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Abstract

This paper studies optimal investment from the point of view of an
investor with longevity-linked liabilities. The relevant optimization prob-
lems are rarely analytically tractable, but we are able to show numeri-
cally that liability driven investment can significantly outperform com-
mon strategies that do not take the liabilities into account. In problems
without liabilities the advantage disappears, which suggests that the su-
perioity of the proposed strategies is indeed based on connections between
liabilities and asset returns.

Keywords: Longevity risk, Mortality risk, Stochastic mortality, Stochastic
optimization, Hedging.

1 Introduction

Longevity risk, the uncertainty in future mortality developments, affects pension
providers, life insurers, and governments. The population structure of developed
countries is increasingly leaning towards the old, and the effects of medical ad-
vances and lifestyle choices on mortality remain unpredictable, which creates an
increasingly acute need for life insurance and pension plans to hedge themselves
against longevity risk.

Various longevity-linked instruments have been proposed for the manage-
ment of longevity risk; see e.g. [10, 13, 6, 19, 26]. It has been shown how
such instruments, once in existence, can be used to hedge mortality risk ex-
posures in pensions or life insurance liabilities [10, 12, 11, 15, 25, 18]. Indeed,
demand for longevity-linked instruments appears to exist, and some longevity
transactions have already taken place. However, a major challenge facing the
development of longevity markets is the hedging of the risk that stems from
issuing longevity-linked securities. The supply for mortality-linked instruments
might increase if their cash-flows could be hedged by appropriately trading in
assets for which liquid markets already exist. Such development has been seen
e.g. in options markets which flourished after the publication of the seminal

∗Department of Mathematics and Systems Analysis, Faculty of Information and Natural
Sciences, Aalto University, helena.aro@aalto.fi
†Department of Mathematics, King’s College London

1



Black–Scholes–Merton model. Even though the cash flows of mortality-linked
instruments cannot be replicated, it may be possible to diminish the residual
risk by an appropriate choice of an investment strategy.

This work addresses the above issues by studying optimal investment from
the point of view of an insurer with longevity-linked liabilities. We demonstrate
how the hedge of a longevity-linked cash flow can be improved by taking the
liabilities into account in investment decisions. This is achieved by optimally
diversifying a given initial capital amongst several investment strategies, some
of which employ statistical connections between assets and liabilities. The ap-
proach can be applied to the pricing and hedging of longevity-linked instruments,
as well as the asset-liability management of pension plans and life insurers.

The most straightforward approach to hedging of longevity-linked instru-
ments is natural hedging, where an insurer hedges longevity risk by taking po-
sitions with opposite exposures to longevity developments [17, 28]. Such an
approach is obviously limited by the demand on the relevant insurance prod-
ucts. Another popular approach builds on risk neutral valuation which is based
on the no-arbitrage principle from financial economics; see e.g. [12, 20, 3], Cairns
et al. [16] as well as Section ?? of Wilkie et al. [29]. In analogy with the Black–
Scholes–Merton theory, it has been suggested that longevity-linked instruments
could then be hedged using delta hedging by determining price sensitivities with
respect to traded securities. This approach is, however, invalidated by the fact
that the payouts of longevity-linked instruments cannot be replicated by liquidly
traded assets as assumed by the risk neutral valuation theory; see the discussion
in [29, 4, 5].

We approach the hedging problem by studying optimal investment in the
presence of longevity-linked liabilities. We employ a computational procedure
that constructs diversified strategies from parametric basis strategies, and sug-
gest trading strategies that are motivated by connections between mortality
and financial markets observed in [2]. We notice that the risk associated with
the diversified strategy diminishes as these liability-driven basis strategies are
included. To assess to which extent the reduction in risk was due to the lia-
bility connection, we performed the same computations without liabilities. In
this case, the inclusion of the longevity-linked liability-driven strategies had a
negligible effect on the aggregate risk, suggesting that the reduction in the risk
of the original problem resulted from taking the longevity-linked liabilities into
consideration in the investment decisions.

