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1 Inverse problem in applications

Calderón’s inverse problem: Measure electric resistance
between all boundary points of a body. Can the conductivity
be determined in the body?

Inverse problem for the wave equation: Let us send
waves from the boundary of a body and measure the waves
at the boundary. Can the wave speed be determined in the
body?
Question: What happens if boundary is not well known?
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2 Inverse conductivity problem

Consider a body Ω ⊂ R
n. An electric potential u(x) causes

the current
J(x) = σ(x)∇u(x).

Here the conductivity σ(x) can be an isotropic, that is,
scalar, or an anisotropic, that is, matrix valued function.
If the current has no sources inside the body, we have

∇·σ(x)∇u(x) = 0.
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Conductivity equation

∇·σ(x)∇u(x) = 0 in Ω,

u|∂Ω = f.

Calderón’s inverse problem: Do the measurements made
on the boundary determine the conductivity, that is, does
∂Ω and the Dirichlet-to-Neumann map Λσ,

Λσ(f) = ν ·σ∇u|∂Ω

determine the conductivity σ(x) in Ω?
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Some previous results for inverse conductivity problem:

Calderón 1980: Solution of the linearized inverse
problem.

Sylvester-Uhlmann 1987: Uniqueness of inverse
problem in R

n, n ≥ 3

Nachman 1996: Calderón’s problem in R
2

Astala-Päivärinta 2003: Uniqueness of Calderón’s
problem in R

2 with L∞-conductivity

Sylvester 1990: Inverse problem for an anisotropic
conductivity near constant in R

2.

Siltanen-Mueller-Isaacson 2000: Explicit numerical
solution for the 2D-inverse problem.

Kenig-Sjöstrand-Uhlmann 2006: Reconstructions with
limited data.
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What happens when the following standard assumptions
are not valid?

The boundary ∂Ω is known.

Topology of Ω is known.

Conductivity satisfies

C0 ≤ γ(x) ≤ C1, C0, C1 > 0.
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3 Electrical Impedance Tomography

with an unknown boundary

Practical task: In medical imaging one often wants to find
an image of the conductivity, when the domain Ω is poorly
known.

Figure: Rensselaer Polytechnic Institute.
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Complete electrode model. Let ej ⊂ ∂Ω, j = 1, . . . , J be
disjoint open sets (electrodes) and

PSfrag replacements
Ω

ej

∇· γ∇v = 0 in Ω,

zjν· γ∇v + v|ej = Vj ,

ν· γ∇v|∂Ω\∪J
j=1ej

= 0.

Here zj are the contact impedance of electrodes and
Vj ∈ R. The boundary measurements are the currents

Ij =
1

|ej |

∫

ej

ν· γ∇v(x) ds(x), j = 1, . . . , J.

The matrix E : (Vj)
J
j=1 → (Ij)

J
j=1 is the electrode

measurement matrix.
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Mathematical formulation of EIT with unknown
boundary:
1. Assume that γ is an isotropic conductivity in Ω.

2. Assume that we are given a set Ωm that is our best
guess for Ω. Let Fm : Ω → Ωm be a map corresponding
to the modeling error.

3. The given data is the electrode measurement matrix
E ∈ R

J×J .

Fact: The deformation Fm : Ω → Ωm can change an
isotropic conductivity to an anisotropic conductivity.

PSfrag replacements

Ω Ωm

Fm
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4 Anisotropic inverse problems

Non-uniqueness.

Invariant formulation. Uniqueness and non-uniqueness
results

Applications to Euclidean space: non-uniqueness
results.
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Deformation of the domain. Assume that
γ(x) = (γjk(x)) ∈ R

n×n,

∇· γ∇u = 0 in Ω.

Let F be diffeomorphism

F : Ω → Ω, F |∂Ω = Id.

Then

∇· γ̃∇v = 0 in Ω,

where

v(x) = u(F−1(x)), γ̃(y) = F∗γ(y) =
(DF )· γ· (DF )t

det (DF )

∣∣∣∣
x=F−1(y)

Then Λeγ = Λγ.
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Invariant formulation.
Assume n ≥ 3. Consider Ω as a Riemannian manifold with

gjk(x) = (det γ(x))−1/(n−2)γjk(x).

