Inverse problems for elliptic equations

Matti Lassas

HELSINKI UNIVERSITY OF TECHNOLOGY Institute of Mathematics

Finnish Centre of Excellence in Inverse Problems Research

1 Inverse problem in applications

Calderón's inverse problem: Measure electric resistance between all boundary points of a body. Can the conductivity be determined in the body?

Inverse problem for the wave equation: Let us send waves from the boundary of a body and measure the waves at the boundary. Can the wave speed be determined in the body?

Question: What happens if boundary is not well known?

Figure: University of Kuopio.

2 Inverse conductivity problem

Consider a body $\Omega \subset \mathbb{R}^n$. An electric potential u(x) causes the current

$$J(x) = \sigma(x)\nabla u(x).$$

Here the conductivity $\sigma(x)$ can be an isotropic, that is, scalar, or an anisotropic, that is, matrix valued function. If the current has no sources inside the body, we have

$$\nabla \cdot \sigma(x) \nabla u(x) = 0.$$

Conductivity equation

$$\nabla \cdot \sigma(x) \nabla u(x) = 0 \quad \text{in } \Omega,$$
$$u|_{\partial \Omega} = f.$$

Calderón's inverse problem: Do the measurements made on the boundary determine the conductivity, that is, does $\partial\Omega$ and the Dirichlet-to-Neumann map Λ_{σ} ,

$$\Lambda_{\sigma}(f) = \nu \cdot \sigma \nabla u|_{\partial \Omega}$$

determine the conductivity $\sigma(x)$ in Ω ?

Some previous results for inverse conductivity problem:

- Calderón 1980: Solution of the linearized inverse problem.
- Sylvester-Uhlmann 1987: Uniqueness of inverse problem in \mathbb{R}^n , n ≥ 3
- Nachman 1996: Calderón's problem in \mathbb{R}^2
- Astala-Päivärinta 2003: Uniqueness of Calderón's problem in \mathbb{R}^2 with L^∞ -conductivity
- Sylvester 1990: Inverse problem for an anisotropic conductivity near constant in $ℝ^2$.
- Siltanen-Mueller-Isaacson 2000: Explicit numerical solution for the 2D-inverse problem.
- Kenig-Sjöstrand-Uhlmann 2006: Reconstructions with limited data.

What happens when the following standard assumptions are not valid?

- The boundary $\partial \Omega$ is known.
- Topology of Ω is known.
- Conductivity satisfies

```
C_0 \le \gamma(x) \le C_1, \quad C_0, C_1 > 0.
```

3 Electrical Impedance Tomography with an unknown boundary

Practical task: In medical imaging one often wants to find an image of the conductivity, when the domain Ω is poorly known.

Figure: Rensselaer Polytechnic Institute.

Complete electrode model. Let $e_j \subset \partial \Omega$, j = 1, ..., J be disjoint open sets (electrodes) and

Here z_j are the contact impedance of electrodes and $V_j \in \mathbb{R}$. The boundary measurements are the currents

$$I_j = \frac{1}{|e_j|} \int_{e_j} \nu \cdot \gamma \nabla v(x) \, ds(x), \quad j = 1, \dots, J.$$

The matrix $E: (V_j)_{j=1}^J \to (I_j)_{j=1}^J$ is the electrode measurement matrix.

Mathematical formulation of EIT with unknown boundary:

- 1. Assume that γ is an isotropic conductivity in Ω .
- 2. Assume that we are given a set Ω_m that is our best guess for Ω . Let $F_m : \Omega \to \Omega_m$ be a map corresponding to the modeling error.
- 3. The given data is the electrode measurement matrix $E \in \mathbb{R}^{J \times J}$.
- **Fact:** The deformation $F_m : \Omega \to \Omega_m$ can change an isotropic conductivity to an anisotropic conductivity.

4 Anisotropic inverse problems

- Non-uniqueness.
- Invariant formulation. Uniqueness and non-uniqueness results
- Applications to Euclidean space: non-uniqueness results.