Section 2 formulates the asset-liability management problem of a longevity-
linked cash flow. Section 3 introduces investment strategies that serve as basis
strategies for the computational procedure described in Section 4. Section 5
presents results from a simulation study, and Section 6 concludes.

2 The asset-liability management problem

Consider an insurer with given initial capital w0 and longevity-linked liabilities
with claims ct over time t = 1, 2, . . . , T . After paying out ct at time t, the in-
surer invests the remaining wealth in financial markets. We look for investment
strategies whose proceeds fit the liabilities as well as possible in the sense of a
given risk measure ρ on the residual wealth at time T .

We assume that a finite set J of liquid assets (bonds, equities, . . . ) can
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be traded at t = 0, . . . , T . The return on asset j over period [t − 1, t] will be
denoted Rt,j . The amount of cash invested in asset j over period (t, t+ 1] will
be denoted by ht,j . The asset-liability management problem of the insurer can
then be written as

minimize ρ(
∑
j∈J

hT,j) over h ∈ N

subject to
∑
j∈J

h0,j ≤ w0∑
j∈J

ht,j ≤
∑
j∈J

Rt,jht−1,j − ct t = 1, . . . , T

ht ∈ Dt, t = 1, . . . , T

(ALM)

The liabilities (ct)
T
t=0 and the investment returns (Rt,j)

T
t=0 will be modeled as

stochastic processes on a filtered probability space (Ω,F , (F)Tt=1, P ). The set
N denotes the RJ -valued (Ft)Tt=1-adapted investment strategies (ht)

T
t=0. Being

adapted means that the portfolio ht chosen at time t may only depend on infor-
mation observed by time t. The last constraint describes portfolio constraints.
The set Dt is allowed to be random but known at time t1. The risk measure ρ
is a convex function on the space of real-valued random variables. It describes
the insurer’s preferences over random terminal wealth distributions. We refer
the reader to [21, Chapter 4] for a general treatment of risk measures.

Liability-driven investment refers to the general principle that optimal invest-
ment strategies depend on the liabilities. The same idea is behind the famous
Black–Scholes–Merton option pricing model where the price of an option is de-
fined as the least amount of initial capital that allows for the implementation
of an investment strategy whoce proceeds match the option payout exactly. In
the case of longevity-linked liabilities, exact replication is not possible so one
has to evoke the risk preferences as is done in problem (ALM) in terms of the
risk measure ρ.

Problems of the form (ALM) arise naturally in reserving for existing insur-
ance liabilities as well as in underwriting new insurance contracts. Optimal risk
adjusted reserves are obtained as the least initial wealth w0 that allow for ac-
ceptable levels of risk in (ALM). In underwriting, one looks for a premium that
would allow the insurer to take on the additional liabilities without worsening
the optimal value of (ALM); see [27] for a general study of risk management-
based valuation of uncertain cash-flows.

3 Investment strategies

In this section we present investment strategies that are used in subsequent
numerical illustrations. We recall some well-known trading strategies recom-
mended for long-term investment, and also introduce new strategies that try
to employ the connections between the longevity-linked liabilities and asset re-
turns.

We will describe the proportions of wealth invested in each asset j ∈ J at
time t by vector πt = [π1

t , π
2
t , . . . , π

J
t ] whose components sum up to one. The

1More precisely, Dt is assumed Ft-measurable, i.e. {ω ∈ Ω |Dt(w)∩U 6= ∅} ∈ Ft for every
open U .
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amount of wealth invested in each asset can be expressed as ht = πtwt, where
for t = 1, . . . , T

wt =
∑
j∈J

Rt,jht−1,j − ct

is the net wealth of the investor at time t.

3.1 Non-liability-driven investment strategies

In buy and hold (B&H) strategies the initial asset allocation π0 is held over
the subsequent time periods. To cover a nonzero claim process ct, each asset
is liquidated in proportion to the the initial investment. In other words, one
invests

ht,j =

{
πj0w0 t = 0,

Rt,jht−1,j − πj0ct t = 1, . . . , T,

units of cash in asset j ∈ J at the beginning of the holding period starting at
time t.

Fixed proportions (FP) is a strategy where the allocation is rebalanced at
the beginning of each holding period into fixed proportions given by a constant
vector π ∈ RJ as

ht = πwt.