Then conductivity equation is the Laplace-Beltrami equation

∆gu = 0 in Ω, where

∆gu =
n∑

j,k=1

g−1/2 ∂

∂xj
(g1/2gjk ∂

∂xk
u)

and g = det (gij), [gij ] = [gjk]−1.
Inverse problem: Can we determine the Riemannian
manifold (M, g) by knowing ∂M and

ΛM,g : u|∂M 7→ ∂νu|∂M .
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Generally, solutions of anisotropic inverse problems are not
unique. However, if we have enough a priori knowledge of
the form of the conductivity, we can sometimes solve the
inverse problem uniquely.

Manifold (M, g)

''N
N

N
N

N
N

N
N

N
N

N

Boundary measurements
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γjk(x) on Ω ⊂ R
n
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Uniqueness results
Theorem 1 (L.-Taylor-Uhlmann 2003) Assume that (M, g)
is a complete n-dimensional real-analytic Riemannian
manifold and n ≥ 3. Then ∂M and

ΛM,g : u|∂M 7→ ∂νu|∂M

determine (M, g) uniquely.
Theorem 2 (L.-Uhlmann 2001) Assume that (M, g) is a
compact 2-dimensional Riemannian manifold. Then ∂M

and
ΛM,g : u|∂M 7→ ∂νu|∂M

determine conformal class

{(M, αg) : α ∈ C∞(M), α(x) > 0}

uniquely.
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5 Anisotropic problem in Ω ⊂ R
2.

Isotropic case:
Theorem 3 (Astala-Päivärinta 2003) Let Ω ⊂ R

2 be a
simply connected bounded domain and σ ∈ L∞(Ω; R+) an
isotropic conductivity function. Then the Dirichlet-to-
Neumann map Λσ for the equation

∇ · σ∇u = 0

determines uniquely the conductivity σ.
Next we denote σ ∈ Σ(Ω) if σ(x) ∈ R

2×2 is symmetric,
measurable, and

C1 I ≤ σ(x) ≤ C2 I, for a.e. x ∈ Ω

with some C1, C2 > 0.
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Sylvester 1990, Sun-Uhlmann 2003, Astala-L.-Päivärinta
2005
Theorem 4 Let Ω ⊂ R

2 be a simply connected bounded
domain and σ1, σ2 ∈ L∞(Ω; R2×2) conductivity tensors. If
Λσ1

= Λσ2
then there is a W 1,2-diffeomorphism

F : Ω → Ω, F |∂Ω = Id

such that

σ1 = F∗σ2.

Recall that if F : Ω → Ω̃ is a diffeomorphism, it transforms
the conductivity σ in Ω to σ̃ = F∗σ in Ω̃,

σ̃(x) =
DF (y) σ(y) (DF (y))t

|det DF (y)|

∣∣∣∣
y=F−1(x)
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Proof. Identify R
2 = C. Let σ be an anisotropic conductivity,

σ(x) = I for x ∈ C \ Ω. There is F : C → C such that

γ = F∗σ

is isotropic. There are w(x, k) such that

∇· γ∇w = 0 in C

and

lim
x→∞

w(x, k)e−ikx = 1, lim
k→∞

1

k
log(w(x, k)e−ikx) = 0.

Let u(x, k) = w(F−1(x), k). The Λσ determines u(x, k) for
x ∈ C \ Ω and

F−1(x) = lim
k→∞

log u(x, k)

ik
, x ∈ C \ Ω.
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Corollaries:
1. Inverse problem in the half space.
Let σ ∈ C∞(R2

−) satisfy 0 < C1 ≤ σ ≤ C2 and

∇·σ∇u = 0 in R
2
− = {(x1, x2) |x2 < 0}, (1)

u|∂R2
−

= f, u ∈ L∞(R2
−). (2)

Notice that here the radiation condition at infinity (2) is quite
simple. Let

Λσ : H
1/2
comp(∂R

2
−) → H−1/2(∂R

2
−), f 7→ ν·σ∇u|∂R2

−

.
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Corollary 5.1 (Astala-L.-Päivärinta 2005) The map Λσ

determines the equivalence class

Eσ = {σ1 ∈ Σ(R2
−) | σ1 = F∗σ, F : R

2
− → R

2
− is W 1,2-diffeo,

F |∂R2
−

= I}.

