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Motivation
Let O C R™,

u(x,t) satisfy a wave equation in Q2 x R

Inverse problem:

Can we determine the coefficients of the wave equation,
l.e., physical model in 2 by observing

u(x,t) near 92 x R

for all possible solutions u(x,t)?
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The inverse problem has no unique solution as
# We can change definition of z-coordinate: Let

v(z,t) = u(o(x),1)
where
¢: =, Plag =1id
# We can change scale of u-coordinate: Let
w(z,t) = k(x)u(z,t)

where x(z) > 0.
All functions «, v and w model the same physical process.
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Let us consider 2 as Riemannian manifold
dg(x,y) = travel time between x and y.

Let us identify all isometric Riemannian manifolds, that is,
we ask following question

Do the boundary measurements determine uniquely the
iIsometry type of the Riemannian manifold?

—p. 4/69



Let « satisfy the wave equation

w4+ a(z, D)u = 0.
Then the gauge transformation of w,

w(z,t) = k(z)u(z, 1)
satisfy

wit + ax(z, D)w = 0,
where

ar(z, D)w = ka(z, D) (k™1 w)
We say that the gauge equivalence class of a(x, D) is
a(z, D)) ={ax(z,D) : x> 0j

Can the equivalence class be uniquely determined?
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1 Setting of the problem |

Let us consider the wave equation

ug(x,t) + Au(z,t) = 0, In M x R4,
uli=0 = 0, utli=0 =0,

Ulgryxr+ = f

where M 1s a m-dimensional manifold and

L 'k
Au——é 1a] éh%‘?m] g bj——l—cu
=

where /%, b7, c are real, smooth, [a/*(x)] > 0.
In addition ...
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Assume that there is dV such that A is selfadjoint in
L*(M,dV) with

D(A) = H*(M)N Hi(M).
Now
ik

¢ = o/¥ defines a metric tensor on M.

This makes (M, g) a Riemannian manifold.

-p. 7/69



1.1 Invariant inverse problem
The Robin-to-Dirichlet map is
A . (6,,% —+ UU)‘E?MXR+ —> u’aMXR+.

Dynamical inverse problem:
Let oM and the map A be given. Can we determine

(M, g) and [A(x, D)]?
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Energy flux through boundary The energy of the wave at
time ¢ is

E(u,t) = /M (16su(t)]* + | Grad u(t)|2 + qlu(t)|?)dV +

+ / olu(t)|2dS.
oM

For h = ulpprxr, € CGP(OM x Ry) let

[I(h) = lim E(u,t).

{—00

Inverse problem for energy flux:
Let oM and map II be given. Can we determine

(M, g) and [A(z, D)|?
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Inverse boundary spectral problem:
Operator A has in L?(M,dV) orthonormal eigenfunctions

P

(—Ag +P+q— )\j)goj = 0,
au@j‘aM = 0.

Let boundary spectral data
{an )\]7 Spj‘an ]:1727}
be given. Can we determine

(M, g) and [A(z, D)]?
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# The above inverse problems are equivalent.

o Consider gauge equivalence class [A(x, D)] of operator
A(z, D). Then there is a unique Schrodinger operator

—A, +q € |A(z, D)|.

Because of this we next restrict ourselves to the case
A=—-A,+q.
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2 Setting of the problem I

Denote by
uw =l (2,1
the solutions of

utt — Agu+qu =0 on M x Ry,

—Oulonrxr, = [,
uli—o = 0,  utlt=0 = 0,

where v 1s unit interior normal of oM. Define
Arf = |orr<0.1).

We denote A = A. Assume that we are given the
boundary data (M, A).

—p. 12/69



Results on the problem:
o Nachman-Sylvester-Uhimann '88.

® c(z)?Ain R™ by boundary control method, Belishev '87 ,
Belishev-Kurylev '87.

» A, on manifold, Belishev-Kurylev "92.

°

Local controllability, Tataru '95.

o Equivalence of above inverse problems
Katchalov-Kurylev-L.-Mandache 2004

o Maxwell's equations Kurylev-L.-Somersalo 2006.