A target date fund (TDF) is an well-known strategy in the pension indus-
try ([14]). In a TDF, the proportion invested in risky assets diminishes as a
pre-determined target date approaches. We implement TDFs by adjusting the
allocation between two complementary subsets Jr and Js of the set of all assets
J . Here Js consists of “safe” assets and Jr consists of the remaining “risky” as-
sets. In the simulations presented in Section 5 safe assets consist of government
bonds, and risky assets comprise equities and corporate bonds. The proportional
exposure to Jr at time t is given by

et = a− bt.

The parameter a determines the initial proportion invested in Jr and b defines
how fast the proportion decreases in time. Choices of such a and b that

a ≥ 0 and a− bT ≥ 0.

guarantees that the exposure et in the risky assets remains nonnegative. A TDF
can be written as

ht = πtwt

where the vector πt is adjusted to give the specified proportional exposure:∑
j∈Jr

πjt = et.

Within Jr and Js the wealth is allocated using FP rules.
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3.2 Liability-driven investment strategies

This subsection presents strategies in which the proportions invested in different
assets are connected to the development of the longevity-linked liabilities. Some
of the strategies utilize the connections between mortality and financial markets
observed in [2], while others employ, directly or indirectly, the current and
forecast future cash flows of longevity-linked liabilities to determine the asset
allocation.

A well-known liability-driven strategy is the constant proportion portfolio
insurance (CPPI) strategy; see e.g. [7, 8, 9]. The proportion of wealth invested
in risky assets is given by

et =
m

wt
max{wt − Ft, 0}

= mmax{1− Ft
wt
, 0},

where the floor Ft represents the value of outstanding claims at time t and the
parameter m ≥ 0 determines the fraction of the cushion (wealth over the floor)
invested in risky assets. Risky and safe assets are here the same as in TDF
strategies. We define the floor through

FT = 0,

Ft = (1 + r)Ft−1 − c̄t t = 0, . . . , T,

where r is a deterministic discount factor and c̄t is the median of claim amount
at time t. In this type of strategies, the liabilities are taken into account not
only in the projected claim amounts c̄t but also in the remaining wealth wt,
which for a given w0 depends on the realized values of the claims ct.

The idea behind spread strategies is to capture the connections between
mortality and asset returns described in [2]. Statistical analysis suggests that
term spread is connected to the survival probabilities of over 50-year-olds. When
term spread is high, the survival probabilities v3 tend to be high. On the
other hand, the yields of long-term treasury bonds are then relatively high,
compared to short-term treasury bonds. Hence, relatively high yields on long-
term bonds are connected with high survival probabilities of the old. Term
spread strategies aim to utilize this notion. The proportion of wealth invested
in long-term treasury bonds is determined as a function of the term spread sTt
by

πLt = σa,b(sTt ),

where

σa,b(s) =
1

1 + e−b(s+a)
,

and b > 0 and a ∈ R are user-defined parameters. The remaining wealth is
invested in short-term government bonds.

Correspondingly, the analysis in [2] shows that the low credit spreads are
connected to high survival probabilities of over 50-year-olds, and simultaneously
the returns on riskier corporate bonds are relatively low compared to less risky
bonds. Hence, in the case of credit spread strategies the proportional exposure
to riskier corporate bonds is

πCt = σ(sCt ),
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The remaining wealth is invested in less risky bonds.
In survival index strategies the wealth between assets depends on the survival

index S of a given population. The value of the survival index St time t is defined
as the fraction of the population that survives until time t. The value of St gives
indication on future liabilities: the smaller the remaining number of survivors,
the smaller the future cash flows are likely to be. Hence, the proportional
exposure in asset j at time t is given by

πjt = ga(St),

where
ga(s) = min{as, 1},

and a ∈ R. The rest is invested in other assets using fix-mix strategies.
In wealth strategies the proportion invested in asset j depends on the pro-

portion of initial wealth wt/w0 remaining at time t. The proportional exposure
at time t is given by

πjt = ga(wt/w0),

where a ∈ R. The rest is invested in other assets. Wealth-dependent strategies
resemble CPPI strategies in the sense that both define the proportions of wealth
invested in various assets in terms of the present wealth. However, the wealth
strategies do not depend on median liabilities like CPPI, but the liabilities are
reflected only in the present level of wealth.