Moreover, each class Eσ contains at most one isotropic
conductivity.
Thus, if σ is known to be isotropic, it is determined uniquely
by Λσ.

Open problem: Inverse problem in R
3
+.
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2. Inverse problem in the exterior domain. Let
S = R

2 \ D, where D is a bounded Jordan domain. Let

∇·σ∇u = 0 in S,

u|∂S = f ∈ H1/2(∂S),

u ∈ L∞(S).

We define

Λσ : H1/2(∂S) → H−1/2(∂S), f 7→ ν·σ∇u|∂S .
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Let S ⊂ R
2, R

2 \ S compact, and denote S = S ∪ {∞}.
Corollary 5.2 (Astala-L.-Päivärinta 2005) Let σ ∈ Σ(S).
Then the map Λσ determines the equivalence class

Eσ,S = {σ1 ∈ Σ(S) | σ1 = F∗σ, F : S → S is a W 1,2-diffeo,
F |∂S = I }.

Moreover, if σ is known to be isotropic, it is determined
uniquely by Λσ.
The group of diffeomorphisms preserving the data do not
map S → S.
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6 Unknown boundary problem in R
2.

1. Assume that γ is an isotropic conductivity in Ω.

2. Assume that we are given a set Ωm that is our best
guess for Ω. Let Fm : Ω → Ωm be a map corresponding
to the modeling error.

3. We are given the electrode measurement matrix
E ∈ R

J×J .

PSfrag replacements

Ω Ωm

Fm

– p. 22/49



Complete electrode model Let ej ⊂ ∂Ω, j = 1, . . . , J be
disjoint open sets (electrodes) and

PSfrag replacements Ω
ej

∇· γ∇v = 0 in Ω,

zjν· γ∇v + v|ej = Vj ,

ν· γ∇v|∂Ω\∪J
j=1ej

= 0,

where zj are the contact impedances and Vj are the
potentials on electrode ej. Measure currents

Ij =
1

|ej |

∫

ej

ν· γ∇v(x) ds(x), j = 1, . . . , J.

This give us electrode measurements matrix E : R
J → R

J ,
E(V1, . . . , VJ) = (I1, . . . , IJ).
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Continuous model. The electrical potential u satisfy

∇ · γ∇u = 0, x ∈ Ω,

(zν· γ∇u + u)|∂Ω = h,

where γ is an isotropic conductivity and z is the contact
impedance on the boundary.
Boundary measurements are modeled by the
Robin-to-Neumann map R = Rγ,z given by

Rγ,z : h 7→ ν· γ∇u|∂Ω
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The power needed to maintain the given voltage (V1, . . . , VJ)
or h at boundary are given by

p(V ) = E[V, V ], p(h) = R[h, h],

where we have quadratic forms

E[V, Ṽ ] =
J∑

j=1

(EV )jṼj |ej |, R[h, h̃] =

∫

∂Ω
(Rh) h̃ ds.

The form E[ · , · ] can be viewed as a discretization of R[ · , · ].
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Let Fm : Ω → Ωm be deformation of the domain and
fm = Fm|∂Ω. On ∂Ωm we define

R̃ = (fm)∗Rγ,z.

Then the quadratic form R corresponding to the power
needed to have the given voltage on the boundary satisfies

R̃[h, h] = R[h ◦ fm, h ◦ fm], h ∈ H−1/2(∂Ωm).

Thus the electrode measurement matrix on ∂Ωm

corresponds in the continuous model to the map

R̃ = (fm)∗Rγ,z.

