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Abstract

This paper proposes a general approach to stochastic mortality modelling,
where the logit transforms of annual survival probabilities in different age
groups are modelled by linear combinations of user-specified basis functions.
The flexible construction allows for an easy incorporation of population-
specific characteristics and user preferences into the model. Moreover, the
structure enables the assignment of tangible demographic interpretations to
the risk factors of the model. Survivor numbers are assumed to be binomially
distributed, and, under very general assumptions, the resulting log-likelihood
function in model calibration is shown to be strictly concave. This facilitates
the use of convex optimization tools, and guarantees that the underlying risk
factors are well-defined. We fit two versions of the model intoFinnish adult
(18-100 years) population and mortality data, and present simulations for the
future development of Finnish life spans.

Keywords: Mortality risk, longevity risk, survival probabilities, stochastic
modelling, convexity

1 Introduction

General longevity has improved significantly over the 20th century, with unexpect-
edly high increases in life spans. Mortality has not only been falling unpredictably
in general, but there have also been considerable fluctuations in the rate of improve-
ment over time. In addition, the changes in mortality rates across different age
groups have also displayed different behavior. The pensions industry as well as na-
tional social security systems incur the costs of unpredictably improved longevity,
as they need to pay out benefits for much longer than was anticipated. The effects
of mortality risk on demographics and on fiscal sustainability have been studied
e.g. in [2, 1].

1



As the effects of factors such as medical advances, environmental changes
or lifestyle issues on mortality remain unpredictable, life and pensions insurance
industry as well as national pensions funds have become increasingly aware of
the need for longevity risk management. Consequently, several new financial in-
struments have been introduced for the management of mortality risk; see e.g.
[5, 4, 17, 22]. The mathematical tools for pricing and hedging of such products are
still rather under-developed, compared with more traditional financial instruments.
The markets for these new securities would benefit from well-founded models for
mortality risk management.

This paper proposes a general approach, where the logistic transforms of an-
nual survival probabilities in different age groups are modelled by linear combi-
nations of basis functions specified by the user. The flexible constructionallows
population-specific characteristics as well as user views and preferences to be in-
corporated into the model. The structure also enables the assignment of tangible
demographic interpretations to the risk factors of the model. Survivor numbers
are assumed to be binomially distributed, which, under very general assumptions
about the basis functions, results in a strictly convex log likelihood function when
calibrating the model. This guarantees the uniqueness of risk factors, andfacili-
tates the use of convex optimization tools in the estimation of risk factor values by
the maximum likelihood method.

Several models have been proposed for capturing the uncertainty in future de-
velopment of mortality rates; see [10] for a recent review. The earliest and still
widely popular discrete-time model with one stochastic factor was introduced by
Lee and Carter [20] in 1992. It was followed by a number of modifications (see
e.g. [7, 21, 6, 16, 15]), varying the original model and addressing its shortcomings.
Models with multiple stochastic factors were subsequently proposed by Renshaw
and Haberman [25] and Cairns et al. [9], with extensions incorporating cohort ef-
fects by Renshaw and Haberman [26] and Cairns et al. [11]. Currie etal. [12] have
applied penalized splines in mortality modelling. In addition, although mortality
data is generally published on discrete time intervals, rendering the discrete-time
framework a natural choice for practical implementations, the development of mor-
tality has also been considered in continuous time (see e.g. [23, 13, 14]).

In the modelling approach proposed in this paper, the logit transforms of sur-
vival probabilities are modelled by linear combinations of user-specified basis
functions on the age groups. The weights of the basis functions are the stochastic
risk factors capturing the uncertainty in the future survival probabilities.As the
number of basis functions as well as their properties, such as piecewise linearity,
continuity and smoothness can be chosen by the user, population specific charac-
teristics as well as user preferences and other expert opinions can betaken into
account.

