, g) uniquely.
Theorem 2 (L.-UhImann 2001) Assume that (M, g) is a compact 2-dimensional Riemannian manifold. Then ∂M and

$$
\Lambda_{M, g}:\left.\left.u\right|_{\partial M} \mapsto \partial_{\nu} u\right|_{\partial M}
$$

determine conformal class

$$
\left\{(M, \alpha g): \alpha \in C^{\infty}(M), \alpha(x)>0\right\}
$$

uniquely.

5 Anisotropic problem in $\Omega \subset \mathbb{R}^{2}$.
Isotropic case:
Theorem 3 (Astala-Päivärinta 2003) Let $\Omega \subset \mathbb{R}^{2}$ be a simply connected bounded domain and $\sigma \in L^{\infty}\left(\Omega ; \mathbb{R}_{+}\right)$an isotropic conductivity function. Then the Dirichlet-toNeumann map Λ_{σ} for the equation

$$
\nabla \cdot \sigma \nabla u=0
$$

determines uniquely the conductivity σ. Next we denote $\sigma \in \Sigma(\Omega)$ if $\sigma(x) \in \mathbb{R}^{2 \times 2}$ is symmetric, measurable, and

$$
C_{1} I \leq \sigma(x) \leq C_{2} I, \quad \text { for a.e. } x \in \Omega
$$

with some $C_{1}, C_{2}>0$.

Sylvester 1990, Sun-Uhlmann 2003, Astala-L.-Päivärinta 2005
Theorem 4 Let $\Omega \subset \mathbb{R}^{2}$ be a simply connected bounded domain and $\sigma_{1}, \sigma_{2} \in L^{\infty}\left(\Omega ; \mathbb{R}^{2 \times 2}\right)$ conductivity tensors. If $\Lambda_{\sigma_{1}}=\Lambda_{\sigma_{2}}$ then there is a $W^{1,2}$-diffeomorphism

$$
F: \Omega \rightarrow \Omega,\left.\quad F\right|_{\partial \Omega}=I d
$$

such that

$$
\sigma_{1}=F_{*} \sigma_{2}
$$

Recall that if $F: \Omega \rightarrow \widetilde{\Omega}$ is a diffeomorphism, it transforms the conductivity σ in Ω to $\widetilde{\sigma}=F_{*} \sigma$ in $\widetilde{\Omega}$,

$$
\widetilde{\sigma}(x)=\left.\frac{D F(y) \sigma(y)(D F(y))^{t}}{|\operatorname{det} D F(y)|}\right|_{y=F^{-1}(x)}
$$

Proof. Identify $\mathbb{R}^{2}=\mathbb{C}$. Let σ be an anisotropic conductivity, $\sigma(x)=I$ for $x \in \mathbb{C} \backslash \Omega$. There is $F: \mathbb{C} \rightarrow \mathbb{C}$ such that

$$
\gamma=F_{*} \sigma
$$

is isotropic. There are $w(x, k)$ such that

$$
\nabla \cdot \gamma \nabla w=0 \text { in } \mathbb{C}
$$

and

$$
\lim _{x \rightarrow \infty} w(x, k) e^{-i k x}=1, \quad \lim _{k \rightarrow \infty} \frac{1}{k} \log \left(w(x, k) e^{-i k x}\right)=0 .
$$

Let $u(x, k)=w\left(F^{-1}(x), k\right)$. The Λ_{σ} determines $u(x, k)$ for $x \in \mathbb{C} \backslash \Omega$ and

$$
F^{-1}(x)=\lim _{k \rightarrow \infty} \frac{\log u(x, k)}{i k}, \quad x \in \mathbb{C} \backslash \Omega .
$$

Corollaries:

1. Inverse problem in the half space.

Let $\sigma \in C^{\infty}\left(\mathbb{R}_{-}^{2}\right)$ satisfy $0<C_{1} \leq \sigma \leq C_{2}$ and

$$
\begin{align*}
& \nabla \cdot \sigma \nabla u=0 \quad \text { in } \mathbb{R}_{-}^{2}=\left\{\left(x^{1}, x^{2}\right) \mid x^{2}<0\right\}, \tag{1}\\
& \left.u\right|_{\partial \mathbb{R}_{-}^{2}}=f, \quad u \in L^{\infty}\left(\mathbb{R}_{-}^{2}\right) . \tag{2}
\end{align*}
$$