4 Diversification procedure

We now briefly recall the numerical procedure presented in [22, 24]. It is a
computational method for diversifying the initial wealth w0 amongst a set of
simple parametric strategies called basis strategies. The convex combination
of feasible basis strategies is always feasible, since the optimization problem is
convex. The investment strategies presented in the previous section serve as
basis strategies in the numerical illustrations in Section 5.

Consider a finite set {hi | i ∈ I} of basis strategies that invest the amount hit,j
in asset j at time t. The problem of finding an optimal diversification amongst
the basis strategies can be written as

minimize
α∈X

ρ

(∑
i∈I

αiwiT

)
,

where wiT =
∑
j∈J h

i
T,j is the terminal wealth obtained by following strategy hi

when starting with initial capital w0, and

X = {α ∈ RI+ |
∑
i∈I

αi = 1}.

are the weights in the convex combination. In this work we employ the entropic
risk measure

ρ(X) =
1

γ
logE[e−γX ],
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in which case the minimization problem becomes

minimize
α∈X

E[e−γ(
∑

i∈I α
iwi

T )].

Because of the convexity of Dt,
∑
i∈I α

ihit ∈ Dt for t = 0, . . . , T . In addition,
the budget constraint of the aggregate strategy

∑
j∈J ht,j ≤

∑
j∈J Rt,jht−1,j−ct

holds, if it holds for individual strategies. This is a finite-dimensional convex
optimization problem, but the objective involves high-dimensional integration.

In order to solve (4), we form a quadrature approximation of the objective
as e.g. in [22, 24]. A finite number N of return and claim scenarios (Rk, ck),
k = 1, . . . , N is generated over time t = 0, . . . , T . Here Rk denotes a realization
of the |J |-dimensional process (Rt)

T
t=1 where Rt = (Rt,j)j∈J . The expectation

is then approximated by

1

N

N∑
k=1

e−γ(
∑

i∈I α
iwi,k

T ),

where wi,kT is the terminal wealth in scenario k, obtained by following strategy
hi. Given a realization (Rk, ck) and a strategy hi, the corresponding wealth

process wi,k = (wi,kt )Tt=0 is given recursively by

wi,kt =

{
w0 for t = 0,∑
j∈J R

k
t,jh

i,k
t−1,j − ckt for t > 0.

The resulting minimization problem is of a form that is, in principle, straight-
forward to solve using numerical optimization algorithms.

5 Numerical results

In the following numerical illustrations, the termination date was set to T = 30,
and the cash flows ct were defined as the survival index St of a cohort of US
females aged 65 at time t = 0. The structure of this instrument is the same as
in the first longevity bond issued in 2004 by the European Investment Bank (for
a more detailed description see e.g. [6]). The asset returns Rt and liabilities ct
were modelled as a multivariate stochastic process as described in Appendix A.
We constructed N = 106 scenarios for the numerical procedure described above.

Our aim was to investigate if liability-driven investment strategies can lead
to reductions in the risk associated with a cash flow of longevity-linked liabilities.
To this end, we used two sets of basis strategies. The first set consisted of non-
liability-driven basis strategies, namely 30 FP strategies, 24 TDF strategies, and
four buy and hold strategies. The second set encompassed both the above non-
liabiilty-driven and additional liability-driven basis strategies, including 15 term
spread strategies, 15 credit spread strategies, 50 survival index strategies and 50
wealth strategies. We computed the optimal aggregate investment strategy and
the corresponding value of the risk measure function ρ for each set, using the
numerical procedure of the previous section. We then proceeded to compare the
optimal values of the objective ρ associated with each set. In order to discern
to which extent a possible reduction in risk can be attributed to considering the
liabilities, as opposed to merely having a larger number of strategies, we also
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considered a portfolio optimization problem without liabilities for both sets of
basis strategies. The optimal allocations were computed for different values of
risk aversion parameters γ. The larger the parameter, the more risk averse the
investor.