An appropriate choice of basis functions ensures that the risk factors of the
model have an easy interpretation, for instance as the logit transforms of the sur-
vival probabilities in certain cohorts, which facilitates the assessment of themodel,
and enables the study of the relationships between survival probabilities and eco-
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nomic factors. This is a central issue in e.g. the engineering of mortality-linked
securities.

The chosen model is fitted into data by the maximum log-likelihood method,
assuming deaths to be binomially distributed. This results in a strictly concave log
likelihood function to be maximized. This feature not only means that the risk
factors are well-defined, but also enables the use of convex optimization tools in
model calibration.

As an example, we study Finnish adult (from 18 to 100 years) longevity. We
choose piecewise linear basis functions, and consider two exemplary models with
two and three basis functions, respectively. Using the resulting model, we present
simulations for future development of Finnish survival probabilities and cohort
sizes with some promising results.

The rest of this paper is organized as follows. Section 2 presents the modelling
procedure. Section 3 illustrates the modeling procedure by fitting two models to
Finnish adult population data. The resulting models are analyzed in terms of his-
torical data as well as in simulations. Section 4 concludes.

2 Model specification

Let E(x, t) be the number of individuals aged[x, x + 1) years at the beginning of
yeart in a given population. Our aim is to model the values ofE(x, t) over time
t = 0, 1, 2, . . . for a given setX ⊂ N of ages. We assume that the conditional
distribution ofE(x+1, t+1) givenE(x, t) is binomial:

E(x+1, t+1) ∼ Bin(E(x, t), p(x, t)), (1)

wherep(x, t) is thesurvival probability, the probability that an individual agedx
and alive at the beginning of yeart is still alive at the end of that year. Although
previous literature predominantly applies the Poisson distribution to the numbers
of deaths during a year, the binomial distribution is more realistic in a discrete time
framework. We adopt a discrete time framework from the beginning since most
available data sets are for yearly observations and it is the yearly values that are
of interest in many applications. The distinction between binomial and Poisson
distributions becomes important especially whenE(x, t) is small as is often the
case in older age groups and in the small populations of countries such as Finland.

A stochastic mortality model is obtained by modelling the survival probabili-
ties p(x, t) as stochastic processes. The future values ofE(x+1, t+1) are then
obtained by sampling fromBin(E(x, t), p(x, t)). The uncertainty in the future val-
ues ofp(x, t) represents the systematic risk in future values ofE(x, t). Even if the
’true’ survival probabilities were known, future population sizes wouldstill be ran-
dom. However, as the population grows, the fractionE(x+1, t+1)/[E(x, t)p(x, t)]
converges in distribution to constant1. For large populations, the population dy-
namics is thus well described byE(x+1, t+1) = E(x, t)p(x, t), and the main
uncertainty comes from unpredictable variations in the future values ofp(x, t).
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We propose to model the logistic probabilities by

logit p(x, t) := ln
( p(x, t)

1 − p(x, t)

)

=

n
∑

i=1

vi(t)φi(x), (2)

whereφi are user-definedbasis functionsand vi are stochasticrisk factors that
vary over time. In other words, in this frameworkp(x, t) = pv(t)(x), wherev(t) =
(v1(t), . . . , vn(t)) andpv : X → (0, 1) is the parametric function defined for each
v ∈ R

n by

pv(x) =
exp (

∑n
i=1 viφi(x))

1 + exp(
∑n

i=1 viφi(x))
. (3)

Modelling the vector of risk factorsv = (v1, . . . , vn) as a real-valued stochastic
process impliesp(x, t) ∈ (0, 1), guaranteeing that they are indeed probabilities.

With appropriate choices of the basis functionsφi(·) one can incorporate cho-
sen properties ofp(·, t) in the model. For example, one may wish to construct a
model where the probabilitiesp(x, t) behave continuously or smoothly across ages.
This can be achieved simply by choosing continuous or smooth basis functions, re-
spectively.