Deformation of the domain. Assume that $\gamma(x) = (\gamma^{jk}(x)) \in \mathbb{R}^{n \times n}$,

$$\nabla \cdot \gamma \nabla u = 0$$
 in Ω .

Let *F* be diffeomorphism

$$F: \Omega \to \Omega, \quad F|_{\partial\Omega} = Id.$$

Then

$$\nabla \cdot \widetilde{\gamma} \nabla v = 0 \quad \text{in } \Omega,$$

where

$$v(x) = u(F^{-1}(x)), \quad \widetilde{\gamma}(y) = F_*\gamma(y) = \left.\frac{(DF)\cdot\gamma\cdot(DF)^t}{\det(DF)}\right|_{x=F^{-1}(y)}$$

Then $\Lambda_{\widetilde{\gamma}} = \Lambda_{\gamma}$.

Invariant formulation.

Assume $n \ge 3$. Consider Ω as a Riemannian manifold with

$$g^{jk}(x) = (\det \gamma(x))^{-1/(n-2)} \gamma^{jk}(x).$$

Then conductivity equation is the Laplace-Beltrami equation

$$\Delta_g u = 0 \quad \text{in } \Omega, \quad \text{where}$$
$$\Delta_g u = \sum_{j,k=1}^n g^{-1/2} \frac{\partial}{\partial x^j} (g^{1/2} g^{jk} \frac{\partial}{\partial x^k} u)$$

and $g = \det(g_{ij}), [g_{ij}] = [g^{jk}]^{-1}$. **Inverse problem:** Can we determine the Riemannian manifold (M, g) by knowing ∂M and

$$\Lambda_{M,g}: u|_{\partial M} \mapsto \partial_{\nu} u|_{\partial M}.$$

Generally, solutions of anisotropic inverse problems are not unique. However, if we have enough a priori knowledge of the form of the conductivity, we can sometimes solve the inverse problem uniquely.

Uniqueness results Theorem 1 (L.-Taylor-Uhlmann 2003) Assume that (M, g)is a complete *n*-dimensional real-analytic Riemannian manifold and n > 3. Then ∂M and

 $\Lambda_{M,g}: u|_{\partial M} \mapsto \partial_{\nu} u|_{\partial M}$

determine (M, g) uniquely.

Theorem 2 (L.-Uhlmann 2001) Assume that (M, g) is a compact 2-dimensional Riemannian manifold. Then ∂M and

$$\Lambda_{M,g}: u|_{\partial M} \mapsto \partial_{\nu} u|_{\partial M}$$

determine conformal class

$$\{(M, \alpha g): \ \alpha \in C^{\infty}(M), \ \alpha(x) > 0\}$$

uniquely.

5 Anisotropic problem in $\Omega \subset \mathbb{R}^2$.

Isotropic case:

Theorem 3 (Astala-Päivärinta 2003) Let $\Omega \subset \mathbb{R}^2$ be a simply connected bounded domain and $\sigma \in L^{\infty}(\Omega; \mathbb{R}_+)$ an isotropic conductivity function. Then the Dirichlet-to-Neumann map Λ_{σ} for the equation

 $\nabla \cdot \sigma \nabla u = 0$

determines uniquely the conductivity σ . Next we denote $\sigma \in \Sigma(\Omega)$ if $\sigma(x) \in \mathbb{R}^{2 \times 2}$ is symmetric, measurable, and

$$C_1 I \leq \sigma(x) \leq C_2 I$$
, for a.e. $x \in \Omega$

with some $C_1, C_2 > 0$.