Fact: R̃ = Reγ,ez where

γ̃ = (Fm)∗γ, z̃ = (Fm)∗z.
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Thus the boundary map R̃ on ∂Ωm is equal to Reγ,ez that
corresponds to boundary measurements made with an
anisotropic conductivity γ̃ = (Fm)∗γ in Ωm and z̃ = z ◦ f−1

m .

Assume we are given Ωm and R̃. Our aim is to find a
conductivity tensor in Ωm that is as close as possible to an
isotropic conductivity and has the Robin-to-Neumann map
R̃.

PSfrag replacements

Ω Ωm

Fm
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Definition 6.1 Let γ = γjk(x) be a matrix valued
conductivity. Let λ1(x) and λ2(x), λ1(x) ≥ λ2(x) be its
eigenvalues. Anisotropy of γ at x is

K(γ, x) =

(
λ1(x) − λ2(x)

λ1(x) + λ2(x)

)1/2

.

The maximal anisotropy of γ in Ω is

K(γ) = sup
x∈Ω

K(γ, x).
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The anisotropy function K(γ̂, x) is constant for

γ̂(x) = η(x)Rθ(x)

(
λ1/2 0

0 λ−1/2

)
R−1

θ(x)

where

λ ≥ 1,

η(x) ∈ R+,

Rθ =

(
cos θ sin θ

− sin θ cos θ

)
.

We say that γ̂ = γ̂λ,θ,η is a uniformly anisotropic conductivity.
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Theorem 6.2 (Kolehmainen-L.-Ola 2005) Let Ω ⊂ R
2 be a

bounded, simply connected C1,α–domain, γ ∈ L∞(Ω, R) be
isotropic conductivity, and z ∈ C1(∂Ω) be the contact
impedance.
Let Ωm be a model domain and fm : ∂Ω → ∂Ωm be a
C1,α–diffeomorphism.
Assume that we know ∂Ωm and R̃ = (fm)∗Rγ,z. These data
determine z̃ = z ◦ f−1

m and an anisotropic conductivity σ on
Ωm such that

1. Rσ,ez = R̃.

3. If σ1 satisfies Rσ1,ez = R̃ then K(σ1) ≥ K(σ).

Moreover, the conductivity σ is uniformly anisotropic.
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Algorithm:
In following, we assume that z = 0 and denote Rσ = Rσ,z.
The conductivity σ = γ̂λ,η,θ can obtained by solving the
minimization problem

min
(λ,θ,η)∈S

λ, where S = {(λ, θ, η) : Rbγ(λ,θ,η) = R̃}.

In implementation of the algorithm we approximate this by

min
(λ,θ,η)

‖Rbγ(λ,θ,η) − R̃‖2 + ε1|λ − 1|2 + ε2(‖θ‖
2 + ‖η‖2).
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Let fm : ∂Ω → ∂Ωm be the boundary modeling map and σ

be the conductivity with the smallest possible anisotropy
such that Rσ = R̃. Then
Corollary 6.3 Then there is a unique map

Fe : Ω → Ωm, Fe|∂Ω = fm

depending only on fm : ∂Ω → ∂Ωm such that

det (σ(x))1/2 = γ(F−1
e (x)).

PSfrag replacements

Ω Ωm

Fm
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Idea of the proof. If F : Ω → Ω is a diffeomorphism and γ1

is an isotropic conductivity, then

K(F∗γ1, x) = |µF (x)|

where

µF =
∂F

∂F
, ∂ =

1

2
(∂x1

− i∂x2
).

To find the minimally anisotropic conductivity we need to
find a quasiconformal map with the smallest possible
dilatation and the given boundary values. This is called the
Teichmüller map.
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1 2 0.78 1.41

0.03 1.3 0.77 1.41
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0.05 8.08

0.2 16.06 0.55 8.23
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7 Unknown boundary problem in R
3.