Another natural requirement is that the basis functions be sufficiently indepen-
dent in the sense that they each contain features that cannot be represented by the
other basis functions. The functionsφi arelinearly independenton a setA ⊂ X of
age groups if the only vectorv ∈ R

n that satisfies

n
∑

i=1

viφi(x) = 0 ∀x ∈ A

is the zero vectorv = 0. A violation of this condition would mean that the set of
basis functions is redundant in the sense that we could remove at least one basis
function without affecting the range of possible survival probabilities onA in the
model.

The choice of the basis functions also determines the interpretation of the risk
factors. If, for example, the basis functions are such thatφk(x) = 1 butφi(x) = 0
for i 6= k for a certain agex, then the risk factorvk(t) equals the logistic survival
probability inx in the yeart. Such concrete interpretations facilitate the modelling
of future values of the risk factors. For example, one may be able to deduce de-
pendencies between betweenv and certain economic factors such as investment
returns. Such dependencies play a crucial role in asset and liability management of
insurance companies as well as in pricing and hedging of mortality-linked securi-
ties.

Example 1 When the survival probabilities are given by(3) the logisticmortality
ratesq(x, t) := 1 − p(x, t) are given by

logit q(x, t) = − logit p(x, t) = −
n

∑

i=1

wi(t)φi(x).
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In [9], Cairns et al. introduced the model

logit q(x, t) = κ1(t) + κ2(t)(x − x̄),

whereκ1 andκ2 follow a two-dimensional random walk, and̄x is the mean over
all agesX. This fits our framework withn = 2, vi = −κi , φ1(x) = 1 and
φ2(x) = (x − x̄). The parameterv1 can be interpreted as the general level of
mortality, whilev2 describes how mortality rates change with age. In this case, the
basis functions are not only linearly independent onX but alsoorthogonal:

∑

x∈X

φ1(x)φ2(x) = 0.

Example 2 Following Lee and Carter [20], we could model the mortality rates by

logit q(x, t) = β1(x) + β2(x)κt,

where the functionsβi as well as the historical valuesκt are obtained from the sin-
gular value decomposition of the matrix of historical death rates. In our framework
this corresponds ton = 2, ϕi = βi, v2 = −κt and the first risk factorv1 being
equal to constant−1. We will, however, deviate from the calibration procedure of
[20].

Once the basis functionsφi have been chosen, the vectorv = (v1, . . . , vn) of
risk factors is modelled as a multivariate stochastic process in discrete time. The
simplest (nontrivial) choice would be to modelv as a random walk with a drift,
but one could also use more sophisticated models developed in the broad range
of literature on econometric modelling. The model specification could be based
solely on the user’s views about the future development of survival probabilities,
on historical data, or on both. The historical values of the risk factorsv(t) =
(v1(t), . . . , vn(t)) can be easily constructed by maximum likelihood estimation as
follows.

Given the historical values ofE(x, t), the log-likelihood function for yearly
values ofv(t) can be written using (1) and (3) as

lt(v) = ln
∏

x∈X

(

E(x, t)

E(x+1, t+1)

)

pv(x)E(x+1,t+1)(1 − pv(x))E(x,t)−E(x+1,t+1)

=
∑

x∈X

{E(x+1, t+1)[ln pv(x) − ln(1 − pv(x))] + E(x, t) ln(1 − pv(x))} + ct

=
∑

x∈X

[

E(x+1, t+1)
∑

i

viφi(x) − E(x, t) ln(1 + e
P

i
viφi(x))

]

+ ct (4)

where

ct =
∑

x∈X

ln

(

E(x, t)

E(x+1, t+1)

)

.
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Maximizing lt(v) overv ∈ R
n gives an estimate of the factor vectorv(t) for year

t. In general, the maximization requires techniques of numerical optimization, but
the following result significantly facilitates the task.