Notice that here the radiation condition at infinity (2) is quite simple. Let

$$
\Lambda_{\sigma}: H_{c o m p}^{1 / 2}\left(\partial \mathbb{R}_{-}^{2}\right) \rightarrow H^{-1 / 2}\left(\partial \mathbb{R}_{-}^{2}\right),\left.\quad f \mapsto \nu \cdot \sigma \nabla u\right|_{\partial \mathbb{R}_{-}^{2}} .
$$

Corollary 5.1 (Astala-L.-Päivärinta 2005) The map Λ_{σ} determines the equivalence class

$$
\begin{aligned}
E_{\sigma}=\left\{\sigma_{1} \in \Sigma\left(\mathbb{R}_{-}^{2}\right) \mid\right. & \sigma_{1}=F_{*} \sigma, F: \mathbb{R}_{-}^{2} \rightarrow \mathbb{R}_{-}^{2} \text { is } W^{1,2} \text {-diffeo, } \\
& \left.\left.F\right|_{\partial \mathbb{R}_{-}^{2}}=I\right\} .
\end{aligned}
$$

Moreover, each class E_{σ} contains at most one isotropic conductivity.
Thus, if σ is known to be isotropic, it is determined uniquely by Λ_{σ}.

Open problem: Inverse problem in \mathbb{R}_{+}^{3}.
2. Inverse problem in the exterior domain. Let $S=\mathbb{R}^{2} \backslash \bar{D}$, where D is a bounded Jordan domain. Let

$$
\begin{aligned}
\nabla \cdot \sigma \nabla u & =0 \quad \text { in } S, \\
\left.u\right|_{\partial S} & =f \in H^{1 / 2}(\partial S), \\
u & \in L^{\infty}(S) .
\end{aligned}
$$

We define

$$
\Lambda_{\sigma}: H^{1 / 2}(\partial S) \rightarrow H^{-1 / 2}(\partial S),\left.\quad f \mapsto \nu \cdot \sigma \nabla u\right|_{\partial S} .
$$

Let $S \subset \mathbb{R}^{2}, \mathbb{R}^{2} \backslash S$ compact, and denote $\bar{S}=S \cup\{\infty\}$. Corollary 5.2 (Astala-L.-Päivärinta 2005) Let $\sigma \in \Sigma(S)$. Then the map Λ_{σ} determines the equivalence class

$$
\begin{aligned}
E_{\sigma, S}=\left\{\sigma_{1} \in \Sigma(S) \quad \mid\right. & \sigma_{1}=F_{*} \sigma, F: \bar{S} \rightarrow \bar{S} \text { is a } W^{1,2} \text {-diffeo, } \\
& \left.\left.F\right|_{\partial S}=I\right\} .
\end{aligned}
$$

Moreover, if σ is known to be isotropic, it is determined uniquely by Λ_{σ}.
The group of diffeomorphisms preserving the data do not $\operatorname{map} S \rightarrow S$.

6 Unknown boundary problem in \mathbb{R}^{2}.

1. Assume that γ is an isotropic conductivity in Ω.
2. Assume that we are given a set Ω_{m} that is our best guess for Ω. Let $F_{m}: \Omega \rightarrow \Omega_{m}$ be a map corresponding to the modeling error.
3. We are given the electrode measurement matrix $E \in \mathbb{R}^{J \times J}$.

Complete electrode model Let $e_{j} \subset \partial \Omega, j=1, \ldots, J$ be disjoint open sets (electrodes) and

$$
\begin{aligned}
& \nabla \cdot \gamma \nabla v=0 \quad \text { in } \Omega, \\
& z_{j} \nu \cdot \gamma \nabla v+\left.v\right|_{e_{j}}=V_{j}, \\
& \left.\nu \cdot \gamma \nabla v\right|_{\partial \Omega \backslash \cup_{j=1}^{J} e_{j}}=0,
\end{aligned}
$$

where z_{j} are the contact impedances and V_{j} are the potentials on electrode e_{j}. Measure currents

$$
I_{j}=\frac{1}{\left|e_{j}\right|} \int_{e_{j}} \nu \cdot \gamma \nabla v(x) d s(x), \quad j=1, \ldots, J
$$

This give us electrode measurements matrix $E: \mathbb{R}^{J} \rightarrow \mathbb{R}^{J}$, $E\left(V_{1}, \ldots, V_{J}\right)=\left(I_{1}, \ldots, I_{J}\right)$.