The electrical potential u satisfies

∇ · γ∇u = 0, x ∈ Ω ⊂ R
3,

(zν· γ∇u + u)|∂Ω = h,

where γ is an isotropic conductivity and z is the contact
impedance on the boundary.
The boundary measurements are modeled by the
Robin-to-Neumann map R = Rz,γ given by

Rγ,z : h 7→ ν· γ∇u|∂Ω

Again, let fm : ∂Ω → ∂Ωm be the modeling of boundary and
R̃ = (fm)∗Rγ,z.
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Theorem 5 (Kolehmainen-L.-Ola 2006) Let Ω ⊂ R
n, n ≥ 3

be a bounded, strictly convex, C∞–domain. Assume that
γ ∈ C∞(Ω) is an isotropic conductivity, z ∈ C∞(∂Ω), z > 0 is
the contact impedance, and Rγ,z is the Robin-to-Neumann
map.
Let Ωm be a model domain and fm : ∂Ω → ∂Ωm be a
diffeomorphism.
Assume that we are given ∂Ωm, the values of the contact
impedance z(f−1

m (x)), and the map R̃ = (fm)∗Rγ,z.
Then we can determine Ω upto a rigid motion T and the
conductivity γ ◦ T−1 on the reconstructed domain T (Ω).
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Idea of the proof: Let γ be the isotropic conductivity on Ω,
γ̃ = (Fm)∗γ, Fm|∂Ω = fm. Let g̃ be the metric in Ωm

corresponding to the conductivity γ̃.

R̃ = Reγ,ez determine the contact impedance z̃ and the
metric g̃ on boundary ∂Ωm.

z̃(x) and z(f−1
m (x)) determine β = det (Df−1

m ).

g̃ and β determine γ ◦ f−1
m on boundary ∂Ωm.

On ∂Ωm we find the metric corresponding to the
Euclidean metric of ∂Ω. This determines by the
Cohn-Vossen rigidity theorem the strictly convex set Ω
up to a rigid motion T .

In T (Ω) we solve an isotropic inverse problem.
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Consider now the following algorithm:

Data: Assume that we are given ∂Ωm, R̃ = (fm)∗Rγ,z and
z ◦ f−1

m on ∂Ωm.

Aim: We look for a metric g̃ corresponding to the
conductivity γ̃ and z̃ such that R̃ = Reγ,ez and z̃ = z ◦ f−1

m .

Idea: We look for a metric g̃ in Ωm and ρ ∈ C∞(Ωm) such
that

gij(x) = e2ρ(x)g̃ij(x) is flat.
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Algorithm:

1. Determine the two leading terms in the symbolic
expansion of R̃. They determine a contact impedance ẑ and
a metric ĝ on ∂Ωm such that if R̃ = Reγ,ez then z̃ = ẑ and
g̃|∂Ωm

= ĝ.

2. Compute the ratio of reconstructed i.e. ẑ, and measured
contact impedances

β(x) :=
z(f−1

m (x))

ẑ(x)
, x ∈ ∂Ωm.

Then β = dS∂Ωm

(fm)∗dS∂Ω
.
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3. Let dSbg be the volume form of ĝ on ∂Ωm and dSE the
Euclidean volume on ∂Ωm. Then

dSbg = (det ĝ)1/2 dSE .

Define

γ̂ = (det ĝ)1/2 β.

With this choice γ̂ will satisfy γ̂(x) = γ(f−1
m (x)) for x ∈ ∂Ωm.

4. Define the boundary value ρ̂ for the function ρ by

ρ̂(x) =
1

2 − n
log (γ̂(x)) , x ∈ ∂Ωm.
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5. Solve the minimization problem

min Fτ (z, ρ, γ)

Fτ (z, ρ, γ) = ‖R̃ − Rγ,z‖
2
L(H−1/2(∂Ωm))

+‖
z(x)

z(f−1
m (x))

− β(x)‖L2(∂Ωm) + ‖ ρ|∂Ωm
− ρ̂ ‖2

L2(∂Ωm)

+τ‖C‖2
L2(Ωm)

+
n∑

i,j=1

‖ρ,ij −

(
−Ricij +

1

4
gijR −

1

2
gijg

lmρ,lρ,k

)
‖2

L2(Ωm)

where τ ≥ 0, g is the metric corresponding to γ, Ric and R

are the Ricci curvature and scalar curvature of g, and
Cij = gkpglq∇k(Ricli −

1
4R gli)εpqj is Cotton-York tensor.
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6. Find the flat metric

gij(x) = e2ρ(x)gij(x) = (Fm)∗(δij)

on Ωm and determine the geodesics with respect to the
metric g.
These give us the the embedding F−1

m : Ωm → Ω. This gives
us Ω upto a rigid motion and the conductivity γ on it.