Proposition 3 The log-likelihood functionlt : R
n → R is concave. If the basis

functionsφi are linearly independent on the set of ages

A(t) = {x |E(x, t) > 0},

thenlt is strictly concave.

Proof. The log-likelihood function in (4) can be written as

lt(v) = ft(Φv),

where the functionsΦ : R
n → R

A(t) andf : R
A(t) → R are defined by

Φv =

[

n
∑

i=1

viφt(x)

]

x∈A(t)

and
ft(z) =

∑

x∈A(t)

[E(x+1, t+1)z(x) − E(x, t)ϕ(z(x))] + ct

whereϕ(z) = ln(1 + ez). For convexity, it suffices to show thatΦ is linear andft

is convex. For strict convexity, it suffices to show thatf is strictly convex and that
Φ is injective.

The linearity ofΦ is clear and the injectivity ofΦ is equivalent to the linear
independence condition. To finish the proof it suffices to show thatϕ is strictly
convex onR since that implies thatft is strictly convex onRA(t). The second
derivative ofϕ can be written as

ϕ′′(z) =
ez

(1 + ez)2
,

which is strictly positive onR. This completes the proof; see e.g. [27, Theo-
rem 2.13]. �

Concavity implies that local maxima oflv are true maximum likelihood esti-
mators. Strict concavity implies that the estimator is unique; see e.g. [27, Theo-
rem 2.6]. Besides guaranteeing well defined estimators, convexity facilitates the
numerical maximization oflt. There exists a wide literature on numerical tech-
niques for convex optimization; see e.g. [3, 24].

We end this section by a brief summary of our modelling procedure.

1. Choose a set{φi}
n
i=1 of basis functions that is rich enough to allow for a

description of features of interest in the survival probability curvep(x., t).
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2. Construct historical values ofv(t) from data using maximum likelihood es-
timation.

3. Model the future development ofv(t) as a stochastic process, using its his-
torical values and/or expert information.

4. The future survival probabilities are given by

p(x, t) = logit−1
(

∑

i

vi(t)φi(x))
)

=
[

1 + exp
(

−
∑

i

vi(t)φi(x)
)]

−1

5. The future population sizesE(x+1, t+1) are obtained by sampling from
Bin(E(x, t), p(x, t)) or simply byE(x+1, t+1) = E(x, t)p(x, t), if we are
only interested in the systematic risk in future values ofE(x, t).

3 Modelling Finnish adult mortality

As an example, we construct two stochastic mortality models using the framework
presented in the previous section, and fit the models into Finnish population and
mortality data. The first, simpler model comprises two linear basis functions and
two stochastic risk factors, while the second one has three piecewise linearbasis
functions and three risk factors.

We employ population and mortality data for Finnish adults, obtained from
the Human Mortality Database1. We use data covering age groups from 18 to
100 and years 1900 to 2007 in the fitting of our models. The population data is
recorded as the annual age-specific population sizesE(x, t) at the beginning of
yeart, separately for males and females.

The yearly values of the risk factorsv were obtained by maximizing the log-
likelihood functions (4) using Matlab Optimization Toolbox.

3.1 Two-parameter model

We first consider a two-factor model with two linear basis functions, which are of
the form

φ1(x) = 1 −
x − 18

82
and φ2(x) =

x − 18

82
.

Consequently, their linear combination
∑2

i=1 viφi(x) is also linear, as illustrated
in Figure 1. Note that the same linear form for the curve oflogit p could have been
obtained using any two linearly independent linear basis functions. However, this
particular choice ensures that the risk factors have a certain natural interpretation.
Namely, for everyt,

logit p(18, t) = v1(t)φ1(18) + v2(t)φ2(18) = v1(t),

1University of California, Berkeley (USA) and Max Planck Institute for Demographic Research
(Germany); www.mortality.org.
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and, similarly,logit p(100, t) = v2(t). Hence, the risk factors are the logit survival
probabilities of ages18 and100.