# Dirac system Kurylev-L.-Somersalo 2006.

® Reconstruction based on iterated time reversal
Bingham-Kurylev-L.-Siltanen 2007.

In the following we consider the geometric version of the
Belishev-Kurylev-Tataru method, or Boundary Control
method, see references [1-7].
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2.1 Blagovestchenskii identity

Lemma 2.2 Let f h € L*(OM x [0,2T]). Then
/ uf (2, TY" (2, T) V), (x) =

/ / J(t,s) | f(t)(Aarh)(s) — (Aar f)(t)h(s)] dSq(z)dtds,
0,272 JOM

where J(t,s) = $xr(s,t) and x, being the characteristic
function of the triangle

L:{<S,t)ER+XR+ t—l—SSZT, S<t}
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Proof. Let w(t,s) = [,, u/ (t)u"(s) dV,. Integrating by parts,

we see that
G~ uts) = — [ [Au (Ou'(s) — uf (A8 )] V(o
M
— —/ [@uf(t)uh(s)—uf(t)auuh(s)} dSy
OM
_ / [F(H)AR(s) — Af(D)h(s)] dS,.
OM
Moreover,

w|t:O — w|s:0 =0, at/w|7j:() — asw‘szo = 0.

Thus we can find w(s, t) by solving a wave equation with
known initial data and right side. ]
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2.3 Domains of influence

Let I' C OM be a non-empty open set. We denote by

L*(I" x [0,T)) the subspace of L?(0M x [0,T]) that consists
of the functions f with supp (f) c T x [0, 7.

Definition 2.4 The subset M (I',7) C M, T > 0,

MT,7)={zxe M: dz,T) <71}

Is called the domain of influence of I at time .

M, 7)={ze M: dzT) <1}
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Lemma 2.5 Let f € L?>(T' x [0,7]). Then
supp (v’ (1)) € M(T, 7).

Proof. The result follows finite velocity of wave
propagation. []
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We denote by L?(Q), Q c M, the subspace of L?(M), which
consists of all functions f € L?(M) that are equal to zero in
M\ Q2. We prove following Tataru-type controllability type
theorem.

Theorem 1 Letr > 0. The linear subspace,
{w (1) € L*(M(T,7)): f e x[0,7])},

is dense in L?*(M (T, 7)).
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Proof. Let ¢y ¢ L?(M(T', 7)) be such that

(w (-, 7),9) =0

forall f € C3°(T" x [0, 7]).
To prove the claim, it is sufficient to show that ¢ = 0.
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We consider the wave equation,

(8152 - g _|_Q) 7 in M x (077_)7

0 6‘8MX(O T) 0, 6‘?5:7' =0, ate‘tZT = 1.

Integrating by parts we obtain

0 = / [/ (02 — Ay + q)e — ((02 — Ay + q)u! )e] dV, dt
M x(0,7)

/ uf(T)zpdvg+/ fedS, dt
M OM x(0,7)

/ JedS,dt,
OM x(0,7)

forall f € C3°(T" x [0, 7]).
This yields that the Cauchy data of e vanish on I" x (0, 7).

—p. 20/69



Recall that e(x, 7) = 0. We continue e onto t € [, 27| as

B 1) e(x,t), fort <,
T,t) =
—e(x,27 —1t), fort>r.

Then E € C([0,27]; HY(M)) n C*([0, 27]; L*(M)) and
(0f — Ay +q)E=0 inM x(0,7).

The Cauchy data of E vanish on I" x ([0, 27] \ {7}). Since
0,FE € L*(0M x (0,27)), we see that

Elrxo2:) =0, O E|rx02:) =0.

Then ¢ = 0 by the following Tataru-Holmgren-dohn theorem.

—p.21/69



Theorem 2 Letu be a solution in M x (0,27) of the wave
equation

(07 — Ay +qu=0 inM x (0,27).
such that for an open set1" C OM,
ulrxjo,27] = 0, dvulrx(o,2r) = 0.