Continuous model. The electrical potential u satisfy

$$
\begin{aligned}
& \nabla \cdot \gamma \nabla u=0, \quad x \in \Omega \\
& \left.(z \nu \cdot \gamma \nabla u+u)\right|_{\partial \Omega}=h
\end{aligned}
$$

where γ is an isotropic conductivity and z is the contact impedance on the boundary.
Boundary measurements are modeled by the Robin-to-Neumann map $R=R_{\gamma, z}$ given by

$$
R_{\gamma, z}:\left.h \mapsto \nu \cdot \gamma \nabla u\right|_{\partial \Omega}
$$

The power needed to maintain the given voltage $\left(V_{1}, \ldots, V_{J}\right)$ or h at boundary are given by

$$
p(V)=E[V, V], \quad p(h)=R[h, h],
$$

where we have quadratic forms

$$
E[V, \widetilde{V}]=\sum_{j=1}^{J}(E V)_{j} \widetilde{V}_{j}\left|e_{j}\right|, \quad R[h, \widetilde{h}]=\int_{\partial \Omega}(R h) \widetilde{h} d s
$$

The form $E[\cdot, \cdot]$ can be viewed as a discretization of $R[\cdot, \cdot]$.

Let $F_{m}: \Omega \rightarrow \Omega_{m}$ be deformation of the domain and $f_{m}=\left.F_{m}\right|_{\partial \Omega}$. On $\partial \Omega_{m}$ we define

$$
\widetilde{R}=\left(f_{m}\right)_{*} R_{\gamma, z} .
$$

Then the quadratic form R corresponding to the power needed to have the given voltage on the boundary satisfies

$$
\widetilde{R}[h, h]=R\left[h \circ f_{m}, h \circ f_{m}\right], \quad h \in H^{-1 / 2}\left(\partial \Omega_{m}\right) .
$$

Thus the electrode measurement matrix on $\partial \Omega_{m}$ corresponds in the continuous model to the map

$$
\widetilde{R}=\left(f_{m}\right)_{*} R_{\gamma, z} .
$$

Fact: $\widetilde{R}=R_{\widetilde{\gamma}, \tilde{z}}$ where

$$
\widetilde{\gamma}=\left(F_{m}\right)_{*} \gamma, \quad \widetilde{z}=\left(F_{m}\right)_{*} z
$$

Thus the boundary map \widetilde{R} on $\partial \Omega_{m}$ is equal to $R_{\widetilde{\gamma}, \tilde{z}}$ that corresponds to boundary measurements made with an anisotropic conductivity $\widetilde{\gamma}=\left(F_{m}\right)_{*} \gamma$ in Ω_{m} and $\widetilde{z}=z \circ f_{m}^{-1}$.

Assume we are given Ω_{m} and \widetilde{R}. Our aim is to find a conductivity tensor in Ω_{m} that is as close as possible to an isotropic conductivity and has the Robin-to-Neumann map \widetilde{R}.

Definition 6.1 Let $\gamma=\gamma^{j k}(x)$ be a matrix valued conductivity. Let $\lambda_{1}(x)$ and $\lambda_{2}(x), \lambda_{1}(x) \geq \lambda_{2}(x)$ be its eigenvalues. Anisotropy of γ at x is

$$
K(\gamma, x)=\left(\frac{\lambda_{1}(x)-\lambda_{2}(x)}{\lambda_{1}(x)+\lambda_{2}(x)}\right)^{1 / 2} .
$$

The maximal anisotropy of γ in Ω is

$$
K(\gamma)=\sup _{x \in \Omega} K(\gamma, x) .
$$

The anisotropy function $K(\hat{\gamma}, x)$ is constant for

$$
\widehat{\gamma}(x)=\eta(x) R_{\theta(x)}\left(\begin{array}{cc}
\lambda^{1 / 2} & 0 \\
0 & \lambda^{-1 / 2}
\end{array}\right) R_{\theta(x)}^{-1}
$$

where

$$
\begin{aligned}
& \lambda \geq 1, \\
& \eta(x) \in \mathbb{R}_{+}, \\
& R_{\theta}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) .
\end{aligned}
$$

We say that $\widehat{\gamma}=\widehat{\gamma}_{\lambda, \theta, \eta}$ is a uniformly anisotropic conductivity.