Table 1 summarizes the resulting values of the objective function. We ob-
serve that as the risk aversion grows, so does the reduction in risk of the ALM
problem with liabilities as the liability-driven strategies are included. This is
plausible since the higher the risk aversion, the more the risk measure places
importance to the fact that the asset returns conform to the liabilities. As for
the optimization problem with zero liabilities, the effect of adding the liability-
driven strategies was negligible and independent of the level of risk aversion.

Table 1: Values of objective function ρ.

γ = 0.05 γ = 0.1 γ = 0.3 γ = 0.5
ct = St ct = 0 ct = St ct = 0 ct = St ct = 0 ct = St ct = 0

Basis strategies
Non-LDI -27.46 -75.14 -18.64 -60.82 -11.16 -46.73 -9.17 -41.81

All -27.90 -75.14 -19.84 -60.84 -12.40 -46.87 -10.16 -42.14

reduction (%) 1.6 0.006 6.47 0.04 11.14 0.3 10.71 0.8

Tables 2 and 3 show the optimal allocations to each set of the basic invest-
ment strategies and both problems for risk aversion parameter γ = 0.3. After
the liability-driven strategies were included in the optimization procedure, none
of the non-liability driven strategies were included in the optimal allocation of
the problem with ct = St, whereas in the optimal allocation of the portfolio
optimization problem a non-liability driven fixed proportions strategy still had
the highest weight.

Table 2: Diversified strategy, non-liability-driven strategies, w0 = 15, γ = 0.3

ct = St Weight (%) Type π

97.7 FP π2 = 1− 0.25
π3 = 0.25

2.3 FP π2 = 1− 0.35
π3 = 0.35

ct = 0 Weight Type π

59.8 FP π2 = 1− 0.25
π3 = 0.25

40.2 FP π2 = 1− 0.15
π3 = 0.15
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Table 3: Diversified strategy, all strategies, w0 = 15, γ = 0.3

ct = St Weight (%) Type π

52.7 Survival index
π2 = ga(St)
π3 = 1− ga(St)

a = 1

19.0 Wealth
π2 = ga(wt/w0)
π3 = 1− ga(wt/w0)

a = 0.5

13.8 Survival index
π2 = ga(St)
π3 = 1− ga(St)

a = 0.75

7.4 Wealth
π2 = ga(wt/w0)
π3 = 1− ga(wt/w0)

a = 0.75

7.1 Term spread
π1 = 1− σ(sTt )a,b

π2 = σ(sTt )a,b
a = −0.5, b = 5

ct = 0 Weight Type π

44.3 FP π2 = 1− 0.35
π3 = 0.35

-

37.6 Term spread
π1 = 1− σ(sTt )a,b

π2 = σ(sTt )a,b
a = −0.5, b = 5

9.6 Survival index
π2 = ga(St),
π3 = 1− ga(St),

a = 1

8.4 Wealth
π2 = ga(wt/w0)
π3 = 1− ga(wt/w0)

a = 0.5

Tables 4 and 5 show the best five individual strategies with the smallest risks
for both problems. While all the best strategies of the problem with liabilities
were liability-driven, all the best ones for the problem without liabilities were
non-liability driven strategies. Note that when ct = 0, CPPI reduces to a fixed
proportions strategy.

Table 4: Five best basis strategies, with liabilities, w0 = 15, γ = 0.3

Type Parameters π ρ

Survival index a = 0.75
π2 = ga(St)
π3 = 1− ga(St)

-11.80

Survival index a = 1
π2 = ga(St)
π3 = 1− ga(St)

-11.23

Wealth a = 1
π2 = ga(wt/w0)
π3 = 1− ga(wt/w0)

-11.22

FP - π2 = 1− 0.25
π3 = 0.25

-11.13

CPPI m = 0.2, r = 0.04
π2 = 1− et
π3 = et

-10.89
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Table 5: Five best basis strategies, without liabilities, w0 = 15, γ = 0.3