Then, att = 7, the function v and its derivative o;u vanish in
the domain of influence of T,

w(x,7) =0, Ou(x,7) =0 forx e M(T',T).
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2.6 Wave basis
The set

{u/ (1) € LA(M(T', 7)) : fe L*T x[0,7])}

is dense in L*(M(T', 7)). Thus, there are functions f;,
j=1,2,..., such that {u/s(7)}%2, form an orthonormal basis
in the space L?(M (T, 1)).

We will construct such functions f; from the boundary data.
The corresponding basis {u/i(7)}52, is called the wave
basis.
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Lemma 2.7 Letr > 0. Given the boundary data it is
possible to construct boundary sources f; € L*(T x [0, 7])
such that

Vj =uli(r), j=1,2,...

?

form an orthonormal basis of L?(M (T, 7)).
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Proof. Let {£;}>2, C Cg°(I' x (0,7)) be a complete set in
L(T" x [0, 7]).
We can compute that inner products

cjp = (u" (1), u"™ (7)),

Next we use the Gram-Schmidt orthogonalization
procedure to construct f;. More precisely, we define

f; € L*(T x [0, 7]) recursively by

7—1

gj =hj =Y (W (1), ul* (7)) fr.

k=1
9j
(s (), us (7)) 172

When ¢; = 0, we remove the corresponding s, from the
original sequence and continue the procedure. ]
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Since {h;} C C5°(I" x [0,7]), we have f; € C5°(T" x [0, 7]).
Thus vw/i (1) € C*®(M).

Let T > diam (M). Then M(0M,T) = M, and the
corresponding wave basis

W (1) 12

is the orthonormal basis in L?(M). Next we reserve the
notation n; € C*°(0M x (0,T")) for such boundary values.
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2.8 Projectors

Denote by Pr . the orthogonal projector in L?(M) onto the
space L*(M (T, 1)),

Pr,: L*(M) — L2(M(L, 7)),

(Prra)(z) = Xy, (@)a(z),

where x /- Is the characteristic function of the domain of
influence M (T, 1),

%) — 1, forxe M(T, 1),
XM(T,m)\t) = 0, forx¢g M(T, 7).
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Lemma 2.9 Letf,h € L?(OM x [0,T]) andT' C OM be an
open set. Then, given the the map A, it is possible to find
the inner product

(Propd (1), u(s)) = /M@ W0 ) vy

forany 0 <t,s, 7 <T.
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Proof. We can find f; € C5°(T" x [0, 7]) such that v; = u/i(7)
is an orthonormal basis in L?(M (T, 7)),
Then, for any a € L?(M(T, 7)),

Z a,vi) v
7=1
As (Pr ul(t),v;) = (u/(t),v;), we have
(Fr, -ul Z ) vj)-
7=1

Here (u/(t),v;) and (u"(s),v;) can be computed using
boundary data. ]
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Denote by M (y, 7) the domain of influence of a point
y € OM,

M(y,7)={x e M : d(z,y) <7},
and by P, ; the orthoprojector

Pyr: L(M) — L*(M(y,7)).
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Corollary 2.10 Let f,h € L*(OM x [0,T]) andy € OM be
given. Then the boundary data determine the inner product

(Pyrt (1), u"(5)) = /M( w0 ) v,

forany 0 <t,s,7 <T.
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Proof. LetI';, [ =1,2,... be open sets such that

') C 17, ﬂ IVES {y}
[=1
Then,
lim XM (Ty,7) (33) — XM (y,7) ($>

[— 00

pointwise. By the Lebesgue dominated convergence
theorem,

lim (Pr, ;u/ (t),u"(s)) = (P, v/ (t),u"(s)).