This interpretation will be useful when assessing estimation results for histori-
cal values ofv, and the general validity of the model in this particular population.
In addition, expert views on the future development of mortality in these age groups
may be incorporated into the model when choosing the appropriate stochasticpro-
cess that governs the evolution of the risk factors. Furthermore, in the engineering
of mortality-linked securities this feature facilitates, for instance, the assessment of
various other instruments for hedging purposes.

40 60 80 100
x

0.2

0.4

0.6

0.8

1.0

SiviΦiHxL

Φ2HxL

Φ1HxL

Figure 1: Linear basis functions and an exemplary linear combination
∑2

i=1 viφi(x) with
v1 = 0.6 andv2 = 0.2.

Historical values ofv1 andv2 for males and females are presented in Figures 2
and 3, respectively. The effect of Finnish war years (1918 and 1939-1944) can
be clearly observed in the estimated risk factors for males. The dramatic dropin
the wartime survival probabilities of younger age groups tilts the fitted linear logit
survival probability curve resulting in the peaks inv2. This two-dimensional model
thus suggests that the survival probabilities of the oldest age groups would have
temporarily increased during the war years. As this is doubtful, we conclude that
the two-dimensional model is be too simple to capture the population dynamics in
Finland during the entire 20th century. The female parameter estimates, in contrast,
are less affected by the war years. The values ofv1 grows fairly steadily, whilev2

shows some fluctuations before settling into a growing trend around the 60s.
Figures 4 and 5 plot the survivals ratiosE(x+1, t+1)/E(x, t) in comparison

with the estimated survival probabilitiesp(x, t) for males and females. The values
of E(x+1, t+1)/E(x, t) reflect both systematic and nonsystematic risks, while
p(x, t) captures only the estimated systematic risk. Contrary to the behavior of
E(x+1, t+1)/E(x, t), the probabilitiesp(x, t) for older males in Figure 4 display
sharp ridges during the war year. This is caused by the spurious peaksin v2 in
Figure 2.
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Figure 2: Estimated factor values for two-factor model, males.
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Figure 3: Estimated factor values for two-factor model, females.
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Figure 4: E(x+1,t+1)
E(x,t) vs. estimated values ofp(x, t) for two-factor model, males.

3.2 Three-parameter model

To correct the somewhat unrealistic results obtained with the two dimensional
model above, we will next implement a three dimensional model with three piece-
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Figure 5: E(x+1,t+1)
E(x,t) vs. estimated values ofp(x, t) for two-factor model, females.

wise linear basis functions given by

φ1(x) =

{

1 − x−18
32 for x ≤ 50

0 for x ≥ 50,

φ2(x) =

{

1
32(x − 18) for x ≤ 50

2 − x
50 for x ≥ 50,

φ3(x) =

{

0 for x ≤ 50
x
50 − 1 for x ≥ 50.

The linear combination
∑3

i=1 viφi(x) is now piecewise linear and continuous; see
Figure 6. Like in the two-dimensional model, the values of the factors are points
on logit survival probability: logit p(18, t) = v1(t), logit p(50, t) = v2(t) and
logit p(100, t) = v3(t).

Risk factor estimates for males and females are plotted in Figures 7 and 8. For
males, the effect of war years shows as sharp declines inv1 andv2, i.e. the logit
survival probabilities for 18- and 50-year-olds, respectively. As opposed to the two-
dimensional model in Section 3.1, the survival probabilities for the 100-year-olds
behave more realistically and the sharp peaks during the war years are now gone.
This is further illustrated in the surface plots of the estimatedp(x, t) in Figures 9
and 10. They now correspond better to the survival probabilitiesE(x+1,t+1)

E(x,t) than
in the two dimensional case. The unrealistic ridges in the survival probabilities of
older males in the two-parameter model (Figure 4) do not appear here.