Sylvester 1990, Sun-Uhlmann 2003, Astala-L.-Päivärinta 2005

Theorem 4 Let $\Omega \subset \mathbb{R}^2$ be a simply connected bounded domain and $\sigma_1, \sigma_2 \in L^{\infty}(\Omega; \mathbb{R}^{2 \times 2})$ conductivity tensors. If $\Lambda_{\sigma_1} = \Lambda_{\sigma_2}$ then there is a $W^{1,2}$ -diffeomorphism

$$F: \Omega \to \Omega, \quad F|_{\partial\Omega} = Id$$

such that

$$\sigma_1 = F_* \sigma_2.$$

Recall that if $F : \Omega \to \widetilde{\Omega}$ is a diffeomorphism, it transforms the conductivity σ in Ω to $\widetilde{\sigma} = F_* \sigma$ in $\widetilde{\Omega}$,

$$\widetilde{\sigma}(x) = \left. \frac{DF(y) \, \sigma(y) \, (DF(y))^t}{|\det DF(y)|} \right|_{y=F^{-1}(x)}$$

Proof. Identify $\mathbb{R}^2 = \mathbb{C}$. Let σ be an anisotropic conductivity, $\sigma(x) = I$ for $x \in \mathbb{C} \setminus \Omega$. There is $F : \mathbb{C} \to \mathbb{C}$ such that

$$\gamma = F_*\sigma$$

is isotropic. There are w(x, k) such that

$$abla\cdot\gamma
abla w=0$$
 in $\mathbb C$

and

$$\lim_{x \to \infty} w(x,k)e^{-ikx} = 1, \quad \lim_{k \to \infty} \frac{1}{k}\log(w(x,k)e^{-ikx}) = 0.$$

Let $u(x,k) = w(F^{-1}(x),k)$. The Λ_{σ} determines u(x,k) for $x \in \mathbb{C} \setminus \Omega$ and

$$F^{-1}(x) = \lim_{k \to \infty} \frac{\log u(x, k)}{ik}, \qquad x \in \mathbb{C} \setminus \Omega.$$

Corollaries: 1. Inverse problem in the half space.

Let $\sigma \in C^{\infty}(\mathbb{R}^2_{-})$ satisfy $0 < C_1 \leq \sigma \leq C_2$ and

$$\nabla \cdot \sigma \nabla u = 0 \qquad \text{in } \mathbb{R}^2_{-} = \{ (x^1, x^2) \, | \, x^2 < 0 \}, \qquad (1)$$

$$u|_{\partial \mathbb{R}^2_-} = f, \quad u \in L^\infty(\mathbb{R}^2_-).$$
 (2)

Notice that here the radiation condition at infinity (2) is quite simple. Let

$$\Lambda_{\sigma}: H^{1/2}_{comp}(\partial \mathbb{R}^2_{-}) \to H^{-1/2}(\partial \mathbb{R}^2_{-}), \quad f \mapsto \nu \cdot \sigma \nabla u|_{\partial \mathbb{R}^2_{-}}.$$

Corollary 5.1 (Astala-L.-Päivärinta 2005) The map Λ_{σ} determines the equivalence class

$$E_{\sigma} = \{ \sigma_1 \in \Sigma(\mathbb{R}^2_{-}) \mid \sigma_1 = F_*\sigma, F : \mathbb{R}^2_{-} \to \mathbb{R}^2_{-} \text{ is } W^{1,2} \text{-diffeo}, \\ F|_{\partial \mathbb{R}^2_{-}} = I \}.$$

Moreover, each class E_{σ} contains at most one isotropic conductivity. Thus, if σ is known to be isotropic, it is determined uniquely by Λ_{σ} .

Open problem: Inverse problem in \mathbb{R}^3_+ .

2. Inverse problem in the exterior domain. Let $S = \mathbb{R}^2 \setminus \overline{D}$, where *D* is a bounded Jordan domain. Let

$$\nabla \cdot \sigma \nabla u = 0 \quad \text{in } S,$$

$$u|_{\partial S} = f \in H^{1/2}(\partial S),$$

$$u \in L^{\infty}(S).$$

We define

$$\Lambda_{\sigma}: H^{1/2}(\partial S) \to H^{-1/2}(\partial S), \quad f \mapsto \nu \cdot \sigma \nabla u|_{\partial S}.$$