Theorem 6.2 (Kolehmainen-L.-Ola 2005) Let $\Omega \subset \mathbb{R}^{2}$ be a

 bounded, simply connected $C^{1, \alpha}$-domain, $\gamma \in L^{\infty}(\bar{\Omega}, \mathbb{R})$ be isotropic conductivity, and $z \in C^{1}(\partial \Omega)$ be the contact impedance.Let Ω_{m} be a model domain and $f_{m}: \partial \Omega \rightarrow \partial \Omega_{m}$ be a $C^{1, \alpha}$-diffeomorphism.
Assume that we know $\partial \Omega_{m}$ and $\widetilde{R}=\left(f_{m}\right)_{*} R_{\gamma, z}$. These data determine $\widetilde{z}=z \circ f_{m}^{-1}$ and an anisotropic conductivity σ on Ω_{m} such that

1. $R_{\sigma, \widetilde{z}}=\widetilde{R}$.
2. If σ_{1} satisfies $R_{\sigma_{1}, \tilde{z}}=\widetilde{R}$ then $K\left(\sigma_{1}\right) \geq K(\sigma)$.

Moreover, the conductivity σ is uniformly anisotropic.

Algorithm:

In following, we assume that $z=0$ and denote $R_{\sigma}=R_{\sigma, z}$. The conductivity $\sigma=\widehat{\gamma}_{\lambda, \eta, \theta}$ can obtained by solving the minimization problem

$$
\min _{(\lambda, \theta, \eta) \in S} \lambda, \quad \text { where } S=\left\{(\lambda, \theta, \eta): R_{\widehat{\gamma}(\lambda, \theta, \eta)}=\widetilde{R}\right\} .
$$

In implementation of the algorithm we approximate this by

$$
\min _{(\lambda, \theta, \eta)}\left\|R_{\widehat{\gamma}(\lambda, \theta, \eta)}-\widetilde{R}\right\|^{2}+\varepsilon_{1}|\lambda-1|^{2}+\varepsilon_{2}\left(\|\theta\|^{2}+\|\eta\|^{2}\right) .
$$

Let $f_{m}: \partial \Omega \rightarrow \partial \Omega_{m}$ be the boundary modeling map and σ be the conductivity with the smallest possible anisotropy such that $R_{\sigma}=\widetilde{R}$. Then
Corollary 6.3 Then there is a unique map

$$
F_{e}: \Omega \rightarrow \Omega_{m},\left.\quad F_{e}\right|_{\partial \Omega}=f_{m}
$$

depending only on $f_{m}: \partial \Omega \rightarrow \partial \Omega_{m}$ such that

$$
\operatorname{det}(\sigma(x))^{1 / 2}=\gamma\left(F_{e}^{-1}(x)\right) .
$$

Ω_{m}

Idea of the proof. If $F: \Omega \rightarrow \Omega$ is a diffeomorphism and γ_{1} is an isotropic conductivity, then

$$
K\left(F_{*} \gamma_{1}, x\right)=\left|\mu_{F}(x)\right|
$$

where

$$
\mu_{F}=\frac{\bar{\partial} F}{\partial F}, \quad \partial=\frac{1}{2}\left(\partial_{x_{1}}-i \partial_{x_{2}}\right) .
$$

To find the minimally anisotropic conductivity we need to find a quasiconformal map with the smallest possible dilatation and the given boundary values. This is called the Teichmüller map.