[—00
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Corollary 2.11 Let f € L?(0M x [0,T]) andy € OM. Then
the boundary data determine uniquely the inner product

@)
(Py+u™(T),u™ (T Z (u'™ (T NV WM(T), uli (1)),
1=1

where {u’i(1)}52, form an orthonormal basis in L*(M (y, 7)).
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Corollary 2.12 Let f € L*(0M x [0,T]) andy; € OM, 7; > 0.
Then the boundary data determine the inner product

(Qnu! (s),u™(T))

where
N
QN — H PyjaTj
j=1

and {u/i (1)}52, form an orthonormal basis in L*(M(y,)).
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Proof. For V = 1 the claim follows from Corollary 2.11.
Assume now that it is valid for N — 1.
We can write

QN_ ! Z (Qn_ ! s),u™(T))u"™(T)
k=1

and
(Q@nu (T),u™(T)) = (Pyy ry Qn—1u! (T),u™ (T))

= > APyt (1), u™(T){ Q10 (5),u™(T)).
k=1

From this the claim follows by induction.
[]
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Observations:
#® We can compute the Gram matrix [qjk]ﬁzl,

gk = (Qu (T),u™(T))

where {u"(T)}2, is an orthonormal basis in L*(M) and

fie )

® The projector Q : L*(M) — L*(M) is

N
Qu(z) = x1(z)v(z), = )(M(y;,7;)\ M(y;,7;)):
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® The projector Q : L*(M) — L*(M) is

N
Qu(z) = x1(z)v(z), = )(M(y;, 7))\ M(yj,7;)):
j=1

® The projector Q : L?(M) — L?(M) vanishes, that is, its
Gram matrix is zero if and only if

N

m(I) =0, I=()(M(y,7")\ M(y;,7;))
=1

Thus we can check using boundary data if m(7) = 0.
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Y2

U1

Y3

N
ﬂ (M(ij T;_) \ M(ij Tj_))
j=1
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Boundary distance functions. For x € M define
ra(y) = d(z,y), y € OM.
Let
R:M — C(OM), R(x)=r,.

Next we consider R(M) as a submanifold on C(0M).
Theorem 3 Using boundary data we can determine

RM)={r, e C(OM): xe€ M}

Thus the constructed set k(M) can be identified with M.
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By previous observations, it is enough to prove the following
result:

Lemma 2.13 Let {z,}>°, be a dense set on OM. Then

r(-) € C(OM) lies in R(M) if and only if, for any N > 0,

N . N 1
In = () M(zn,7(20) + ~) N () (M (20, 7(20) — )"
n=1 n=1
satisfies
m(In) # 0 (1)

Moreover, condition (1) can be verified using the boundary
data.
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Proof “/f—part. Assume that r(-) = r,(-) with some =z € M.
Consider a ball By (z). Then,

1

Bun(x) € M(z.7(2) + 1) \ M(z7(2) — ).

Thus if By v (z) C Iy and m(Iy) # 0.
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"Only if"—part. Assume that m(Iy) # 0. Then there exists

1 1
TN € m ( (2n, T N) \ M (zp,r(2n) — N)> .
Since M is compact, we can choose a subsequence of xy

(denoted also by zy), so that there exists a limit

r= lim xy.
n—aoo

By continuity of the distance function, it follows from (2) that
dx,zn) =1(zn), n=12....

Since {z,} are dense in OM, we see that r(z) = d(z, 2) for
all z€¢ oM. Thus r = r,. H
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Visualization how to check if r(-) isin R(M).

Y2 Y3

N
m(( ) (M(y;, 7))\ M(y;,7;7))) = 07
j=1

U1
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Visualization how to check if r(-) isin R(M).

Y2
Y3 N

J=1

m(((M(y;. 1)\ M(yj, 7)) = 07
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Visualization how to check if r(-) isin R(M).

Y2
Y3 N

J=1

U1

m(((M(y;. 1)\ M(yj, 7)) = 07
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Visualization how to check if r(-) isin R(M).

Y2
Y3 N

J=1

U1

m(((M(y;. 1)\ M(yj, 7)) = 07
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Visualization how to check if r(-) isin R(M).

Y2
Y3 N

J=1

m(((M(y;. 1)\ M(yj, 7)) = 07
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Visualization how to check if r(-) isin R(M).