Let $S \subset \mathbb{R}^2$, $\mathbb{R}^2 \setminus S$ compact, and denote $\overline{S} = S \cup \{\infty\}$. Corollary 5.2 (Astala-L.-Päivärinta 2005) Let $\sigma \in \Sigma(S)$. Then the map Λ_{σ} determines the equivalence class

$$E_{\sigma,S} = \{ \sigma_1 \in \Sigma(S) \mid \sigma_1 = F_*\sigma, F : \overline{S} \to \overline{S} \text{ is a } W^{1,2} \text{-diffeo,} \\ F|_{\partial S} = I \}.$$

Moreover, if σ is known to be isotropic, it is determined uniquely by Λ_{σ} .

The group of diffeomorphisms preserving the data do not map $S \rightarrow S$.

6 Unknown boundary problem in \mathbb{R}^2 .

- 1. Assume that γ is an isotropic conductivity in Ω .
- 2. Assume that we are given a set Ω_m that is our best guess for Ω . Let $F_m : \Omega \to \Omega_m$ be a map corresponding to the modeling error.
- 3. We are given the electrode measurement matrix $E \in \mathbb{R}^{J \times J}$.

Complete electrode model Let $e_j \subset \partial \Omega$, j = 1, ..., J be disjoint open sets (electrodes) and

where z_j are the contact impedances and V_j are the potentials on electrode e_j . Measure currents

$$I_j = \frac{1}{|e_j|} \int_{e_j} \nu \cdot \gamma \nabla v(x) \, ds(x), \quad j = 1, \dots, J.$$

This give us electrode measurements matrix $E : \mathbb{R}^J \to \mathbb{R}^J$, $E(V_1, \ldots, V_J) = (I_1, \ldots, I_J)$.

Continuous model. The electrical potential *u* satisfy

$$\nabla \cdot \gamma \nabla u = 0, \qquad x \in \Omega,$$
$$(z\nu \cdot \gamma \nabla u + u)|_{\partial \Omega} = h,$$

where γ is an isotropic conductivity and z is the contact impedance on the boundary.

Boundary measurements are modeled by the Robin-to-Neumann map $R = R_{\gamma,z}$ given by

$$R_{\gamma,z}: h \mapsto \nu \cdot \gamma \nabla u|_{\partial \Omega}$$

The power needed to maintain the given voltage (V_1, \ldots, V_J) or *h* at boundary are given by

$$p(V) = E[V, V], \qquad p(h) = R[h, h],$$

where we have quadratic forms

$$E[V,\widetilde{V}] = \sum_{j=1}^{J} (EV)_j \widetilde{V}_j |e_j|, \quad R[h,\widetilde{h}] = \int_{\partial\Omega} (Rh) \,\widetilde{h} \, ds.$$

The form $E[\cdot, \cdot]$ can be viewed as a discretization of $R[\cdot, \cdot]$.

Let $F_m : \Omega \to \Omega_m$ be deformation of the domain and $f_m = F_m|_{\partial\Omega}$. On $\partial\Omega_m$ we define

$$\widetilde{R} = (f_m)_* R_{\gamma,z}.$$

Then the quadratic form R corresponding to the power needed to have the given voltage on the boundary satisfies

$$\widetilde{R}[h,h] = R[h \circ f_m, h \circ f_m], \quad h \in H^{-1/2}(\partial \Omega_m).$$

Thus the electrode measurement matrix on $\partial \Omega_m$ corresponds in the continuous model to the map

$$\widetilde{R} = (f_m)_* R_{\gamma,z}.$$

Fact: $\widetilde{R} = R_{\widetilde{\gamma},\widetilde{z}}$ where

$$\widetilde{\gamma} = (F_m)_* \gamma, \quad \widetilde{z} = (F_m)_* z.$$

Thus the boundary map \widetilde{R} on $\partial \Omega_m$ is equal to $R_{\widetilde{\gamma},\widetilde{z}}$ that corresponds to boundary measurements made with an anisotropic conductivity $\widetilde{\gamma} = (F_m)_* \gamma$ in Ω_m and $\widetilde{z} = z \circ f_m^{-1}$.