7 Unknown boundary problem in \mathbb{R}^{3}.

The electrical potential u satisfies

$$
\begin{aligned}
& \nabla \cdot \gamma \nabla u=0, \quad x \in \Omega \subset \mathbb{R}^{3}, \\
& \left.(z \nu \cdot \gamma \nabla u+u)\right|_{\partial \Omega}=h,
\end{aligned}
$$

where γ is an isotropic conductivity and z is the contact impedance on the boundary.
The boundary measurements are modeled by the Robin-to-Neumann map $R=R_{z, \gamma}$ given by

$$
R_{\gamma, z}:\left.h \mapsto \nu \cdot \gamma \nabla u\right|_{\partial \Omega}
$$

Again, let $f_{m}: \partial \Omega \rightarrow \partial \Omega_{m}$ be the modeling of boundary and $\widetilde{R}=\left(f_{m}\right)_{*} R_{\gamma, z}$.

Theorem 5 (Kolehmainen-L.-Ola 2006) Let $\Omega \subset \mathbb{R}^{n}, n \geq 3$ be a bounded, strictly convex, C^{∞}-domain. Assume that $\gamma \in C^{\infty}(\bar{\Omega})$ is an isotropic conductivity, $z \in C^{\infty}(\partial \Omega), z>0$ is the contact impedance, and $R_{\gamma, z}$ is the Robin-to-Neumann map.
Let Ω_{m} be a model domain and $f_{m}: \partial \Omega \rightarrow \partial \Omega_{m}$ be a diffeomorphism.
Assume that we are given $\partial \Omega_{m}$, the values of the contact impedance $z\left(f_{m}^{-1}(x)\right)$, and the map $\widetilde{R}=\left(f_{m}\right)_{*} R_{\gamma, z}$.
Then we can determine Ω upto a rigid motion T and the conductivity $\gamma \circ T^{-1}$ on the reconstructed domain $T(\Omega)$.

Idea of the proof: Let γ be the isotropic conductivity on Ω, $\widetilde{\gamma}=\left(F_{m}\right)_{*} \gamma,\left.F_{m}\right|_{\partial \Omega}=f_{m}$. Let \widetilde{g} be the metric in Ω_{m} corresponding to the conductivity $\widetilde{\gamma}$.

- $\widetilde{R}=R_{\widetilde{\gamma}, \tilde{z}}$ determine the contact impedance \widetilde{z} and the metric \widetilde{g} on boundary $\partial \Omega_{m}$.
- $\widetilde{z}(x)$ and $z\left(f_{m}^{-1}(x)\right)$ determine $\beta=\operatorname{det}\left(D f_{m}^{-1}\right)$.
- \widetilde{g} and β determine $\gamma \circ f_{m}^{-1}$ on boundary $\partial \Omega_{m}$.
- On $\partial \Omega_{m}$ we find the metric corresponding to the Euclidean metric of $\partial \Omega$. This determines by the Cohn-Vossen rigidity theorem the strictly convex set Ω up to a rigid motion T.
- In $T(\Omega)$ we solve an isotropic inverse problem.

Consider now the following algorithm:
Data: Assume that we are given $\partial \Omega_{m}, \widetilde{R}=\left(f_{m}\right)_{*} R_{\gamma, z}$ and $z \circ f_{m}^{-1}$ on $\partial \Omega_{m}$.
Aim: We look for a metric \widetilde{g} corresponding to the conductivity $\widetilde{\gamma}$ and \widetilde{z} such that $\widetilde{R}=R_{\widetilde{\gamma}, \widetilde{z}}$ and $\widetilde{z}=z \circ f_{m}^{-1}$.
Idea: We look for a metric \widetilde{g} in Ω_{m} and $\rho \in C^{\infty}\left(\Omega_{m}\right)$ such that

$$
\bar{g}_{i j}(x)=e^{2 \rho(x)} \widetilde{g}_{i j}(x) \quad \text { is flat. }
$$

Algorithm:

1. Determine the two leading terms in the symbolic expansion of \widetilde{R}. They determine a contact impedance \widehat{z} and a metric \widehat{g} on $\partial \Omega_{m}$ such that if $\widetilde{R}=R_{\widetilde{\gamma}, \widetilde{z}}$ then $\widetilde{z}=\widehat{z}$ and $\left.\widetilde{g}\right|_{\partial \Omega_{m}}=\widehat{g}$.
2. Compute the ratio of reconstructed i.e. \widehat{z}, and measured contact impedances

$$
\beta(x):=\frac{z\left(f_{m}^{-1}(x)\right)}{\widehat{z}(x)}, \quad x \in \partial \Omega_{m} .
$$