Y2
Y3 N

J=1

U1

m(( ) (M(y;, 7))\ M(y;,7;7))) = 07
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Visualization how to check if r(-) isin R(M).

Y2

T2

1

73

U1

Y3

N
m(ﬂ(M(yjan) \ M(y;,7;7))) =07

J=1
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Visualization how to check if r(-) isin R(M).

Y2

T2

1

73

U1

Y3

N
m(ﬂ(M(yjan) \ M(y;,7;7))) =07

J=1
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2.14 Reconstruction of (M, g) from R(M ).

Theorem 4 The set R(M) has a Riemannian manifold
structure which is isometric to (M, g).
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Recall that for x € M
re(z) =d(x,2), 2 € OM
and that
R:M — C(OM), R(x)=r,.

Next we consider R(M) as a submanifold on C(0M).
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By triangular inequality we have

HT:I: — TyHC(aM) < d(:l?,y), x,y € M.

Example: Consider that case when all geodesics of a
compact manifold (M, g) are the shortest curves between
their endpoints and all geodesics can be continued to
geodesics that hit the boundary. Then for any x,y € M the
geodesic from z to y hits later to z € M. Then

72 = rylleonmy 2 [re(2) —ry(2)] = d(z, )

Then (M, d) is isometric to (R(M), || - ||)-
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Lemma 2.15 The set R(M) is homeomorphic to (M, g).

Proof.
Recall the following simple result from topology:

Assume that X and Y are Hausdorff spaces, X is compact
and F': X — Y Is a continuous, bijective map from X to Y.
Then F'is a homeomorphism.
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Clearly, R : M — R(M) is surjective and continuous.
Next we prove that it is one-to-one. Assume that
r.(-) = ry(-). Denote by zp any point where

d(x,0M) = min r,(z) =1,
(x,OM) min 7 (2) =7re(z9) oOF

d(y,0M) = Zrég‘l]b ry(z) = ry(20).
Then z; is a nearest boundary point to = implying that the
shortest geodesic from zy to x is normal to 0M. The same

IS true for y with the same point z.
Thus z = ~,,(s) =y for s = d(z, zg). ]
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Boundary normal coordinates.

Consider a normal geodesic . (s) starting from z. For small
5,

d(fyz(s)a GM) = 5, (2)

and z is the unique nearest point to v.(s) on OM. Let 7(z2)
be the largest value for which (2) is valid. Then for s > 7(z),

d(Vz(S)a (?M) < S,

and z is no more the nearest boundary point.
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T(z) € C(OM) is the cut locus distance function.
The cut locus is

w=A{z;: 2 €M, x.=7.(1(2))}.
In domain M \ w we can use the coordinates
v = (2(2),t(2)),

where z(x) € 9M is the unique nearest point to = and
t(x) =d(x,0M).
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We will now use boundary normal coordinates to introduce
a differential structure and metric tensor, g,., on R(M) to
have an isometry

R:(M,g) — (R(M),g5).

We will concentrate mainly on doing so for R(M) \ R(w).
(For the general case, see [KKL])
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First, observe that we can identify those r = r, € R(M) with
re M\ w.

Indeed, r = r, with z = v,(s), s < 7(z) if and only if
i. 7(+) has a unique global minimum at some point z € OM.

ii. there is r € R(M) having a unique global minimum at the
same z and r(z) < r(z).
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A differential structure on R(M \ w) can be defined by
introducing coordinates near each ¥ € R(M \ w).

In a sufficiently small neighbourhood V ¢ R(M) of r° the
coordinates

r— (Y(r),T(r)) = (y(arg;éggl% r), min r)

are well defined. The
= (Y(rg), T(ry))

coincides with the boundary normal coordinates

z — (y(z),t(x)) on (M, g).
These coordinate determine the differential structure on
R(M \ w).
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Construction of the metric g, on R(M).