Assume we are given Ω_m and \widetilde{R} . Our aim is to find a conductivity tensor in Ω_m that is as close as possible to an isotropic conductivity and has the Robin-to-Neumann map \widetilde{R} .

Definition 6.1 Let $\gamma = \gamma^{jk}(x)$ be a matrix valued conductivity. Let $\lambda_1(x)$ and $\lambda_2(x)$, $\lambda_1(x) \ge \lambda_2(x)$ be its eigenvalues. Anisotropy of γ at x is

$$K(\gamma, x) = \left(\frac{\lambda_1(x) - \lambda_2(x)}{\lambda_1(x) + \lambda_2(x)}\right)^{1/2}$$

The maximal anisotropy of γ in Ω is

$$K(\gamma) = \sup_{x \in \Omega} K(\gamma, x).$$

The anisotropy function $K(\widehat{\gamma}, x)$ is constant for

$$\widehat{\gamma}(x) = \eta(x) R_{\theta(x)} \left(\begin{array}{cc} \lambda^{1/2} & 0\\ 0 & \lambda^{-1/2} \end{array} \right) R_{\theta(x)}^{-1}$$

where

$$\lambda \ge 1,$$

$$\eta(x) \in \mathbb{R}_+,$$

$$R_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

We say that $\widehat{\gamma} = \widehat{\gamma}_{\lambda,\theta,\eta}$ is a uniformly anisotropic conductivity.

Theorem 6.2 (Kolehmainen-L.-Ola 2005) Let $\Omega \subset \mathbb{R}^2$ be a bounded, simply connected $C^{1,\alpha}$ -domain, $\gamma \in L^{\infty}(\overline{\Omega}, \mathbb{R})$ be isotropic conductivity, and $z \in C^1(\partial \Omega)$ be the contact impedance.

Let Ω_m be a model domain and $f_m : \partial \Omega \to \partial \Omega_m$ be a $C^{1,\alpha}$ -diffeomorphism.

Assume that we know $\partial \Omega_m$ and $\widetilde{R} = (f_m)_* R_{\gamma,z}$. These data determine $\widetilde{z} = z \circ f_m^{-1}$ and an anisotropic conductivity σ on Ω_m such that

1. $R_{\sigma,\widetilde{z}} = \widetilde{R}$.

3. If σ_1 satisfies $R_{\sigma_1,\widetilde{z}} = \widetilde{R}$ then $K(\sigma_1) \ge K(\sigma)$.

Moreover, the conductivity σ is uniformly anisotropic.

Algorithm:

In following, we assume that z = 0 and denote $R_{\sigma} = R_{\sigma,z}$. The conductivity $\sigma = \hat{\gamma}_{\lambda,\eta,\theta}$ can obtained by solving the minimization problem

$$\min_{(\lambda,\theta,\eta)\in S} \lambda, \quad \text{where } S = \{(\lambda,\theta,\eta): R_{\widehat{\gamma}(\lambda,\theta,\eta)} = \widehat{R}\}.$$

In implementation of the algorithm we approximate this by

$$\min_{(\lambda,\theta,\eta)} \|R_{\widehat{\gamma}(\lambda,\theta,\eta)} - \widetilde{R}\|^2 + \varepsilon_1 |\lambda - 1|^2 + \varepsilon_2 (\|\theta\|^2 + \|\eta\|^2).$$

Let $f_m : \partial \Omega \to \partial \Omega_m$ be the boundary modeling map and σ be the conductivity with the smallest possible anisotropy such that $R_{\sigma} = \widetilde{R}$. Then **Corollary 6.3** Then there is a unique map

 $F_e: \Omega \to \Omega_m, \qquad F_e|_{\partial\Omega} = f_m$

depending only on $f_m : \partial \Omega \to \partial \Omega_m$ such that

$$det(\sigma(x))^{1/2} = \gamma(F_e^{-1}(x)).$$

Idea of the proof. If $F: \Omega \to \Omega$ is a diffeomorphism and γ_1 is an isotropic conductivity, then

$$K(F_*\gamma_1, x) = |\mu_F(x)|$$

where

$$\mu_F = \frac{\overline{\partial}F}{\partial F}, \quad \partial = \frac{1}{2}(\partial_{x_1} - i\partial_{x_2}).$$

To find the minimally anisotropic conductivity we need to find a quasiconformal map with the smallest possible dilatation and the given boundary values. This is called the Teichmüller map.