Type Parameters π ρ

CPPI/FP m = 0.2, r = 0.03
π2 = 1− et
π3 = et

-46.62

FP - π2 = 1− 0.25
π3 = 0.25

-46.46

FP - π2 = 1− 0.15
π3 = 0.15

-46.13

TDF a = 0.2, b = 0.003
π2 = 1− et
π3 = et

-45.98

TDF a = 0.25, b = 0.005
π2 = 1− et
π3 = et

-45.08

Figure 1 illustrates the effect of the liability link by plotting the proportions
π2 of wealth invested in 5-year government bonds as a function of remaining
wealth wt at t = 15 in different scenarios. In the case of the ALM problem of
the longevity-linked cash flow, π2 is higher when wt is higher. For the portfolio
optimization problem, however, the connection is much less clear.

(a) γ = 0.3, no liabilities. (b) γ = 0.3, with liabilities.

Figure 1: Proportion of wealth invested at time t = 15 in 5-year bonds as a function
of W15. All strategies.

6 Conclusions

This paper presented several liability-driven investment strategies for longevity-
linked liabilities. We were able to show numerically that liability-driven in-
vestment can significantly outperform common strategies that do not take into
account the liabilities. These strategies may help pension insurers and issuers
of longevity-linked instruments in asset-liability management, reserving, and in
underwriting new insurance contracts.

While encouraging, the results still leave substantial room for improvement.
The basis strategies employed in the simulations are only an example of liability-
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driven strategies. Discovering and utilizing new connections between longevity-
linked cash flows and asset returns would further improve the overall hedging
strategy.

A Assets and liabilities

We consider a set J of assets consisting of

1. US Treasury bills (1-year rate)

2. US Treasury bonds (5 -year rate)

3. US Corporate bonds

4. US equity (S&P total return index).

These are the asset classes between which the investment strategies dis-
tribute the existing wealth, and the above numbers are the indices with which
the strategies are referred to. Returns on government bonds are given by the
formula

Rit = exp(Y it−1∆t−D∆Y it ),

where Y it is the yield to maturity of each bond i ∈ {1, 2} at time t, and D is
the duration. Following [23], corporate bond returns are computed by

R3
t = exp(c+ (Y 3

t − αSCt )∆t−D∆Y 3
t ),

where Y 3
t is the yield to maturity of the bond, SCt is here the credit spread

between the yields of corporate bonds and longer-term government bonds Y 2
t ,

and D is again the duration. Setting c = 1 and α = 1 yields

R3
t = exp(Y 2

t ∆t−D∆Y 3
t ).

The total return of the equity is calculated in terms of its total return index
SEt ,

R4
t =

SEt
SEt−1

.

The value of the liabilities depends on the survival index of cohort of US
females aged 65 at the beginning of the observation period. The population
dynamics are governed by three mortality risk factors of the mortality model
presented in [1].

We briefly recall the stochastic model proposed in [1]. Let Ex,t be the num-
ber of individuals aged [x, x + 1) years at the beginning of year t in a given
population. The number of survivors Ex+1,t+1 among the Ex,t individuals dur-
ing year [t, t+ 1) can be described by the binomial distribution:

Ex+1,t+1 ∼ Bin(Ex,t, px,t), (1)

where px,t is the probability that an x year-old individual randomly selected at
the beginning of year t survives until t+ 1.

The future values of Et+1 are obtained by sampling from Bin(Et, px,t). How-
ever, as the population grows, the fraction Et+1/[Etpx+t,t] converges in distri-
bution to constant 1. For large populations, the population dynamics are well
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described by E(x+1, t+1) = Ex,tpx,t, when the main uncertainty comes from
unpredictable variations in the future values of px,t. In this work, we employ
the latter approach.

As in [1], we model the survival probabilities px,t with the formula

px,t =
exp

(∑n
i=1 v

i
tφ
i(x)

)
1 + exp(

∑n
i=1 v

i
tφ
i(x))

, (2)

where φi are user-defined basis functions and vit are stochastic risk factors that
may vary over time.