Let v ¢ R(M \ w), V C R(M) be its neighbourhood, and
Y :V — U C R™ be local coordinates, Y (%) = 0

For - € OM we define an evaluation function
K,: V>R, K,r)=r(z).
The function E. = K, oY~ ! : U — R satisfies

E.(y):=d(z,Y '(y), yeU
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Consider the function E,(y) as a function of y with a fixed z.
The differential d&, at point 0 is a covector in T U.

Since the gradient of a distance function has length one, we
see that

OB, OF,
[AE-|2, = (9.)" ~ 1

5y OF ., L, k=1,...,m.

Varying = € M we obtain a set of covectors dF,(0) in the
unit ball of (77U, gr) which contains an open set.

This determines uniquely the tensor g¢...
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Hence we have proven

Theorem 5 The boundary data (0M, A) determine the
manifold (M, g) upto isometry.

Also the potential ¢(x) of the operator —A, + ¢ can be
uniquely determined.
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2.16 New resulis: Time reversal

On formal level, the the previous algorithm is based on the
following task: Let f be given. Can we find h such that

u(x,T) = XM (T,7) (I)U‘f(iﬁa T).
This is equivalent of the minimization of

|/ (T) =" (D) || 2ary = b € CE(T x [0, 7).

o O

s T
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Generally, the minimization problem has no solution and is
Ill-posed. We consider the regularized minimization problem

min F(h,a)
heL2(OM x[0,2T)

where « € (0,1) and

F(h,o) = (K(Ph = f), Ph — f)r20mx0.21).d5,) + |72
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Let us recall the Blagovestchenskii identity
[ W T e T) Vi
= / / J(t,s)|f(t)(Aarh)(s) — (Aer f)(t)h(s)|dS,dtds
0,272 JOM

_ / (K f)(,£)h(x, ) dS,(x)dt,
OM x[0,2T]

where J(t,s) = $x1(s,t) and

L:{(S,t)ER+XR+ t—|—8§2T, S>t}
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Here
K = RorAor RorJ — JAar,

where
Rf(SC,t) — f(ZIZ,QT o t)a

IS the time reversal operator and

1

min(27—t,t)
Tfat) = 3 /O F(2,)ds,

IS the time filter. Note that
ST — RQTAQTRQT asS G(CE, 33/, t— t) — G(CE’, Z, —(t) — (—t/>).
We also use the restriction operator

Ppf(z,t) = xp(z,t)u(x, 1),
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The processed time reversal iteration is

1
F o= ;P(RAQTRJ — JAQT)f,
Ap = AZTUM);
bn = AZT(RJhn),
Q 1

st = (1 — Vhy — —(PRb, — PJay) + F,
w w

where f ¢ L*(OM x [0,2T]) and a,w > 0 are parameters.
lteration starts at Ay = 0.
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Theorem 6 (Bingham-Kurylev-L.-Siltanen 2007) Let
I'"coM,0< Ty <T, and B =11 x [T—Tl,T]. Let

f e L*(OM x R,) and h,, = h,(a) be defined by the
processed time reversal iteration. Then

h(a) = lim hy,(a)

n—oo

and the limits satisfy in L*(M)

lim o) (2, T) = a1y (@) (2, 7).

a—0

MIT,7)={xe M: dz,T) <71}
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Proof. The minimization problem

min F(h, )
heL?(0M x[0,2T)

with o € (0,1) and

F(h7 Oé) — <K(Ph _ f)7 Ph — f>L2(8M><[O,2T],ng)
+al|hl[7:

leads to a linear equation
(PKP + a)h = PKf.

This can be solved using iteration. N
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Corollary 2.17 Assume we are given the boundary OM
and the response operator A. Then using the the processed
time reversal iteration we can find constructively the

manifold (M, g) upto an isometry and on it the operator A
uniquely.
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Let v = v, .,(9).
The distance dist (z, z) is the infimum of all 7 that satisfy the
condition

(A) The set
(M(z,s) N M(y, 7))\ M(OM, s — ¢)

IS non-empty for all ¢ > 0.
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