0.03

1.3 0.77 1.41

7 Unknown boundary problem in \mathbb{R}^3 .

The electrical potential u satisfies

$$\nabla \cdot \gamma \nabla u = 0, \qquad x \in \Omega \subset \mathbb{R}^3,$$
$$(z\nu \cdot \gamma \nabla u + u)|_{\partial \Omega} = h,$$

where γ is an isotropic conductivity and z is the contact impedance on the boundary. The boundary measurements are modeled by the

Robin-to-Neumann map $R = R_{z,\gamma}$ given by

$$R_{\gamma,z}: h \mapsto \nu \cdot \gamma \nabla u|_{\partial \Omega}$$

Again, let $f_m : \partial \Omega \to \partial \Omega_m$ be the modeling of boundary and $\widetilde{R} = (f_m)_* R_{\gamma,z}$.

Theorem 5 (Kolehmainen-L.-Ola 2006) Let $\Omega \subset \mathbb{R}^n$, $n \ge 3$ be a bounded, strictly convex, C^{∞} -domain. Assume that $\gamma \in C^{\infty}(\overline{\Omega})$ is an isotropic conductivity, $z \in C^{\infty}(\partial\Omega)$, z > 0 is the contact impedance, and $R_{\gamma,z}$ is the Robin-to-Neumann map.

Let Ω_m be a model domain and $f_m : \partial \Omega \to \partial \Omega_m$ be a diffeomorphism.

Assume that we are given $\partial \Omega_m$, the values of the contact impedance $z(f_m^{-1}(x))$, and the map $\widetilde{R} = (f_m)_* R_{\gamma,z}$.

Then we can determine Ω upto a rigid motion T and the conductivity $\gamma \circ T^{-1}$ on the reconstructed domain $T(\Omega)$.

Idea of the proof: Let γ be the isotropic conductivity on Ω , $\widetilde{\gamma} = (F_m)_* \gamma$, $F_m|_{\partial\Omega} = f_m$. Let \widetilde{g} be the metric in Ω_m corresponding to the conductivity $\widetilde{\gamma}$.

- $\widetilde{R} = R_{\widetilde{\gamma},\widetilde{z}}$ determine the contact impedance \widetilde{z} and the metric \widetilde{g} on boundary $\partial \Omega_m$.
- $\widetilde{z}(x)$ and $z(f_m^{-1}(x))$ determine $\beta = \det(Df_m^{-1})$.
- \mathfrak{g} and β determine $\gamma \circ f_m^{-1}$ on boundary $\partial \Omega_m$.
- On $\partial \Omega_m$ we find the metric corresponding to the Euclidean metric of $\partial \Omega$. This determines by the Cohn-Vossen rigidity theorem the strictly convex set Ω up to a rigid motion T.
- In $T(\Omega)$ we solve an isotropic inverse problem.

Consider now the following algorithm:

Data: Assume that we are given $\partial \Omega_m$, $\widetilde{R} = (f_m)_* R_{\gamma,z}$ and $z \circ f_m^{-1}$ on $\partial \Omega_m$.

Aim: We look for a metric \tilde{g} corresponding to the conductivity $\tilde{\gamma}$ and \tilde{z} such that $\tilde{R} = R_{\tilde{\gamma},\tilde{z}}$ and $\tilde{z} = z \circ f_m^{-1}$.