Then $\beta=\frac{d S_{\partial \Omega m}}{\left(f_{m}\right)_{*} * S_{\partial \Omega}}$.
3. Let $d S_{\overparen{g}}$ be the volume form of \widehat{g} on $\partial \Omega_{m}$ and $d S_{E}$ the Euclidean volume on $\partial \Omega_{m}$. Then

$$
d S_{\widehat{g}}=(\operatorname{det} \widehat{g})^{1 / 2} d S_{E}
$$

Define

$$
\widehat{\gamma}=(\operatorname{det} \widehat{g})^{1 / 2} \beta .
$$

With this choice $\widehat{\gamma}$ will satisfy $\widehat{\gamma}(x)=\gamma\left(f_{m}^{-1}(x)\right)$ for $x \in \partial \Omega_{m}$.
4. Define the boundary value $\hat{\rho}$ for the function ρ by

$$
\widehat{\rho}(x)=\frac{1}{2-n} \log (\widehat{\gamma}(x)), \quad x \in \partial \Omega_{m} .
$$

5. Solve the minimization problem

$$
\min F_{\tau}(z, \rho, \gamma)
$$

$$
\begin{aligned}
& F_{\tau}(z, \rho, \gamma)=\left\|\widetilde{R}-R_{\gamma, z}\right\|_{L\left(H^{-1 / 2}\left(\partial \Omega_{m}\right)\right)}^{2} \\
& \quad+\left\|\frac{z(x)}{z\left(f_{m}^{-1}(x)\right)}-\beta(x)\right\|_{L^{2}\left(\partial \Omega_{m}\right)}+\left\|\left.\rho\right|_{\partial \Omega_{m}}-\widehat{\rho}\right\|_{L^{2}\left(\partial \Omega_{m}\right)}^{2} \\
& \quad+\tau\|\mathbf{C}\|_{L^{2}\left(\Omega_{m}\right)}^{2} \\
& +\sum_{i, j=1}^{n}\left\|\rho_{, i j}-\left(-\operatorname{Ric}_{i j}+\frac{1}{4} g_{i j} \mathrm{R}-\frac{1}{2} g_{i j} g^{l m} \rho_{, l} \rho_{, k}\right)\right\|_{L^{2}\left(\Omega_{m}\right)}^{2}
\end{aligned}
$$

where $\tau \geq 0, g$ is the metric corresponding to γ, Ric and R are the Ricci curvature and scalar curvature of g, and $\mathrm{C}_{i j}=g^{k p} g^{l q} \nabla_{k}\left(\operatorname{Ric}_{l i}-\frac{1}{4} R g_{l i}\right) \epsilon_{p q j}$ is Cotton-York tensor.
6. Find the flat metric

$$
\bar{g}_{i j}(x)=e^{2 \rho(x)} g_{i j}(x)=\left(F_{m}\right)_{*}\left(\delta_{i j}\right)
$$

on Ω_{m} and determine the geodesics with respect to the metric \bar{g}.
These give us the the embedding $F_{m}^{-1}: \Omega_{m} \rightarrow \Omega$. This gives us Ω upto a rigid motion and the conductivity γ on it.

Ω

Ω_{m}

Theorem 6 (Kolehmainen-L.-Ola 2006) Let $\Omega \subset \mathbb{R}^{3}$ be a bounded, strictly convex, C^{∞}-domain. Let $\gamma \in C^{\infty}(\bar{\Omega})$ is an isotropic conductivity, $z \in C^{\infty}(\partial \Omega), z>0$ be a contact impedance.
Let Ω_{m} be a model domain and $f_{m}: \partial \Omega \rightarrow \partial \Omega_{m}$ be a C^{∞}-smooth diffeomorphism.
Assume that we are given $\partial \Omega_{m}$, the values of the contact impedance $z\left(f_{m}^{-1}(x)\right), x \in \partial \Omega_{m}$, and the map $\widetilde{R}=\left(f_{m}\right)_{*} R_{\gamma, z}$.