Another notable difference compared to the two-dimensional model is that now
all the risk factors achieve their highest values during the most recent years. This
is quite natural since the risk factors represent logistic survival probabilities which
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are generally viewed as upward drifting processes. In the two-dimensional model,
the strong improvements in the larger young age groups tilt the linear logistic prob-
ability curve in the estimation at the expense of a worse fit of the smaller old age
groups.
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1.0

SiviΦiHxL

Φ3HxL

Φ2HxL

Φ1HxL

Figure 6: Three piecewise linear basis functions and their linear combination
∑2

i=1 viφi(x) with v1 = 0.6, v2 = 0.2 andv3 = 0.8.
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Figure 7: Estimated factor values ofv for three-factor model, males.
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Figure 8: Estimated factor values ofv for three-factor model, females.

As a more quantitative method of comparison between the two- and three-
factor models, we calculated the Bayesian Information Criterion (BIC) for both;
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Figure 9: Estimated values ofE(x+1,t+1)
E(x,t) vs. p(x, t) for three-factor model, males.
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Figure 10: Estimated values ofE(x+1,t+1)
E(x,t) vs. p(x, t) for three-factor model, females.

see [28]. Although some of the independence assumptions may be violated bythe
data, BIC gives a simple means to quantify the model fit; see also [8]. The criterion
is defined asBIC = l − 1

2klog(N), wherel is the maximum log-likelihood,k the
number of parameters, andN the number of observations. In our case, the yearly
log-likelihood function is given by (4),N = 100 − 18 = 82 andk is either 2 or
3. The annual BIC values for the two models are compared in Figures 11 and 12.
The BIC prefers the three-factor model to the two-factor one for both sexes and all
years in the data.

3.3 Modelling the risk factors

To obtain a stochastic mortality model, we model the vectorv of risk factors as a
multivariate stochastic process. In order to capture the dependencies between male
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Figure 11: Annual BIC values, males.
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Figure 12: Annual BIC values, females.

and female mortality, we model the joint behavior of all the risk factors as a single
multivariate process.

In this study, the risk factors are modelled as a simple multivariate Brownian
motion (random walk) with drift. The combined vector of female and male risk
factorsv(t) satisfies

∆v(t) = µ + CZ(t), (5)

whereZ(t) aren-dimensional independent standard Gaussian random variables,
and vectorµ ∈ R

n and matrixC ∈ R
n×n are parameters of the model. Here

n is the total number of the risk factors for females and males. Vectorµ gives
the drift and matrixC the volatility of the risk factors, i.e.E(∆v(t)) = µ and
Var(∆v(t)) = CCT . The volatility matrixC can be chosen e.g. as the Cholesky
factor of the covariance matrixVar(∆v(t)).

We choose to model Finnish mortality in relatively stable conditions, and there-
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fore use historical values of the risk factors only from the period 1960-2007 in
calibration of the processes. In the two-parameter model, the estimated risk factor
values for both males and females show an upward trend from year 1960 onwards.
In the case of the two-factor model we obtain, for the combined vector of female
(f) and male (m) risk factorsv = (vf

1 , vf
2 , vm

1 , vm
2 )

µ =









0.0311
0.0153
0.0207
0.0128









, σ =









0.0799
0.0637
0.0535
0.0626









and

R =









1.0000 −0.6890 0.4051 −0.3565
−0.6890 1.0000 −0.3279 0.6655
0.4051 −0.3279 1.0000 −0.6605
−0.3565 0.6655 −0.6605 1.0000









,

whereσ andR give the standard deviations and correlations of∆v so that

Var(∆v) = diag(σ)R diag(σ).