PSfrag replacements

Ω Ωm
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Theorem 6 (Kolehmainen-L.-Ola 2006) Let Ω ⊂ R
3 be a

bounded, strictly convex, C∞–domain. Let γ ∈ C∞(Ω) is an
isotropic conductivity, z ∈ C∞(∂Ω), z > 0 be a contact
impedance.
Let Ωm be a model domain and fm : ∂Ω → ∂Ωm be a
C∞–smooth diffeomorphism.

Assume that we are given ∂Ωm, the values of the contact
impedance z(f−1

m (x)), x ∈ ∂Ωm, and the map R̃ = (fm)∗Rγ,z.

Let τ ≥ 0. Then the minimizers z̃, ρ̃ and γ̃ of Fτ (z̃, ρ̃, γ̃)
determine Ω, z, and γ up to a rigid motion.

– p. 44/49



Inverse problems for conformally Euclidean metric.
We say that metric g is conformally flat if

gij(x) = α(x)gij(x), where metric gij(x) is flat.

Open problem: Can we determine a conformally flat metric
in Ωm from its Robin-to-Neumann map?

If this is true, then one can solve the inverse problem with
an unknown boundary also for non-convex domains.
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8 Maxwell’s equations.

In Ω ⊂ R
3 Maxwell’s equations are

∇× E = −Bt, ∇× H = Dt,

D = ε(x)E, B = µ(x)H in Ω × R.

Let M be a 3-dimensional manifold and ε(x) and µ(x) metric
tensors that are conformal to each other. Maxwell
equations in time-domain are

dE = −Bt, dH = Dt, D = ∗εE, B = ∗µH in M × R,

E|t<0 = 0, H|t<0 = 0,

E, H are 1-forms, D, B are 2-forms, ∗ε, ∗µ are
Hodge-operators.
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Boundary measurements:
Assume we are given ∂Ω and

Z : n × E|∂Ω×R+
→ n × H|∂Ω×R+

,

Invariant formulation: Assume we are given ∂M and

Z : i∗E|∂M×R+
→ i∗H|∂M×R+

,

where i is the imbedding i : ∂M → M .
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Theorem 8.1 [Kurylev-L.-Somersalo 2005] Let M be a
compact connected 3-manifold and ε and µ be metric
tensors conformal to each others. Assume that we are
given Γ ⊂ ∂M and restriction of

ZΓ : i∗E|∂M×R+
→ i∗H|Γ×R+

for i∗E|∂M×R+
∈ C∞

0 (Γ × R+). Then we can find M and ε, µ

on M .
Corollary 8.2 Assume that M ⊂ R

3 and ε and µ are scalar
functions. Then Γ and ZΓ determine uniquely (M, ε, µ).

PSfrag replacements

Γ

M
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Proof. We can focus the B-field to a single point:
Lemma 8.3 Let T > 0 be a sufficiently large time. Then by
using ∂M and map Z∂M we can find all sequences of
boundary values i∗Ek|∂M×R+

, k = 1, 2 . . . such that for some
y ∈ M and A ∈ T ∗

y M

lim
k→∞

Bk(x, T ) = d(Aδy) in D′(M). (3)

The set of focusing sequences

{(i∗Ek)
∞
k=1 : the limit (3) exists} ⊂ (L2(∂M))Z+

can be identified with the tangent bundle TM of M ,

TM = {(y, A) : y ∈ M, A is a tangent vector of M at y}.
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