Let $\tau \geq 0$. Then the minimizers $\widetilde{z}, \widetilde{\rho}$ and $\widetilde{\gamma}$ of $F_{\tau}(\widetilde{z}, \widetilde{\rho}, \widetilde{\gamma})$ determine Ω, z, and γ up to a rigid motion.

Inverse problems for conformally Euclidean metric. We say that metric g is conformally flat if

$$
g_{i j}(x)=\alpha(x) \bar{g}_{i j}(x), \quad \text { where metric } \bar{g}_{i j}(x) \text { is flat. }
$$

Open problem: Can we determine a conformally flat metric in Ω_{m} from its Robin-to-Neumann map?
If this is true, then one can solve the inverse problem with an unknown boundary also for non-convex domains.

8 Maxwell's equations.

In $\Omega \subset \mathbb{R}^{3}$ Maxwell's equations are

$$
\begin{aligned}
& \nabla \times E=-B_{t}, \nabla \times H=D_{t} \\
& D=\epsilon(x) E, B=\mu(x) H \quad \text { in } \Omega \times \mathbb{R}
\end{aligned}
$$

Let M be a 3-dimensional manifold and $\epsilon(x)$ and $\mu(x)$ metric tensors that are conformal to each other. Maxwell equations in time-domain are

$$
\begin{aligned}
& d E=-B_{t}, d H=D_{t}, \quad D=*_{\epsilon} E, B=*_{\mu} H \quad \text { in } M \times \mathbb{R}, \\
& \left.E\right|_{t<0}=0,\left.\quad H\right|_{t<0}=0,
\end{aligned}
$$

E, H are 1-forms, D, B are 2-forms, $*_{\epsilon}, *_{\mu}$ are Hodge-operators.

Boundary measurements:

Assume we are given $\partial \Omega$ and

$$
Z: n \times\left. E\right|_{\partial \Omega \times \mathbb{R}_{+}} \rightarrow n \times\left. H\right|_{\partial \Omega \times \mathbb{R}_{+}},
$$

Invariant formulation: Assume we are given ∂M and

$$
Z:\left.\left.i^{*} E\right|_{\partial M \times \mathbb{R}_{+}} \rightarrow i^{*} H\right|_{\partial M \times \mathbb{R}_{+}},
$$

where i is the imbedding $i: \partial M \rightarrow M$.

Theorem 8.1 [Kurylev-L.-Somersalo 2005] Let M be a compact connected 3 -manifold and ϵ and μ be metric tensors conformal to each others. Assume that we are given $\Gamma \subset \partial M$ and restriction of

$$
Z_{\Gamma}:\left.\left.i^{*} E\right|_{\partial M \times \mathbb{R}_{+}} \rightarrow i^{*} H\right|_{\Gamma \times \mathbb{R}_{+}}
$$

for $\left.i^{*} E\right|_{\partial M \times \mathbb{R}_{+}} \in C_{0}^{\infty}\left(\Gamma \times \mathbb{R}_{+}\right)$. Then we can find M and ϵ, μ on M.
Corollary 8.2 Assume that $M \subset \mathbb{R}^{3}$ and ϵ and μ are scalar functions. Then Γ and Z_{Γ} determine uniquely (M, ϵ, μ).

Proof. We can focus the B-field to a single point:
Lemma 8.3 Let $T>0$ be a sufficiently large time. Then by using ∂M and map $Z_{\partial M}$ we can find all sequences of boundary values $\left.i^{*} E_{k}\right|_{\partial M \times \mathbb{R}_{+}}, k=1,2 \ldots$ such that for some $y \in M$ and $A \in T_{y}^{*} M$

$$
\begin{equation*}
\lim _{k \rightarrow \infty} B_{k}(x, T)=d\left(A \delta_{y}\right) \quad \text { in } \mathcal{D}^{\prime}(M) . \tag{3}
\end{equation*}
$$

The set of focusing sequences

$$
\left\{\left(i^{*} E_{k}\right)_{k=1}^{\infty}: \text { the limit (3) exists }\right\} \subset\left(L^{2}(\partial M)\right)^{\mathbb{Z}_{+}}
$$

can be identified with the tangent bundle $T M$ of M,
$T M=\{(y, A): y \in M, \quad A$ is a tangent vector of M at $y\}$.