For the three-parameter model with the vectorv = (vf
1 , vf

2 , vf
3 , vm

1 , vm
2 , vm

3 ) of
combined male and female risk factors, we obtain

µ =

















0.0097
0.0252
0.0171
0.0075
0.0196
0.0116

















, σ =

















0.1149
0.0352
0.0662
0.0765
0.0372
0.0728

















and

R =

















1.0000 0.1246 0.1277 0.1341 0.1690 −0.0573
0.1246 1.0000 −0.3064 −0.2564 0.4259 −0.1741
0.1277 −0.3064 1.0000 0.1067 0.0528 0.6282
0.1341 −0.2564 0.1067 1.0000 −0.4031 0.1625
0.1690 0.4259 0.0528 −0.4031 1.0000 −0.3214
−0.0573 −0.1741 0.6282 0.1625 −0.3214 1.0000

















.

3.4 Simulations

We applied the the two models presented in Section 3.2 to simulate male survival
probabilities and cohort sizes 30 years into the future. The processv(t) was mod-
elled as a random walk with a drift as described in the previous section. A sample
of 10000 scenarios forv was generated using Latin hypercube sampling, and the
probabilitiesp(x, t) were then calculated from each simulated path ofv(t). The
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number of survivorsE(x+1, t+1) in each cohort was approximated by its ex-
pected valueE(x, t)p(x, t).

Cohorts aged 30 and 65 in the final observation year 2007 were chosenas
reference cohorts. Figures 13 and 14 plot the development of the medians and
90% confidence intervals forp(x0 + t, t) and cohort sizesE(x0 + t, t). Figures
15 and 16 give the corresponding results for the three-factor model. Inthe three
factor model, the younger reference cohort displays a notable kink in thesurvival
probability curves, which results from the cohort shifting from one partof the
piecewise linear logit probability curve to another during the simulation period.
For the younger cohort, the cohort size estimates for the two-factor modelin the
final simulation year are slightly below that of the three-factor model. For the older
reference cohort the difference, albeit hardly notable, is the other way round.

Figure 17 plots the density function of the survival probability of the younger
reference cohort for the three-factor model at the end of the simulation period i.e.
60-year-old males in year 2037.
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Figure 13: Medians and 90% confidence intervals for survivalprobabilitiesp(x0, t) and
cohort sizesE(x0, t). Cohort aged 30 in 2007, male. Two-factor model.
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Figure 14: Medians and 90% confidence intervals for survivalprobabilitiesp(x0, t) and
cohort sizesE(x0, t). Cohort aged 65 in 2007, male. Two-factor model.
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Figure 15: Medians and 90% confidence intervals for survivalprobabilitiesp(x0 + t, t)
and cohort sizesE(x0 + t, t). Cohort aged 30 in 2007, male. Three-factor model.
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Figure 16: Medians and 90% confidence intervals for survivalprobabilitiesp(x0 + t, t)
and cohort sizesE(x0 + t, t). Cohort aged 65 in 2007, male. Three-factor model.
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Figure 17: Distribution of the survival probability of 60-year-olds in year 2037.

4 Conclusions

This paper proposed a flexible but simple framework for stochastic mortality mod-
elling. The framework allows for risk factors with tangible interpretations, and
guarantees that the parameter estimates are well-defined. Two- and three-factor
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versions of the model were fitted into Finnish adult population and mortality data,
and the factors were modelled as a simple random walk process with a drift. Us-
ing the resulting models, future values of death probabilities and cohort sizes were
simulated with plausible results.

In real-life applications, modelling of the risk factors should receive more at-
tention. A straightforward extension would be to use more flexible econometric
models. For example, by allowing heavy tailed distributions one might be able to
better capture the effects of epidemics or natural disasters on mortality. When de-
scribing the uncertainty in future development of longevity, the model need not be
based completely on historical data, as that might not produce the best description
of the future development of mortality. Instead, expert views of future mortality
and survival probabilities could be incorporated into the model.

Another interesting aspect is the interplay between mortality and the financial
instruments that are used to hedge mortality linked securities. The dependence
structures therein are instrumental in asset and liability management of insurance
companies, and in pricing and hedging of mortality-linked financial products; see
e.g. [19, 18].
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