Idea: We look for a metric \tilde{g} in Ω_m and $\rho \in C^{\infty}(\Omega_m)$ such that

$$\overline{g}_{ij}(x) = e^{2
ho(x)}\widetilde{g}_{ij}(x)$$
 is flat.

Algorithm:

1. Determine the two leading terms in the symbolic expansion of \widetilde{R} . They determine a contact impedance \widehat{z} and a metric \widehat{g} on $\partial \Omega_m$ such that if $\widetilde{R} = R_{\widetilde{\gamma},\widetilde{z}}$ then $\widetilde{z} = \widehat{z}$ and $\widetilde{g}|_{\partial \Omega_m} = \widehat{g}$.

2. Compute the ratio of reconstructed i.e. \hat{z} , and measured contact impedances

$$\beta(x) := \frac{z(f_m^{-1}(x))}{\widehat{z}(x)}, \quad x \in \partial \Omega_m.$$

Then $\beta = \frac{dS_{\partial\Omega_m}}{(f_m)_* dS_{\partial\Omega}}$.

3. Let $dS_{\widehat{g}}$ be the volume form of \widehat{g} on $\partial \Omega_m$ and dS_E the Euclidean volume on $\partial \Omega_m$. Then

$$dS_{\widehat{g}} = (\det \widehat{g})^{1/2} \, dS_E.$$

Define

$$\widehat{\gamma} = (\det \widehat{g})^{1/2} \beta.$$

With this choice $\widehat{\gamma}$ will satisfy $\widehat{\gamma}(x) = \gamma(f_m^{-1}(x))$ for $x \in \partial \Omega_m$.

4. Define the boundary value $\hat{\rho}$ for the function ρ by

$$\widehat{\rho}(x) = \frac{1}{2-n} \log(\widehat{\gamma}(x)), \quad x \in \partial \Omega_m.$$

5. Solve the minimization problem

 $\min F_{\tau}(z,\rho,\gamma)$

$$\begin{aligned} F_{\tau}(z,\rho,\gamma) &= \|\widetilde{R} - R_{\gamma,z}\|_{L(H^{-1/2}(\partial\Omega_m))}^2 \\ &+ \|\frac{z(x)}{z(f_m^{-1}(x))} - \beta(x)\|_{L^2(\partial\Omega_m)} + \|\rho|_{\partial\Omega_m} - \widehat{\rho}\|_{L^2(\partial\Omega_m)}^2 \\ &+ \tau \|\mathbf{C}\|_{L^2(\Omega_m)}^2 \\ &+ \sum_{i,j=1}^n \|\rho_{,ij} - \left(-\mathsf{Ric}_{ij} + \frac{1}{4}g_{ij}\mathbf{R} - \frac{1}{2}g_{ij}g^{lm}\rho_{,l}\rho_{,k}\right)\|_{L^2(\Omega_m)}^2 \end{aligned}$$

where $\tau \ge 0$, g is the metric corresponding to γ , Ric and Rare the Ricci curvature and scalar curvature of g, and $C_{ij} = g^{kp}g^{lq}\nabla_k(\text{Ric}_{li} - \frac{1}{4}R g_{li})\epsilon_{pqj}$ is Cotton-York tensor. 6. Find the flat metric

$$\overline{g}_{ij}(x) = e^{2\rho(x)}g_{ij}(x) = (F_m)_*(\delta_{ij})$$

on Ω_m and determine the geodesics with respect to the metric \overline{g} .

These give us the the embedding $F_m^{-1}: \Omega_m \to \Omega$. This gives us Ω upto a rigid motion and the conductivity γ on it.

Theorem 6 (Kolehmainen-L.-Ola 2006) Let $\Omega \subset \mathbb{R}^3$ be a bounded, strictly convex, C^{∞} -domain. Let $\gamma \in C^{\infty}(\overline{\Omega})$ is an isotropic conductivity, $z \in C^{\infty}(\partial\Omega)$, z > 0 be a contact impedance.

Let Ω_m be a model domain and $f_m : \partial \Omega \to \partial \Omega_m$ be a C^{∞} -smooth diffeomorphism.