As in [1], we will use the three piecewise linear basis functions given by

φ1(x) =

{
1− x−18

32 for x ≤ 50

0 for x ≥ 50,

φ2(x) =

{
1
32 (x− 18) for x ≤ 50

2− x
50 for x ≥ 50,

φ3(x) =

{
0 for x ≤ 50
x
50 − 1 for x ≥ 50.

The linear combination
∑3
i=1 v

i
tφ
i(x) will then be piecewise linear and contin-

uous as a function of the age x. The risk factors vit now represent points on
logistic survival probability curve:

v1t = logit p18,t, v
2
t = logit p50,t, v

3
t = logit p100,t.

Once the basis functions φi are fixed, the realized values of the corresponding
risk factors vit can be easily calculated from historical data using standard max-
likelihood estimation.

As in [2], we model the future development of and connections between
mortality risk factors and spreads with the following system of equations

∆v1t = a11v1t−1 + b1 + ε1t

∆v2t = b2 + ε2t

∆v3t = a33v3t−1 + a34gt−1 + b3 + ε3t

∆gt = a45sTt−1 + a46sCt−1 + b4 + ε4t

∆sTt = a55sTt−1 + b5 + ε5t

∆sCt = a66sCt−1 + b6 + ε6t

∆y1t = a77y1t−1 + b7 + ε7t

∆sEt = b8 + ε8t .

where vit are mortality risk factors, gt is the natural logarithm of per capita real
GDP, sTt is the term spread between the logarithms of yields to maturity for 5-
year and 1-year government bonds, and sCt is the logarithm of the credit spread
between the logarithmic yields to maturity of BAA and AAA rated corporate
bonds. In addition to the risk factors included in the original model, the 1-
year government bond yield y1t = log(Y 1

t ) was added to enable computation of
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bond returns, as well as the S&P total return index st = log(SEt ) as pension
plans typically invest in the stock market. The terms εit are random variables
describing the unexpected development in the risk factors.

Once the 1-year government bond yield is known, the 5-year government
bond yield can be computed by means of the term spread. Due to lack of
data, we approximate the credit spread between government bonds and corpo-
rate bonds with the spread sCt between corporate bonds of varying riskiness,
obtaining the corporate bond yield.

Final year of available mortality data was 2007. Parameters of the time
series model were estimated as in [2], with the exception that the mean reversion
yields of 1-year and 5-year government bonds and corporate bonds were set to
2.5%, 3.5% and 4.5%, respectively, and expected return on equity was set to
8%. Durations D for the 1-year and 5-year Treasury bonds were 1 and 5 years,
respectively, and 5 years for the corporate bonds. In the case of negative wealth,
required funds were borrowed from the money market at the 1-year rate adjusted
by a loan margin of 1%.
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[21] H. Föllmer and A. Schied. Stochastic Finance. Walter de Gruyter, Berlin,
2004.

[22] P. Hilli, M. Koivu, and T. Pennanen. Optimal construction of a fund of
funds. European Actuarial Journal, 1:345-359, 2011.

[23] M. Koivu and T. Pennanen. Two-factor models for index linked bond
portfolios. Manuscript.

[24] M. Koivu and T. Pennanen. Galerkin methods in dynamic stochastic pro-
gramming. Optimization, 59:339–354, 2010.

[25] J.S.-H. Li and M.R. Hardy. Measuring basis risk in longevity hedges. North
American Actuarial Journal, 15, 2011.

[26] Y. Lin and S. H. Cox. Securitization of mortality risks in life annuities.
The Journal of Risk and Insurance, 72(2):227–252, 2005.

[27] T. Pennanen. Risk management and contingent claim valuation in illiquid
markets. Manuscript.

14



[28] Jennifer L. Wang, H.C. Huang, Sharon S. Yang, and Jeffrey T. Tsai. An
optimal product mix for hedging longevity risk in life insurance compa-
nies: The immunization theory approach. Journal of Risk and Insurance,
77(2):473 – 497, 2010.

[29] AD Wilkie, HR Waters, and Sheauwen Yang. Reserving, pricing and hedg-
ing for policies with guaranteed annuity options. British Actuarial Journal,
9(02):263–391, 2003.

15