Assume that we are given $\partial \Omega_m$, the values of the contact impedance $z(f_m^{-1}(x))$, $x \in \partial \Omega_m$, and the map $\widetilde{R} = (f_m)_* R_{\gamma,z}$.

Let $\tau \geq 0$. Then the minimizers \tilde{z} , $\tilde{\rho}$ and $\tilde{\gamma}$ of $F_{\tau}(\tilde{z}, \tilde{\rho}, \tilde{\gamma})$ determine Ω , z, and γ up to a rigid motion.

Inverse problems for conformally Euclidean metric. We say that metric g is conformally flat if

 $g_{ij}(x) = \alpha(x)\overline{g}_{ij}(x),$ where metric $\overline{g}_{ij}(x)$ is flat.

Open problem: Can we determine a conformally flat metric in Ω_m from its Robin-to-Neumann map?

If this is true, then one can solve the inverse problem with an unknown boundary also for non-convex domains.

8 Maxwell's equations.

In $\Omega \subset \mathbb{R}^3$ Maxwell's equations are

$$\nabla \times E = -B_t, \ \nabla \times H = D_t,$$

 $D = \epsilon(x)E, \ B = \mu(x)H \quad \text{in } \Omega \times \mathbb{R}.$

Let *M* be a 3-dimensional manifold and $\epsilon(x)$ and $\mu(x)$ metric tensors that are conformal to each other. Maxwell equations in time-domain are

 $dE = -B_t, \ dH = D_t, \quad D = *_{\epsilon}E, \ B = *_{\mu}H \quad \text{in } M \times \mathbb{R},$ $E|_{t<0} = 0, \quad H|_{t<0} = 0,$

E, H are 1-forms, D, B are 2-forms, $*_{\epsilon}, *_{\mu}$ are Hodge-operators.

Boundary measurements: Assume we are given $\partial \Omega$ and

 $Z: n \times E|_{\partial \Omega \times \mathbb{R}_+} \to n \times H|_{\partial \Omega \times \mathbb{R}_+},$

Invariant formulation: Assume we are given ∂M and

$$Z: i^*E|_{\partial M \times \mathbb{R}_+} \to i^*H|_{\partial M \times \mathbb{R}_+},$$

where *i* is the imbedding $i : \partial M \to M$.

Theorem 8.1 [Kurylev-L.-Somersalo 2005] Let M be a compact connected 3-manifold and ϵ and μ be metric tensors conformal to each others. Assume that we are given $\Gamma \subset \partial M$ and restriction of

$$Z_{\Gamma}: i^*E|_{\partial M \times \mathbb{R}_+} \to i^*H|_{\Gamma \times \mathbb{R}_+}$$

for $i^*E|_{\partial M \times \mathbb{R}_+} \in C_0^{\infty}(\Gamma \times \mathbb{R}_+)$. Then we can find M and ϵ , μ on M.

Corollary 8.2 Assume that $M \subset \mathbb{R}^3$ and ϵ and μ are scalar functions. Then Γ and Z_{Γ} determine uniquely (M, ϵ, μ) .

Proof. We can focus the *B*-field to a single point: **Lemma 8.3** Let T > 0 be a sufficiently large time. Then by using ∂M and map $Z_{\partial M}$ we can find all sequences of boundary values $i^*E_k|_{\partial M \times \mathbb{R}_+}$, k = 1, 2... such that for some $y \in M$ and $A \in T_y^*M$

$$\lim_{k \to \infty} B_k(x, T) = d(A\delta_y) \quad \text{in } \mathcal{D}'(M).$$
(3)

The set of focusing sequences

$$\{(i^*E_k)_{k=1}^{\infty}: \text{ the limit (3) exists}\} \subset (L^2(\partial M))^{\mathbb{Z}_+}$$

can be identified with the tangent bundle TM of M,

 $TM = \{(y, A) : y \in M, A \text{ is a tangent vector of } M \text{ at } y\}.$

